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Abstract

Recently, graphene has gained significant interest owing to its outstanding conductivity,
mechanical strength, thermal stability, etc. Among various graphene synthesis methods,
atmospheric pressure chemical vapor deposition (APCVD) is one of the best syntheses
due to very low diffusivity coefficient and a critical step for graphene-based device fabri-
cation. High-temperature APCVD processes for thin film productions are being recog-
nized in many diversity technologies such as solid state electronic devices, in particular,
high quality epitaxial semiconductor films for silicon bipolar and metal oxide semiconduc-
tor (MOS) transistors. Graphene-based devices exhibit high potential for applications in
flexible electronics, optoelectronics, and energy harvesting. In this chapter, recent advances
of APCVD-based graphene synthesis and their related applications will be addressed.

Keywords: graphene, atmospheric pressure chemical vapor deposition (APCVD),
single-layer graphene (SLG), bilayer graphene (BLG), atmosphere pressure, large-scale

1. Introduction

Single-layer graphene (SLG), bilayer graphene (BLG), and multi-layer graphene (MLG) films

have been regarded as optimal materials for electronics and optoelectronics owing to their

excellent electrical properties and their ability to integrate with current top-down device

fabrication technology [1–95]. Since the beginning of the twenty-first century, the interest in

graphene materials has drastically increased, which is apparent in the number of annual

publications on graphene (Figure 1). Until now, various strategies including chemical vapor

deposition (CVD) [28], liquid and mechanical exfoliation from graphite [23, 29, 30], epitaxial

growth on crystal substrate [31–34], or solution-based processes on graphene oxides (GOs)

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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distribution, and reproduction in any medium, provided the original work is properly cited.



[35–41]. They have been investigated for obtaining graphene layers. In particular, recent

advances in CVD growth have successfully led to large-scale graphene production on metal

substrates [1, 27, 42–48], driven by the high demand for utilizing graphene in possible appli-

cations of current complementary metal-oxide-semiconductor (CMOS) technology such as

radio-frequency transistors, optical devices, and deposition processes [2].

High-quality large-scale graphene has been synthesized on conducting metallic substrates by

using the catalytic CVD growth approach, which promoted a wide range of graphene-based

device applications [1, 28, 42–49]. However, graphene grown on a metal substrate needs to be

transferred onto dielectric substrates for electronic applications. Although various approaches,

such as wet etching/transfer [45], mechanical exfoliation/transfer [23, 29, 30], bubbling transfer

[50], electrochemical delamination [51–53], for transferring from the catalytic metal growth

substrates to dielectric device substrates have been developed; none of these approaches is free

from degradation of the transferred graphene. For example, ‘wet etching and transfer,’ the

most widely used transfer approach, is a serial process, which includes encapsulation of the

graphene surface with polymer support.

Growing through CVD is for the production of films or for coating of metal, semiconductor,

crystalline, and vitreous formed-compounds in either, occupying high-purity as well as desir-

able characteristics. In addition, the creation of controllable film with varying stoichiometry

results CVD uniquely among deposition approaches. Other advantages include reasonably

low cost of the equipment and operating expenses, suitability for semicontinuous operation.

Consequently, the variants of CVD have been developed recently such as low-pressure chemical

vapor deposition (LPCVD), APCVD, plasma-enhanced chemical vapor deposition (PECVD),

and laser-enhanced chemical vapor deposition (LECVD). The hybrid system represents for both

CVD and physical vapor deposition (PVD) have also discovered.

Figure 1. Graphene publications from 2000 to 2018. Source: ISI Web of Science (search: Topic = Graphene).
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Among the utilized synthesis methods, APCVD has been considered as the most potential and

medium cost one for large-scale high-quality graphene on various metallic substrates includ-

ing Pt [54], Ir [42], Ni [7], and Cu [45]. Especially, Cu is considered as the best choice owing to

low-carbon solubility, well-controlled surface, and inexpensive for growing monolayer

graphene [45, 55]. Many efforts have made for obtaining large-scale single crystal graphene

with as less grain boundaries as possible. There are two general methods to realize: the first

method associates with the growth of single domains with possible enlargement [54, 56–63].

