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Abstract

Unmanned aerial vehicles carrying multimodal sensors for precision agriculture (PA) appli-
cations face adaptation challenges to satisfy reliability, accuracy, and timeliness. Unlike
ground platforms, UAV/drones are subjected to additional considerations such as payload,
flight time, stabilization, autonomous missions, and external disturbances. For instance, in
oil palm plantations (OPP), accruing high resolution images to generate multidimensional
maps necessitates lower altitude mission flights with greater stability. This chapter
addresses various UAV-based smart farming and PA solutions for OPP including health
assessment and disease detection, pest monitoring, yield estimation, creation of virtual
plantations, and dynamic Web-mapping. Stabilization of UAVs was discussed as one of
the key factors for acquiring high quality aerial images. For this purpose, a case study was
presented on stabilizing a fixed-wing Osprey drone crop surveillance that can be adapted as
a remote sensing research platform. The objective was to design three controllers (including
PID, LQR with full state feedback, and LQR plus observer) to improve the automatic flight
mission. Dynamic equations were decoupled into lateral and longitudinal directions, where
the longitudinal dynamics were modeled as a fourth order two-inputs-two-outputs system.
State variables were defined as velocity, angle of attack, pitch rate, and pitch angle, all
assumed to be available to the controller. A special case was considered in which only
velocity and pitch rate were measurable. The control objective was to stabilize the system
for a velocity step input of 10m/s. The performance of noise effects, model error, and
complementary sensitivity was analyzed.
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1. Introduction

Malaysia is the world’s second largest exporter of palm oil (Figure 1) with approximately

5.08 million ha of land under cultivation [1]. Major percentage of these plantations is owned

by small-scale private farmers that have huge demands to affordable low-cost autonomous

platforms for applications, such as scouting, palm census, yield monitoring, spraying, and

most importantly health assessment and disease detection. The ability to collect high spatial

resolution aerial images using drones is changing the way the oil palm growers are

approaching the business [2]. Conventional methods of practicing precision agriculture

(PA) in oil palm plantations such as remote sensing and spraying are being replaced by

integrated fixed-wing or multirotor unmanned aerial vehicles (UAV) [3], allowing collection

of information to be instantly accessible for immediate decisions. Precision farming for

increasing oil palm yield requires optimization of returns on inputs while preserving

resources based on sensing, measuring, and health assessment of the plantations [4]. Relying

on satellites images of palms, there is a substantial lag in terms of accessing the data quickly

enough. Professionals have been using satellite and piloted airplane remote sensing plat-

forms [5] for plantation scouting applications, such as vegetation cover assessment [6],

vegetation mapping [7], crop monitoring [8], and forest fire applications [9]; however, the

difference that drone technology [10] and agricultural robotics [11–13] have made is around

the speed and accuracy of delivering that information. Digital agriculture [4] offers great

opportunities for mechanization and automation of farming tasks in oil palm plantations

through automation of data collection by means of ground or aerial surveillance and data

processing software to predict or estimate palms yields.

Conventional scouting of oil palms on a regular basis (Figure 2), as well as palm census and

quantification of the amount of fresh fruit bunches (FFB) for yield monitoring, is a labor-

intensive task that is either ignored or carried out manually by the use of hand counters.

Traditional scouting of palms is an ineffective practice that requires expert knowledge and

postprocessing lab equipment. It involves spending hours and hours of human observation

inside the unpleasant hot and humid plantation and does not provide accurate and

Figure 1. Comparison between world exports of palm oil, with Malaysia as the second largest exporter. (data: [1]).
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comprehensive information because several parameters are ignored due to measurements

difficulties (i.e., tasks that involve climbing trees, measuring canopy diameter, etc.). Other than

the inaccuracy and biases statistics, manual scouting involves additional costs for each extra

observation, hazards, and safety issues (i.e., falling from trees, bugs, snake bites, etc.). Satellite

imaging services are extremely costly, and they can take images only once a day and have to be

ordered in advance. The resolution of these images is low and can be influenced greatly with

certain sky cloud conditions. Ground sensing platforms are also time consuming and are

limited to small fields of view. Yield reduction due to high-density palm areas that cause

etiolation is an issue in plantation management. Palm densities are an important and limiting

factor for growth, nutritional status, fruiting, and hence for the plantation yield. Optimal palm

densities depend on different factors, such as cultivars, climate, soil characteristics, and land

preparation. Refilling of palm gaps and correction of nonoptimal densities are of high priority

for a good plantation management. Conventional methods that are solely based on visual

observation are inaccurate, particularly when coverage is large and dominant topography

is hillocky.

Precision agriculture of oil palm is one of the largest markets in Malaysia that will be hit by

UAVand robotics. These devices are the future of PA and are sometimes referred to as the next

step in data-driven agriculture. UAV/drones carrying multi-spectral and multimodal data

acquisition devices face adaptation challenges to satisfy information, accuracy, and timeliness

as the bases of a successful precision agriculture (PA) operation. These platforms have contrib-

uted to significant reductions of in-field walking costs and observational experiments. UAVs

are defined as “an aircraft that is equipped with necessary data processing units, sensors,

automatic control, and communications systems and is capable of performing autonomous

flight missions without the interference of a human pilot” [14]. The global market for agricul-

tural UAV drones is estimated to reach 3.7 billion US dollars by the year 2022 (Source: Radiant

Insight Research firm). Aerial photography from UAS has bridged the gap (see the schematic

diagram shown in Figure 3) between ground-based observations and remotely sensed imag-

ery of conventional aircraft and satellite platforms and has made possible great improvements

in crop scouting, yield mapping, field boundary mapping, soil sampling and soil property

mapping, weeds and pest control and mapping, vehicle’s guidance, navigation control, and

spraying. These devices are easy to use and are typically flexible, low cost, light-weight, and

low airspeed aircraft. They have revolutionized smart farming and precision agriculture, from

planting to harvesting, from seeding to sensing, and from scouting to spaying. UAS drones are

widely available on demand, and their functionalities can be customized for different farming

applications and can provide a cost-effective monitoring platform without requiring an expert

Figure 2. Tedious field work with conventional scouting of oil palm plantation.
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operator. With this technology, several problems associated with the data resolution from

piloted aircraft and satellite imaging have been solved. They are capable of providing live data

from a wide range of sensors, such as those shown in Figure 3 (multispectral, NIR, LiDAR,

etc.) at precision resolutions measured as centimeters per pixel. Such information contributes

to the in-depth analysis for the crop health assessment or the inventory management data-

bases. With the UAV technology, the following can be achieved: information about accurate

planted area for replanting or thinning, palm census for creating inventory database, calculat-

ing the total land area in use, finding distances between each palm to specific spots, calculating

canopy diameter, palm height, and palm density, creating 2D, 3D, GIS, NDVI maps for

plantation, identifying palm status based on Orthomosaics and digital elevation models,

detecting healthy and unhealthy palms (stress assessment), monitoring exposed soil for vari-

able rate technology application, quantification of fresh fruit bunches and mature fruits for

yield calculation, monitoring chlorophyll content and nutrient estimation, and measuring leaf

area index, drought assessment, biomass indication, weed detection, and inventory manage-

ment. Data and information such as these are useful for developing decision support systems

and yield prediction models.

2. Adaptation of UAV for oil palm remote sensing

UAV drones can be well adapted for oil palm plantations, where field work is tedious. They

allow observation of individual palm trees and can operate unnoticed and below cloud cover

that prevents larger high-altitude aircraft and satellites from performing the same mission.

Moreover, they can be deployed quickly and repeatedly, and they are less costly and safer

than piloted aircraft, are flexible in terms of flying height and timing of missions, and can

obtain very high-resolution imagery. As an aerial remote sensing platform, a UAV drone

must be adapted to satisfy the basic requirements of image data collection from oil palm

Figure 3. Typical components of a UAV-based remote sensing platform for precision agriculture of oil palm.
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plantation. Other than the selection of proper sensors, the stability and accuracy are vital to

provide geo-referenced images for extraction of useful information. Adaptation of UAV

technology for oil palm plantations involves integration of vision sensors, machine vision

algorithms, and control system for (i) yield monitoring and yield mapping, (ii) automated

airborne pest monitoring using thermal cameras, (iii) identification and counting of specific

insects from very high-resolution optical images, (iv) development of decision support

system (DSS) using geo-referenced images as a basis for a GIS-based system giving oil palm

growers the possibility to incorporate data directly to their precision farming platforms, (v)

identification and mapping of Ganoderma disease using hyperspectral camera, (vi) auto-

mated retrieving of oil palm canopy chlorophyll and nutrient content from multispectral and

hyperspectral UAV acquired images, and (vii) dynamic Web mapping and inventory man-

agement of oil palm productivity using in situ sensors. This paper is the first of series

reporting on design and development of an affordable fixed-wing UAV to be used as a

flexible scouting test bed for oil palm plantations. Schematic diagram illustrating the early

stages of technological development for introducing a UAV platform to local farmers and the

general steps and procedure involved with setting up a UAV remote sensing platform for

agricultural applications are shown in Figures 4 and 5, respectively.

Figure 4. Schematic diagram illustrating the early stages of technological development for introducing a UAV platform

to local farmers (source: Adaptive AgroTech Consultancy International).

Figure 5. General steps and procedure involved with setting up a UAV remote sensing platform for agricultural applications.
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2.1. Recommendations for purchasing UAV for agricultural application

A comprehensive document including recommendation for choosing the best UAV drone for

precision agricultural and smart farming applications is available in [15]. Specifications of

sample multirotor and fixed-wing UAV recommended for precision agriculture of oil palm

are also provided in the Appendix. Compared with piloted airplanes and satellite imaging, the

ability of UAVs in collecting higher resolution aerial images at a significantly lower cost can

provide oil palm growers with more accurate information on palm height, crown size, and

normalized difference vegetation index (NDVI), enabling practicing of data-driven techniques

for early and accurate yield estimation and health assessment. While a typical UAV may cost

as little as USD1000, it can be integrated with custom instrumentations, controllers, sensors,

and software to operate as a flexible remote sensing or variable rate technology platform to

contribute to plantation management, growth, and soil condition assessment mapping appli-

cation (i.e., 2D, 3D, GIS, NDVI), risk/hazard/safety management, spraying application, and

academic and research application. In specific, UAV remote sensing in oil palm precision

agriculture can contribute to automatic palm detection and counting, automatic measurements

of palm height and crown diameter measurements, calculation of planted and unplanted areas

for replanting or thinning, analyzing palm status based on Orthomosaics and digital elevation

models, inventory management and health assessment based on physical appearances and

vegetation indices, model-based yield prediction, yield monitoring and mapping, rapid esti-

mation of nutrient contents, and disease detection. It should be noted that agricultural UAV

activity is considered commercial operation with a high-tech platform for data acquisition or

spraying applications that should be carried out by licensed professionals or certified pilots.

Price range for a complete package is between USD1500 to over USD25000 depending on the

application. Multicopter drones can fly for 3–45 minutes on a one battery charge and are more

suitable for regular use in small-scale plantation without the requirement to special takeoff and

landing areas. Fixed-wing UAVs need to be planned for mission flights and reliable landing

for use in larger plantations. It is better to purchase drones that can be controlled via mobile or

tablets or are fully autonomous from takeoff to landing (i.e., the entire mission can be

performed by a single start button). For a multicopter, it is also important to check for the live

standstill view feed. This feature allows plantation managers to find specific spots and issues

for closer inspection. One of the key considerations in purchasing scouting UAV is the NDVI

and NIR camera options. For the sake of cost saving, an affordable regular 3D camera with two

lenses can be purchased for less than USD300 and modified slightly with a blue plastic filter to

produce NIR images. However, a more expensive UAV that can collect data faster will com-

pensate the extra costs in a long run.

2.2. Oil palm health assessment and disease detection

Health assessment in oil palm plantations is crucial for spotting fungal infection and bacterial

disease on the palms. By aerial scanning the plantation using visible RGB camera, NIR,

hyperspectral, and multispectral sensors, it is possible to identify temporal and spatial reflec-

tance variations before they can be detected by naked eyes and associate these changes with

palms heaths for an early response. For instance, NDVI cameras can calculate the vegetation
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index describing the relative density and health of the palms, and thermal camera can show

the heat signature of different spots in the plantations. A conceptual demonstration of a UAV

remote sensing platform equipped with NDVI sensor for oil palm health assessment is shown

in Figure 6.