Despite the centimeter-scale domains have achieved, this method is not the bright candidate in

practice for large-scale growth because of the difficult quantity control of nucleation seeds as

well as unclear self-limiting growth factors resulting worse and requiring very long growth

time (over 24 h) [64, 65]. The second method is the alignment of graphene domain orientations

on arbitrary substrates and then to atomically stitch them to form uniform single crystalline

graphene [5, 66]. This seems to be ideal for growing large scale.

The CVDmethod creates large-scale graphene but polycrystalline morphology, which includes

different oriented domains. Such the orientated disorders inevitably lead to graphene grain

boundaries (GGBs) formation at intercalated interface of domain [67–69]. GGBs include a

series of nonhexagonal rings of pentagons, heptagons, and octagons. Intrinsic graphene has

high conductivity and chemical inert, however, the appearance of atomically defect lines and

GGBs in graphene could remarkably modulate its features such as mechanics [69, 70], electrics

[71, 72], chemistry [73, 74], and magnets [75]. These defect lines have extraordinary features

and rely on the atomical configuration at GGBs and the crystallinity of mono-grains; moreover,

they could be modulated through different function groups [75]. Therefore, the investigation

on the orientations and boundaries of the grains is the key to comprehend the underlying

features as well as to realize compatible applications of graphene.

Conventionally, graphene is grown on metal foils (Cu, Ni, Pt, etc.) through APCVD, LPCVD,

or PECVD. The temperatures, pressures, and concentrations of precursor gases inside the

furnace play key roles on the graphene growth and quality. These factors need be optimized

to get the desirable growth results. In general, surface morphology is studied via optical

microscope (OM) and scanning electron microscopy (SEM); the graphene quality is examined

through Raman spectra, UV-visible spectroscopy, and transmission electron microscopy

(TEM); and sheet resistance (Rs) of synthesized graphene is measured utilizing four-point

probe technique. Almost graphene films synthesized via APCVD are monolayer with better

quality in atmospheric condition compared with LPCVD or PECVD. The synthesis study using

APCVD would be greatly significant in the desirable growth of graphene and other related

materials. In this chapter, recent advances of APCVD-based graphene synthesis with practical

concerns about chemical vapor transport, deposition process as well as their device applica-

tions will be addressed.

2. Growth mechanism of APCVD-based graphene

APCVD growth of graphene is a chemical synthesis process at atmosphere pressure for the

formation of SLG or FLG on an arbitrary substrate by exposing the substrate to the gas-phase
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precursors at controlled reaction conditions [76]. Owing to the versatile nature of APCVD,

intricately mixed homogeneous gas-phase and heterogeneous surface reactions are involved

[77]. In general, as the partial pressure and/or temperature in the reaction substances are

increased, homogeneous gas-phase reactions and the resulting homogeneous nucleation became

significant [77]. To grow a high-quality graphene layer, this homogeneous nucleation needs to be

minimized [77]. A general mechanism for APCVD-based graphene growth on catalytic metal

substrates, for the growth of uniform and highly crystalline graphene layer on the surface,

includes eight steps as follow: (1) mass transport of the reactant, (2) reaction of the film precur-

sor, (3) diffusion of gas molecules, (4) adsorption of the precursor, (5) diffusion of the precursor

into substrate, (6) surface reaction, (7) desorption of the product, and (8) removal of the by-

product (Figure 2) [78, 96].

It has been a general observation in most of the experimental works that the LPCVD produces

nonuniform thick graphene layers. However, as high-quality single-layer graphene growth,

APCVD would be a better choice due to reduced mean free path/diffusion coefficient of the

reactive species on the catalyst [79]. APCVD shows a much lower diffusivity coefficient: Dg �

1/(total pressure) compare with LPCVD. As the result, the small multilayer graphene islands is

less appearing on a full large monolayer graphene island via APCVD growth process [79]

compared with LPCVD.

In another graphene growth mechanism model, hydrocarbon molecules are absorbed as well as

dissociated on Cu forming active carbon species by dehydrogenation reaction (Figure 3). These

species are diffused on two sides of Cu foil and agglomerated on its active sites to form graphene

nucleation seeds. Actually, introducing H2 gas is mandatory as a key role in graphene growth for

most CVD approaches. The overall processes of graphene growth on Cu are described (Figure 3)

[89]. Generally, there are threemain expected steps: (i) adsorp-decompose, (ii) diffuse-desorb, and

(iii) nucleate-grow (Figure 3) [89]. The active carbon species are commonly not stable and easily

agglomerate with thermodynamically stable species on active sites to form graphene nucleation

seeds by the reactions: (CHx)s + graphene➔ (graphene-C) + (CHx)s with x = 1, 2, 3 [89]. Till those

Figure 2. Diagram of CVD growth mechanism (APCVD and LPCVD) of graphene: transport and reaction processes.