The platform shown in Figure 7 can be customized and integrated with hyperspectral

camera as shown in Figure 8, for the detection of Ganoderma boninense, which is a serious

threat to oil palm plantations in Malaysia and has caused great losses to healthy palms. This

disease causes both basal stem rot and upper stem rot and remains South East Asia’s most

devastating oil palm diseases, with direct loss of the stand, reduced yield of diseased palms,

and the resultant requirement for earlier replanting. Using naked eye, the Ganoderma

Figure 6. Conceptual demonstration of a UAV-remote sensing platform for oil palm health assessment with NDVI camera.

Figure 7. Feasibility of using autonomous UAV-based hyperspectral imaging for detection of Ganoderma boninense disease

in oil palms.
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disease can only be recognized at a very late stage with serious symptoms of foliar chlorosis

and breakage at older fronds, the presence of decayed tissues at palm base, and production

of fruiting bodies. When symptoms of the disease appear on young palms, it is too late and

younger palms die within 6 to 24 months, whereas mature palms may survive for 3 years.

Reports also indicate that the basal stem rot can kill up to 80% of the total standing palms.

Despite the several efforts in controlling this disease, the available methods are slow, and

current strategies are still immature. To our knowledge, no effective method or a robust

sensing instrumentation has been commercialized for early detection of this disease at an

early stage. Research reports have highlighted that oil palm yields are highly correlated with

most of the nutrients. There are extensive publications on the hyperspectral analysis of

images with application in agriculture that shows promising methods to be adapted for

early detection of Ganoderma disease in oil palm. In order to adapt a UAV remote sensing

platform for this purpose, several questions should be addressed as follow: (i) at what stages

of infection can the hyperspectral imaging detect the Ganoderma disease symptoms? (ii)

what are the unique spectral characteristics of Ganoderma spectral reflectance data? (iii)

what statistical or mathematical methods are the best for analyzing the Ganoderma spectral

data? and (iv) how well can a low-cost multiband radiometer assist a scouting crew to detect

the suspicious HLB-infected trees? We can begin with a hypothesis that wavelet analysis of

reflectance data can improve detection of nutrient concentration in oil palm. This hypothesis

can be studied by the use of the Matlab Wavelet CIR images Toolbox. Preliminary studies

have demonstrated the potential of wavelet analysis for retrieving foliar nitrogen content

and photosynthetic pigment concentrations from leaf and canopy reflectance spectra, but

further research is needed to develop the approach. Our research will contribute to saving of

more palm trees and consequently a higher yield which has a significant impact on large

scale plantations and the economy of Malaysia. A project can be proposed with the long-

term goal of developing a fast UAV-based screening technique that can assist oil palm

growers in detecting suspicious Ganoderma-infected palms. Such a project may involve the

following systematic steps and methodology: (i) study the spectral characteristics of GB in

lab conditions, (ii) developing a classification method to identify the disease and separate it

from other palm stresses and other diseases with similar symptoms, (iii) evaluating the

Figure 8. Thermal camera and night vision (top row figures) and high-resolution RGB images approach (bottom row

figures) for UAV based pest monitoring in oil palm plantations.
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possibility of using a low-cost spectral radiometer for fast screening of Ganoderma-infected

palms, (iv) developing an instrumented platform for collecting and geo-referencing

hyperspectral images in the plantations, and (v) conducting a field trial to evaluate the

effectiveness of hyperspectral imagery for detecting the disease in the plantations. Reflec-

tance spectra of vegetation, measured in the visible and infrared region, contain information

on plant pigment concentration, leaf cellular structure, and leaf moisture content. In this

research, we propose to study the capability of hyperspectral imaging and spectroscopy in

the range of 300-2500 nm for early detection of anomalies in oil palm trees as a result of

Ganoderma infection. Preliminarily hyperspectral imaging data indicated that Ganoderma-

infected leaves have different spectral characteristics compared to healthy leaves. A quick

and efficient method of detecting and mapping Ganoderma at the field level will assist

growers to better manage and control this disease and can financially benefit growers. In

the first year of the study, we will study the spectral characteristics of Ganoderma-infected

oil palm leaves in laboratory conditions and compare them with other nutrient deficiency

symptoms. Accordingly, we will develop a classification method to identify the symptoms of

Ganoderma and separate it from plant stresses and other diseases with similar symptoms.

Also, in the first year, we will study how well a low-cost spectral radiometer can detect

Ganoderma symptoms. Based on the results from the first year of the study, we will develop

an instrumented platform for collecting and geo-referencing hyperspectral images and eval-

uate the effectiveness of hyperspectral imagery for detecting suspicious Ganoderma-infected

palm trees in the grove.

2.3. Pest monitoring

Oil Palm growers lose some portion of their yields to insects and pests infestation. Traditional

methods of locating pests in thousands of hectare plantations are not effective. For example,

early detection of an invasive pest like rats in palm plantations with labor requires a great

amount of time and luck. Obviously, conventional methods are not accurate, and plantation

managers have to make an educated guess before sending the crew to a large field to check for

infested spots. For the purpose of pest monitoring, a solution is to have a UAV imagery

platform equipped with a thermal camera and high-resolution RGB vision sensors for accurate

identification of the spots in the oil palm plantations fields that are diagnosed with specific

insects and pests. This approach may also involve development of a decision support system

(DSS) using georeferenced insect count as a basis for a GIS-based system, giving plantation

managers the possibility to incorporate data directly to their precision farming platforms.

Specific steps involve (i) platform setup, that is integration of the UAV, vision sensor, and

control system, (ii) perception which refers to the development of a real-time machine vision

algorithm for pest monitoring (to refine the aerial images captured by the UAV in order to

provide plantation managers with the most usable data), and (iii) action stage, which is the

development of the DSS for creation of the prescription map. When pests are spotted, spraying

UAV can be used for dropping a targeted load of pesticide. The spraying UAV can be

equipped with distance-measuring and light detection sensors such as lasers, ultrasonic echo-

ing, or LiDAR methods to scan the ground and adjust the flight altitude with the varying

topography of the plantation and therefore apply the correct amount of spraying liquids for
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even coverage and avoid collisions. This practice will result in an increased efficiency while

reducing the amount of penetrating spray chemical in the soil and groundwater. It is estimated

that UAV spraying is five times faster than conventional tractor and machinery equipment.

The FLIR Vue Pro thermal camera shown in Figure 8 is designed for small UAVs and can be

used for agricultural applications. It has different lens options for different type of view and

specific applications. The thermal sensor resolution of this camera is 640 by 512 pixels and

records 30 frames per second for smooth video. The light weight and small size of this camera

will not affect the UAV center of gravity during the flight or sacrifice the flight time. It comes

with the mounting accessories that can be used with most UAV platforms. It can also be used

with transmitters for live feeds. The FLIR Vue Pro thermal camera does not have a separate

battery and can be charged through a 6 V power from the UAV. Image data are stored on a

standard micro SD card. An application connects the camera with the computer via Bluetooth.

The thermal imager Optris PI 640 shown in the figure is the smallest measuring VGA infrared

camera available. With an optical resolution of 640 � 480 pixels, the PI 640 delivers pin-sharp

radiometric pictures and videos in real time. With a body sized 45� 56� 90 mm and weighing

only 320 grams (lens included), the optris PI 640 counts among the most compact thermal

imaging cameras on the market. Temperature range is between �20 and 900�C (optional up to

1500�C), spectral range is between 7.5 and 13 μm, and frame rate up is to 125 Hz. For the

purpose of validation, images taken at varying heights and resolutions will be compared with

the ground truth pictures taken on the ground with a mobile device. The research findings

may lead to new pest management strategies that use UAVand other imaging technologies for

detecting invasive pests in other farm fields, e.g., oil palm plantations. The thermal camera can

also be used for spotting the areas that are drier and require attention.

2.4. Yield monitoring

Quantification of FFB from UAV stream images for yield map creation is the first step toward

practicing PA in oil palm plantations. With the available high-tech imaging sensors and using

real-time image processing and remote sensing techniques (i.e., pixel-based or object-based

[16], template matching [17–19] image analysis, learning algorithms methods for classification

[20, 21] and for extracting useful information from an image), it is possible to measure oil palm

yield on much smaller scales. One of the benefits of using autonomous UAV is their affordable

price and lower cost per each mission flight that make them suitable for academic research in

yield monitoring applications. The idea is to evaluate the feasibility of having UAV agent

robots that can fly over and inside oil palm plantations and collect high-resolution detailed

photos from different angles for automated creation of yield maps. These maps can tell

growers where and when to apply the optimal amount of inputs (i.e., fertilizer, pesticide,

water) for creating further sustainability. Of course, mobile robots with camera and sensors

mounted on top of them can also be used for such application; however as mentioned earlier,

we are proposing a research idea that involves a swarm or fleet of small-scale UAVs similar to

what is shown in the figure that simultaneously fly inside the plantation for image data

collection. By using different sensor-based measurement and imaging techniques on each

UAV, a real-time machine-vision system can be developed for accurate identification of the
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amount of FFB on the palms. Such technology is highly demanded by oil palm growers as a

fast, accurate, and reliable tool for estimating palm numbers and FFB in large-scale planta-

tions. In determining instantaneous oil palm yield, two parameters must be known, weight

and coordination of FFB on each palm. The weight of the FFB can be estimated using a

machine vision algorithm that quantifies the number of fruits on each palm (Figure 5). These

estimated weights are then georeferenced with coordinates of the corresponding palm using

computer programs for the creation of database and yield map. Collected data will be

processed by custom-built GIS software for creation of yield map and inventory database. A

conceptual illustration of integrated fixed-wing UAV-based inventory management and health

assessment system with mobile application and cloud computing is shown in Figure 9.

2.5. Virtual plantations and dynamic Web mapping

One of the limitations of doing research on oil palm plantation is the lack of accurate data and

input variables for modeling and simulation purposes. UAV technology can be integrated with

Figure 9. Feasibility of UAV imaging system for yield monitoring of oil palm (top) and a proposed methodology for

UAV-based yield monitoring of apple and orange fruits using deep learning algorithms [22].
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image acquisition techniques for three-dimensional reconstruction of the environment and

creation of virtual plantations. Examples of 3D reconstructed plantation are shown in

Figure 10. The information extracted from these 3D models can lead to the development of

dynamic Web inventory management and mapping system. A 3D reconstruction model of oil

palm plantation can be created by using range data methods or depth map using laser range

finder sensors and 3D scanner instrumentations. This approach is however costly and not

affordable by local oil palm farmers. Alternatively, passive methods, also called image-based

reconstruction methods (i.e., photogrammetry technique), have been introduced using a nor-

mal camera and image sensors, which do not interfere with the reconstructed object. In this

method, a UAV equipped with a normal RGB camera will collect images of the oil palm

plantations from different views and angles. Computer software will then process these

images to create a 3D model, and filter specific wavelength to generate images that corre-

sponds to vegetation index and palm health. For example, a red edge image can describe

nitrogen content and water stress. The potential of UAV image data to simulate the physical

process of palm photosynthesis as a result of different crown sizes and densities intercepting

different amounts of light radiation can be evaluated using virtual plantations. A virtual

plantation can be used to estimate palm height, crown size, and inventory database (Figure 11)

for generating dynamic Web maps and yield prediction models. These maps can identify how

different palm height, crown sizes, plantation densities, and row orientations in different

locations can affect the water and fertilizer demand. Moreover, mathematical models can be

established based on the validated information from virtual plantations for estimating nitro-

gen demand and fertilizer application. These maps also provide precision rich data for aca-

demic and educational purposes. Researchers can access to detailed measurements of palm

trunk and crown size and the spacing between different palms, leaf area index, and crown

density as a preliminary study for the possibility of autonomous variable rate applications and

robotic harvesting.

For the purpose of a sensor Web-based approach for dynamic Web mapping, observations

from a UAV can be combined with in situ sensor data to derive typical information offered by

a dynamic Web mapping service (WMS). This will provide daily maps of vegetation produc-

tivity for oil palm plantation with a spatial resolution of 250 m. Results will present the

vegetation productivity model, the sensor data sources, and the implementation of the auto-

mated processing facility. An evaluation will be made of the opportunities and limitations of

sensor Web-based approaches for the development of Web services, which combine both UAV

and in situ sensor sources. A conceptual illustration is provided in Figure 11. A yield estima-

tion model can be developed by establishing performing regression analysis between palm

Figure 10. Example of virtual plantation generated by UAV imaging [23].
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height (x1), crown size (x2), palm age (x3), vegetation index (x4), nutrient content (x5), and soil

parameters (x6): Yield = func(x1, x2,…, x6). This model will be based on comprehensive infor-

mation of each palm location, size, and health, will provide managers with an estimation of

yield, and make decisions for sustainable practices methods for production increase without

necessary needs for expanding the plantation into natural forests.