Reproduced with permission from [78, 96]. Copyright 2011, Freund Publishing.
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seeds formed, almost the active carbon species are incorporated and captured at surface/interface

of graphene lattice. In addition, H2 precursor plays more role as an etchant and controls the size

as well as shape of graphene domains via reactions: Hs + graphene➔ (graphene-C) + (CHx)s with

x = 1, 2, 3 [89].

Typically, APCVD growth of 2D materials (e.g. graphene) involves catalytic activation of

chemical reactions of precursors at the growth substrate surface/interface in a properly

designed environment. In general, the roles of precursors, conditions (e.g. fast growth rates,

large domain size, or very high crystalline quality), atmosphere, substrates, and catalysts are

the key factors affecting the final quality of the grown 2D materials. So far, significant efforts

have been made to prepare high crystalline 2D materials (e.g. graphene), but many challenges

are still ahead. For example, due to the rough feature of catalytic metal surface, growth of

uniform and high-quality graphene is considerably difficult. The 2D material research com-

munity is also interested in new precursors (e.g. solid precursor only, gas precursor, or solid

precursor mixed with certain solvents) that could form uniformly high-quality graphene with

minimal defect density. Another question is the effect of growth rate on the catalytic metal

surface on the quality of graphene. Currently, it is difficult to give an exact answer, as investi-

gations are progressing at an exponential rate. To date, the understanding of the concept of the

general mechanism of the APCVD growth of graphene is still not yet adequate, neither

experimentally nor theoretically. Thus, understanding the graphene growth mechanism and

the effect of various growth conditions will be of significant interest to the 2D material research

community to obtain large scale, high-quality graphene.

3. APCVD growth of graphene

CVD is a thin solid film deposition process of vapor species through suitable chemical reaction.

The deposition needs low-carbon solubility substrate in high-temperature region [80]. To date,

CVD is the sole approach, which could produce high-quality graphene with ultra-large size

[45, 81]. For the first experiment, researchers successfully synthesized graphene films via CVD

on Ni and Cu catalytic substrates [44, 82, 83]. The significant progress for large-size and high-

quality graphene films has also well done [81, 83].

Figure 3. Schematic for graphene growth mechanism on Cu substrate. Reproduced with permission from [89]. Copyright

2012, American Chemical Society.
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APCVD requires high temperature (�1000�C) for graphene synthesis. It is experimentally

expensive; therefore, it requires the CVD equipment more sophisticatedly. Unfortunately, this

is an obstacle for direct-growth of graphene on insulating device substrate (e.g., SiO2), for

instance, it can produce unavoidable physical damages around 1000�C and dramatically

degrades the quality of synthesized graphene. As a result, the deposition of graphene on

insulating substrates at reduced temperatures becomes very necessary [84, 85]. The features

of graphene will change corresponding with the number of layers. Hence, the electronic,

optical, mechanical, and other features of graphene could be tuned by controlling the number

of layers, or by adjusting the experimental conditions. Currently, it is still the challenge to

exactly atomic-scale control the number of graphene layers [86–88]. The proposed synthesis

method is composed by four stages (cleaning, precursor injection, reaction time, and cooling).

The temperature and flow rate of carbon precursor were the studied parameters. In Figure 4a,

b, the common CVD systems and differences are shown [90].

In 2016, Wang et al. obviously showed millimeter-scale graphene single crystals synthesized

on Cu through APCVD (Figure 5) [91]. The possible mechanism will be based on graphene

nucleation and kinetic growth. At the stage of nucleation, thermal decomposition of oxide

layer leads to O2 desorption at high temperature at front side of Cu and dominates the

temperature dependence of nucleation density. The graphene island growth is edge-limited

on two sides of Cu at various enlargement rates. The roughness of support substrates (quartz,

sapphire) also affects the graphene deposition. After optimized annealing and polished