3. Stabilizing a fixed-wing Osprey UAV

The fixed-wing Osprey drone shown in Figure 11 is a commercially available, low-cost exper-

imental flight test bed manufactured by Unmanned Aerial Research (Florida, USA) that is

suitable for investigating novel control approaches [24] and is a flexible platform for remote

sensing research applications in precision agriculture of oil palm. An example application can

be found in the work of [25], where the fixed-wing J-HAWK UAV was used for palm tree

counting at Melaka Pindah oil palm plantation in Malaysia. This drone can carry large pay-

loads while maintaining excellent performance with virtually no degradation in handling

qualities. It is a well-constructed, durable aircraft with mission versatility and a cavernous

payload volume that is easily accessible, featuring two long aluminum tracks on the floor for

mounting payloads in limitless configurations. Some of the specifications according to the

manufacturing website are as follows: payload capacity: 31.75 kg, empty weight: 15.87 kg,

Figure 11. Conceptual illustration of a fixed-wing UAV Web mapping system integrated with mobile application and

cloud computing for yield prediction and inventory management in oil palm plantation.
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payload volume 0.0566 m3 (0.203H � 0.304 W � 0.889 L), max cruise: 90 kts, landing speed (no

flaps): 25 kts, power (DA-100): 10 hp by a reliable custom desert aircraft 100 cc motor with 3-

blade carbon fiber propeller, wingspan 3.352 mm, and length 2.362 m. We begin with dynamic

analysis and controller design for this drone in the presence of actuator limits and sensor noise

for autonomous flight missions with greater accuracy and stability. The communication archi-

tecture, modules, and designed control system is shown in Figure 12.

For the purpose of this paper, we have concentrated our analysis on controller design for two

outputs, velocity and pitch rate, by adjusting two control inputs, the elevator and the thrust. In

specific, our control objective was to design a single controller, i.e., proportional-integral-

derivative (PID), Linear-quadratic regulator (LQR) full state feedback, (C ¼ I4�4), and LQR

plus observer (with C defined by the dynamic model), that (i) stabilize the drone with a

velocity step input of 10 m/s and (ii) minimize rise time, percentage overshoot, and steady

state error over the widest possible initial conditions. Based on the field experiments data in

the reviewed literature [24], the maximum δthrust and δelev and their rate of change were

considered �200 N and �30
�

and �200 N= sec and �300
�

=s, respectively. In addition, the noise

for the velocity sensor and the pitch rate sensor were assumed to be �0:4 m=s and �1:7
�

=s,

respectively. The dynamics associated with this drone under standard aircraft assumptions

were de-coupled into both lateral and longitudinal directions. For the sake of this control

design, we only analyze the longitudinal dynamics. The longitudinal dynamics of the Osprey

have been mathematically modeled as a fourth-order multiple-input multiple-output (MIMO)

system with two inputs and two outputs [24]. The dynamics have been linearized for the

Osprey aircraft flying at 25 m/s at an altitude of 60 m. In standard state-space form, they are

given as:

Figure 12. Architecture, modules, and control system for a the proposed UAV in precision agriculture of oil palm.
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A ¼

�0:1470 11:0767 0:0841 �9:8065

�0:0316 �7:1712 0:8281 0

0 �37:3527 �9:9628 0

0 0 1 0

2

6

6

6

4

3

7

7

7

5

, B ¼

3:10�3 0:06

10�5 10�4

0:98 0

0 0

2

6

6

6

4

3

7

7

7

5

, C ¼
1 0 0 0

0 0 1 0:

� �

where x ¼ V α q θ½ �, with the state variables defined as V: velocity, α: angle of attack, q: pitch

rate, and θ: pitch angle. The control inputs are u ¼ δelev δthrust½ �T . Our controller design

process begins with analyzing the mathematical model of the given dynamic system. The

state-space model was first converted to a convenient transfer functions (TF) given in (1) and

(2). Converting the SS model into TF form using MATLAB “tf(sys)” yields transfer function

from input “δelev” to outputs given in (1), and the sets of transfer function from input “δthrust” to

outputs give in (2).

H11 sð Þ ¼ V ¼
0:03357 s3 þ 0:6577 s2 þ 3:407 s� 68:91

s4 þ 17:28 s3 þ 105:2 s2 þ 18:44 sþ 11:58

H21 sð Þ ¼ q ¼
0:98 s3 þ 7:171 s2 þ 1:416 s

s4 þ 17:28 s3 þ 105:2 s2 þ 18:44 sþ 11:58
(1)

H12 sð Þ ¼ V ¼
0:06 s3 þ 1:029 s2 þ 6:153 sþ 0:03663

s4 þ 17:28 s3 þ 105:2 s2 þ 18:44 sþ 11:58

H22 sð Þ ¼ q ¼
�0:003735 s2 þ 0:07027 s

s4 þ 17:28 s3 þ 105:2 s2 þ 18:44 sþ 11:58
(2)

We first perform open-loop analysis to determine possible control strategies. The open-loop

responses (Figure 13) from each of the four TFs were then analyzed individually. According to

the TF in (1) and (2), the terms with the highest coupling can be obtained by considering the

simple steady state case. Substituting jω = 0, in all the terms, it can be observed that the static

gain relationship is high for δelev versus velocity output. This also makes physical sense as a

change in the pitch would slowdown the Osprey. It is also noted that the pitch rate has zeros at

origin. This suggests that the system has inherent derivative property and hence has a ten-

dency to amplify noises. Based on the open-loop response shown in Figure 13, it can also be

seen that the effect of δelev on the velocity is more than other inputs. From Figure 13, the

following key points are helpful in controller design for the system, (i) δelev has more effect on

velocity than any other input, (ii) the velocity falls sharply with input δelev, and (iii) δthrust has

limited effect in both velocity and pitch rate.

For the PID controller design shown in Figure 14, the system was set at initial conditions

[δelev ¼ 4 and V = 25 m/s]. A step input of 10 m/s was given at time t = 60 s. The following gains

were used for the PID velocity controller: Kp = 200, Ki = 80, and Kd = 20. For the PID pitch

controller, Kp, Ki, and Kd were respective selected as 6, 0.2, and 10. After introducing the noise,

the new selected gains for the PID velocity controller were Kp = 50, Ki = 11 and Kd = 11. For the

PID pitch controller, the new Kp, Ki, and Kd were chosen 100, 4, and 1, respectively. The

decrease in Kp compared with the previous case for the velocity controller should be noticed.
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Figure 13. Open-loop step response analysis of the Osprey drone velocity and pitch rate for the elevator and thrust inputs.

Figure 14. Simulink blocks for the PID controller in the absence and presence of noise and actuator limits.
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Hence, in this case, the gain of the pitch controller was driven high and the other low. Since

pitch rate has very high impact on the other system variables, noise in the pitch rate influences

the system heavily. Therefore to improve tuning the controller, a simple first-order TF = 2/

(S + 15) (low pass filter) was inserted in the loop (shown in the second Simulink block of

Figure 14).

The LQR controller is the solution of the optimization problem that optimizes the cost of errors

and the cost of actuation effort, with appropriately weighted states. The optimization function

is defined as J ¼
Ð

xTQxþ uTRu
� �

dσ. In the state space form, the obtained LQR controller is

expressed as u ¼ �Kx. For this solution, an LQR controller was first derived using the

MATLAB “lqr” command. The cost weighting matrices Q and R were selected as unit

matrices, and the LQR was realized. Simulink blocks for the designed LQR controller with full

state feedback are shown in Figure 15. The weighting matrices used in this case were as follow:

Q ¼

5 0 0 0

0 1 0 0

0 0 0:5 0

0 0 0 4000

2

6

6

6

4

3

7

7

7

5

, R ¼
1 0

0 0:05

� �

It is noted that the control effort for pitch is the most optimized parameter inQ. This value was

selected on the basis that pitch is the most influential state variable and controlling pitch

translates control of all the other parameters. In addition, the weight for pitch rate is low

because the effort to control pitch rate is harder and introduced more oscillations in the system.

For the LQR controller with observer (Figure 16), the observer design allows controller to use

full-state feedback techniques in situations where only a subset of states is available to the

controller. The observer matrix L adds gain to the feedback loop, in order to ensure stability

and quicker response of the state observer system. While this helps stability, the L gain adversely

amplifies the sensor noise. Therefore, a trade-off has to be made on the noise resilience versus the

system’s robustness. The matrix L was determined through these steps: (i) the system output

states were checked for controllability and observability using Matlab code “obsv” and

“ctrb,” (ii) the poles of the system were found and the system was found to be stable, (iii) for

Figure 15. Simulink blocks for the designed LQR controller with full state feedback.
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the observer system to be more stable and faster, the poles were multiplied by a factor of 3, (iv)

these scaled poles were then used in the Ackermann’s formula for pole-placement design to find

L and design a mimic of the original system, the observer, and (v) the state output from the

observer can now be fed to the LQR controller. The weighting matrices used in this case are:

Q ¼

1 0 0 0

0 1 0 0

0 0 5 0

0 0 0 1000

2

6

6

6

4

3

7

7

7

5

, R ¼

1 0

0 0:001

� �

It can be seen that the value of pitch gains in theQ is four times smaller than the previous case.

The gains were reduced to take control over noise in the system. In the other words, these

reductions help eliminate the noise in the system. From step three of the observer design, we

know that the observer matrix L adds gain to feedback loop. This gain helps amplifying the

noise and then feeding them into the control loop back again. Noise introduces similar prob-

lems faced with the PID controller. With high gains, the noise amplifies and combined with

actuator nonlinearities drives the system into instability. With lesser gains and actuator effort,

noise is damped and absorbed by the system.

4. Simulation results and discussion

Results of the simulation for the designed controllers are shown in Figure 17 through

Figure 20. It can be seen from Figure 17 that the step change applied at time 60 s has an effect

on the pitch, and the PID controller is managed to minimize this effect. When noise is intro-

duced to the system (Figure 18), because the coupling gain between pitch and velocity are very

Figure 16. LQR controller with observer block.
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high, the pitch rate sensor noise distorts the response considerably. Moreover, since the tuned

gains exploited the infinite actuator capabilities, the response of the system was quick and the

steady state error was almost zero; however, due to the nonlinearities, the system had to be

tuned again. Since elevation was directly related to the pitch rather than the pitch rate and to

avoid the dynamics of the “rate” signal, pitch was compared against the elevator angle to

generate the error signal. To accomplish this, the pitch rate was simply integrated using an

ideal integrator (1/s).

It can be seen from the results that the state variables pitch and velocity are closely coupled

variables. The coupling terms connecting these two quantities exhibit every high gains,

hence the control design was challenging in regulating these variables independent of the

other. This coupling needed special attention during control design. It should be noted that

on the basis of tuning complexity, only two PID controllers were used in the control problem,

as if the system was a weakly coupled system. Since PID control is ideally suited for single-

input single-output systems (SISO) and only for weakly coupled MIMO systems, a perfect

performance was not expected to achieve with the two PID controllers. Nevertheless, a

reasonable performance was still achieved when the system was considered ideal, i.e., free

Figure 17. PID performance without noise and actuator limits.

Figure 18. PID performance with noise and actuator nonlinearities.
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from nonlinearities and noise. When noise was introduced to the system, the velocity suf-

fered because of high noise content in the pitch signal. The noise also introduced dangerous

oscillations in the system, limiting controller gains significantly and hence slowing down the

overall system. Several instabilities caused due to the rate limit and saturation were evident.

The integral gain of the PID acted on error build-up caused by saturation and hence pushing

the system into instability. After reducing the gains in the loop, the controller was then tuned

by trial and error procedures. The relative performance of PID with respect to other control-

lers is summarized in Table 1.

LQR controllers however work in the state-space and are suited for MIMO control. It

assumes full state feedback; that is, all the system’s states are available for the controller to

take decisions, even though this might not be a case in reality. Therefore, we designed the

observer to deal with this issue. The outputs of the LQR controlled system response with

actuator dynamics are shown in Figures 19 and 20. Unlike the PID controller, the LQR

handles actuator dynamics inconsequentially. Appropriate waiting matrices were assigned,

and the LQR controller matrix was obtained by using the MATLAB “lqr” command. The

LQR trivially performed well with actuator nonlinearities. By weighting the gains in the Q

and R matrices, it was possible to avoid high actuation effort and thus saturation. But rate

limit did affect the rise time. The LQR also suffered from oscillations, when noise was

introduced.

Controller Noise Actuator limits Rise time (s) Settling time (s) Overshoot (%)

PID — — 0.61 0.95 4.2

PID Y Y 1.28 Inf 10.1

LQR — Y 1.01 1.9 2.1

LQR Y Y 3.3 3.95 0

Observer Y Y 1.9 Inf 34.5

Table 1. A comparison between the proposed controllers.

Figure 19. LQR full state feedback response without noise.
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From the plots of LQR with observer (Figure 20), it can be seen that the system is in the verge of

instability and the noise content of the pitch signal disturbs the velocity severely. The relative

stability of the given system can be discussed in terms of the gain margin and phase margin.

Based on the Bode plots analysis of the open-loop system (plots not provided for the sake of

paper page limits), the differential term in the elevator input to output relationships reduces the

phase margin of system considerably. Model errors and disturbance in the pitch rate could easily

drive the system to instability. This agrees with the findings in the controller design exercised.

5. Conclusion

Health assessment and conventional scouting of oil palms on a regular basis, as well as palm

census and quantification of the amount of fresh fruit bunches (FFB) for yield monitoring, are

labor-intensive tasks that are either ignored in large scale plantations or are carried out manually

by the use of labor force. Traditional scouting is not only an ineffective practice but also requires

expert knowledge and post-processing lab equipment to provide useful information. Advances

in aerospace engineering, control system, and computing have contributed significantly to the

improvement of UAV-based remote sensing platforms. This paper discussed some of the poten-

tial applications of UAVs for precision agriculture of oil palm plantations. We also highlighted

some of the adaptation challenges faced by UAV drones, including platform stability due to the

flight dynamics parameters and winds, climate factors and light reflection degrading quality of

the acquired images, and regulations and restrictions law by the Federal Aviation Administra-

tion. As a response to the needs of small-scale plantation owner for an affordable UAV platform,

a fixed-wing Osprey drone was proposed and used in designing an auto-flight control. The

aircraft can be externally actuated by controlling the thrust (δthrust) and the elevator (δelev).

Initially, all states of the dynamic model were assumed to be available to the controller. A case

was then considered when only velocity and pitch rate could be measured. We conclude that the

MIMO control problem of the Osprey drone falls in the class of systems that exhibit high level of

coupling between the inputs. We also conclude that the LQR design procedure was simple

compared with the PID and performed better than PID in the presence of noise. Unlike PID, the

Figure 20. LQR with observer response with noise.
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LQR was more vulnerable to have steady state error. With changes in the δelev command, the

velocity was affected considerably and would never recover unlike integral action of PID. The

introduction of an observer in an already noisy system added more uncertainty in the system,

thus pushing the system toward instability. The observer added to the gain of the feedback loop

and hence amplifying noise. Even with various combinations of weighting matrices, the steady

state oscillations were as high as 20%. In conclusion, it is observed that the LQR is a robust and

effective controller for MIMO control. The LQR was found to be robust against noise and

disturbance in the system too.

A. Appendix

Names and specifications of sample multi-rotor and fixed-wing UAV recommended for

precision agriculture of oil palm.
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Model Price

($)

Weight

(Kg)

Size (mm) Camera

resolution

Coverage Flight

time (min)

Max

altitude (m)

Flight

speed (km/h)

Parrot Disco Pro

AG Drone

6875 UAV: 0.78

Take-Off:

0.94

Wing span:

1150 � 580

� 120

— — — — —

RF70 UAV 3000 Payload: 3 — 1080 P 600 acres/hour 45–60 — 18

AgDrone UAS 10,000 — — 1080 P — 60 —

DT-26 Crop

mapper

120,000 — — 1080 P — 60 — 110

Quad Indigo 25,000 — — 1080 P — 45 —

E384 Mapping

Drone

2400 UAV: 2.5

Payload: 1

Wingspan:

1900 Length:

1300

— 1000 acres in

100 minutes at

5 cm resolution

90 — 47

PrecisionHawk

Lancaster 5

— Payload: 1 — 1 cm/pixel 300 acres/flight 45 — —

Xena observer — Take-Off: 5 — — — 27 5000 —

Xena thermo — Take-Off:

4.6

— — — 32 5000 —

AEE AP10 Drone 299 — — 1080 P Full HD

Video at 60 FPS

— 25 500 71

UAV drone crop

sprayer

UAV: 9

Payload: 10

Take-Off:

13

800 � 800 �

70 (L.W.H)

— — 16 1000 —

DJI drone sprayer 15,000 — — — 7–10 acres/hour — — 29

Yamaha’s

helicopters spray

& survey

130,000 UAV: 71

Payload: 30

— — 10 acres — — —

JMR-V1000 6-rotor

5 L

665–

3799

UAV: 6.5

Take-Off: 18

875 � 1100

� 480 (L.W.

H)

— — 14–18 — 11–22

AG-UAV

Sprayers1

— UAV: 8

Payload: 6

Height: 650 — — 8–15 — —

AG-UAV

Sprayers2

— UAV: 14.2

Payload:

20

Height: 650 — — 15–30 — —

AG-UAV

Sprayers3

— UAV: 9.5

Payload: 10

Height: 650 — — 10–20 — —

DJI AGRAS MG-1

Sprayer

7999 Payload: 10 — — 7–10 Acres Per

Hour

— — —

Hercules Heavy

Lift UAV (HL6)

— UAV: 8

Payload:

6

Height: 660 — — 30 — 37

Hercules Heavy

Lift UAV (HL10)

— UAV: 9.5

Payload: 10

Height: 660 — — 30 — 37

Hercules Heavy

Lift UAV

(HL20)

— UAV: 14

Payload: 20

Height: 660 — — 60 — 37

Multirotor UAVs — — — — — 10–40 — —

AgStar GoPro

FPV Camera

Payload

1950 — — — — — —
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Model Price

($)

Weight

(Kg)

Size (mm) Camera

resolution

Coverage Flight

time (min)

Max

altitude (m)

Flight

speed (km/h)

DJI Phantom 3 469 — — 2.7 K HD
videos, 12 MP
photo

— 25 — —

Fixed Wing UG-II — UAV: 11
Take-Off: 15

2240 � 1600
� 650 (L.W.
H)

— — 180 — 65–110

Professional
Electric Six Rotor
Drone UA-8
Series

— Payload: 3 860 � 860 �
540

— — 28 5000 36

Yuneec H520
Hexacopter

2500–
4500

— — 4 K/2 K/HD
video or 20 MP
images

— — — —

Ag-drone AK-61 6999 Take-Off: 22
Payload: 10

— — — 10–15 0.5–5 m 18–36

YM-6160 5000 Take-Off:
21.9
Payload: 10

— — — 10–15 0.5–5 m 18–36

Skytech
TK110HW

32–52 — — 0.3 MP — 6–7 — —

JJRC H8D 5.8G
FPV RTF RC

169–
175

UAV: 0.023 330 � 330 �
115

— 8 — —

X810 Long Range
Uav Sprayer

4000–
6500

Payload: 10 2490 � 1645
� 845 (L.W.
H)

— — 25–40 — —

Syma X8C 68.99 — 508 � 508 �
165 (L.W.H)

2 MP HD
Camera

— 5–8 — —

Agricultural Robots - Fundamentals and Applications114



References

[1] Gennari P, Heyman A, Kainu M. FAO statistical pocketbook. World food and agriculture.

In: Food and Agriculture Organisation, United Nations, Rome, Italy. 2015

[2] Shamshiri RR. A Breakthrough in Oil Palm Precision Agriculture: Smart Management of

Oil Palm Plantations with Autonomous UAV Imagery and Robust Machine Vision. In:

International Conference on Agricultural and Food Engineering; 2016

[3] Shamshiri RR. Unmanned Aerial Vehicles (UAV) to Support Precision Agriculture

Research in Oil Palm Plantations. Kuala Lumpur; 2017

[4] Shamshiri RR. Integration of smart sensors and robotics in increasing agricultural produc-

tivity with higher yields at lower costs. In: Asian Space Technology Summit. 2017

[5] Srestasathiern P, Rakwatin P. Oil palm tree detection with high resolution multi-spectral

satellite imagery. Remote Sensing. 2014;6(10):9749-9774

[6] Breckenridge RP, Dakins M, Bunting S, Harbour JL, Lee RD. Using unmanned helicopters

to assess vegetation cover in sagebrush steppe ecosystems. Rangeland Ecology & Man-

agement. 2012;65(4):362-370

[7] Kalantar B, Bin Mansor S, Sameen MI, Pradhan B, Shafri HZM. Drone-based land-cover

mapping using a fuzzy unordered rule induction algorithm integrated into object-based

image analysis. International Journal of Remote Sensing. May 2017;38(8–10):2535-2556

[8] Chao H, Baumann M, Jensen A, Chen Y, Cao Y, Ren W, McKee M. Band-reconfigurable

multi-UAV based cooperative remote sensing for real-time water management and dis-

tributed irrigation control. IFAC Proceedings Volumes. 2008;41(2):11744-11749

[9] Ambrosia VG, Wegener SS, Sullivan DV, Buechel SW, Dunagan SE, Brass JA, et al. Dem-

onstrating UAV-acquired real-time thermal data over fires. Photogrammetric Engineering

and Remote Sensing. 2003;69(4):391-402

[10] Xiongkui H, Bonds J, Herbst A, Langenakens J. Recent development of unmanned aerial

vehicle for plant protection in East Asia. International Journal of Agricultural and Biolog-

ical Engineering. 2017;10(3):18

[11] Shamshiri R, Hameed IA, Balasundram SK, Weltzien C, Yule IJ, Grift TE, et al. Adapting

simulation platforms and virtual environments for acceleration of agricultural robotics: A

perspective of digital farming. International Journal of Agricultural and Biological Engi-

neering. 2018;11(4):1-25

[12] Shamshiri R, Wan Ismail WI. Nonlinear tracking control of a two link oil palm harvesting

manipulator. International Journal of Agricultural and Biological Engineering. 2012;5(2):9-19

[13] Shamshiri R, Ishak W, Ismail W. Design and simulation of control Systems for a Field

Survey Mobile Robot Platform. Research Journal of Applied Sciences, Engineering and

Technology. 2013;6(13):2307-2315

Fundamental Research on Unmanned Aerial Vehicles to Support Precision Agriculture in Oil Palm Plantations
http://dx.doi.org/10.5772/intechopen.80936

115



[14] Cai G, Chen BM, Lee TH. Unmanned rotorcraft systems. New York: Springer Science &

Business Media; 2011. pp. 01-267

[15] Shamshiri RR. Choosing the Best UAVDrones for Precision Agriculture and Smart Farming:

Agricultural drone buyer’s guide for farmers and agriculture service professionals. Adap-

tive AgroTech Consultancy International; 2018. http://doi.org/10.13140/RG.2.2.19368.06409

[16] Blaschke T, Feizizadeh B, Hölbling D. Object-based image analysis and digital terrain

analysis for locating landslides in the Urmia Lake Basin, Iran. IEEE Journal of Selected

Topics in Applied Earth Observations and Remote Sensing. 2014;7(12):4806-4817

[17] Yang Z. Fast template matching based on normalized cross correlation with centroid

bounding. 2010 International Conference on Measuring Technology and Mechatronics

Automation. 2010;2:224-227

[18] Ahuja K, Tuli P. Object recognition by template matching using correlations and phase

angle method. International Journal of Advanced Research in Computer Science and

Electronics Engineering. 2013;2(3):1368-1373

[19] Lewis JP. Fast template matching. Vision interface. 1995;95(120123):15-19

[20] Tong S, Chang E. Support vector machine active learning for image retrieval. In: Pro-

ceedings of the Ninth ACM International Conference on Multimedia; 2001. pp. 107-118

[21] Kalantar B, Idrees MO, Mansor SB, Halin AA. Smart counting–oil palm tree inventory

with UAV. Coordinates. 2017:17-22

[22] Chen SW, Shivakumar SS, Dcunha S, Das J, Okon E, Qu C, et al. Counting apples and

oranges with deep learning: A data-driven approach. IEEE Robotics and Automation

Letters. 2017;2(2):781-788

[23] Li W, Guo Q, Jakubowski MK, Kelly M. A new method for segmenting individual trees

from the lidar point cloud. Photogrammetric Engineering and Remote Sensing. 2012;78(1):

75-84

[24] MacKunis W, Kaiser MK, Patre PM, Dixon WE. Asymptotic tracking for aircraft via an

uncertain dynamic inversion method. In: 2008 American Control Conference. 2008. pp.

3482-3487

[25] Kalantar B, Bin Mansor S, Halin AA, Zulhaidi H, Shafri M, Zand M. Multiple Moving

Object Detection From UAV Videos Using Trajectories of Matched Regional Adjacency

Graphs. 2017. pp. 1-16

Agricultural Robots - Fundamentals and Applications116