Figure 4. Schematic of graphene synthesis by (a) APCVD using polycrystalline Cu substrate and gas discontinuous flow

and (b) high vacuum using single crystalline Cu(111) substrate and gas continuous flow. Reproduced with permission

from [90]. Copyright 2018, Hindawi Publishing.
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support substrate, the isolated graphene islands (�3 mm) were produced with a growth rate

(25 μm/min). The domains were uniformly single-crystalline graphene with good mobility

(�4900 cm2/V.s) at room temperature. Figure 5b-f shows OM images of graphene domains/

Cu for 60 min growth at various Ar pre-annealing times. The growth and cooling parameters

maintained the same. Here, the Ar heating induced the growth of individual graphene

domains with relatively low nucleation density (102 cm�2) owing to the catalyst passivation

of oxide layer on top of Cu. Through annealing in 30 min (Figure 5d), the nucleation density

reduced �12 nuclei/cm2, and a grain size of �1 mm was obtained after 60 min growth

(Figure 5e). But the extending of annealing (120 min) caused the increase of nucleation density

with reduced domain size (�0.6 mm) (Figure 5f). The evolutions of nucleation densities and

domain sizes via annealing are shown in Figure 5g. The nucleation density reveals a nonmo-

notonic dependence of Ar-passivated annealing. Since the surface becomes flatter after

Figure 5. (a) Schematic for APCVD-grown graphene on Cu located on quartz or sapphire substrates. Insets in (a) are OM

images of graphene/Cu at front side and back side. OM images of grown graphene on Cu foils with various pre-annealing

times of (b) 0, (c) 5, (d) 30, (e) 60, (f) 120 min at the same growth time (60 min). (g) Evolution of nucleation density and size

of graphene domains as a function of pre-annealing times. Reproduced with permission from [91]. Copyright 2016,

American Chemical Society.
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annealing, the O-species also gradually desorb at surface, which leaves pristine Cu as active

nucleation sites following the growth steps.

Thermodynamics of CVD-based graphene synthesis using catalytic Cu at particular tempera-

ture is same irrespective at atmosphere pressure (AP), low pressure (LP), or ultrahigh vacuum

(UHV) [79]. But, the kinetics will vary on different steps. The kinetics of cooling rate, the

pressure of CVD furnace has major ramification on the graphene growth rate, large-scale

thickness uniformity, and the defect density. Figure 6A illustrates a steady state flow of a

mixture of CH4, H2, and Ar precursors on Cu surface at �1000�C [79]. The boundary layer

because of steady state gas flow is stagnant. Firstly, the carbon species (1) diffuse via the

boundary layer to the surface, then (2) will be adsorbed on the surface, (3) decompose for

formation of active carbon species, (4) diffuse on/into the catalyst surface and forming the

graphene lattice, (5) inactive species (e.g. H2) get desorbed, forming H2, then (6) diffuse away

through boundary layer and swept away by the bulk gas flow [79]. Processes, which occur on/

close the surface, are highly affected by substrate temperature. Generally, there are two fluxes

of active species: flux of active species via boundary layer and at metal substrate surface

forming graphene lattice (Figure 6B) [79]. The equations of these fluxes are Fmass transport = hg(Cg

– C
s
) and Fsurface reaction = KsCs where, Fmass-transport is the flux of active species through the

boundary layer, Fsurface-reaction is the flux of consumed active species at surface, hg is the mass

transport coefficient, Ks is the surface reaction constant, Cg is the concentration of gas in bulk,

and Cs is the concentration of active species at the surface [79]. At high temperatures, under

APCVD parameters, mass transport via boundary layer is rate limiting (Ks » hg), and under LP

and UHV parameters, the surface reaction is the rate limiting step (hg » Ks) [79].

A diagram of designed-APCVD for graphene synthesis is described in Figure 7. This splits one

gas inlet in two paths by means of glass valves: one for heating, annealing, and cooling (P1);

and the other for graphene synthesis (P2). The synthesis temperature is 980–990�C in tubular

furnace; during heating, the Ar-H2 (5% of H2) flow is 0.2 l/min via P1. Then Cu is annealed in

20–30 min. Then, the flow passed via alcohol container (P2) to desired growth rate, and the

varied time depended on precursor type. Keeping the flow rate, the flux is to P1 and the

sample is annealed in 10 min. As the result, this annealing step improved the graphene quality

Figure 6. (A) Schematic for graphene growth mechanism using low carbon solid solubility catalysts (Cu) at atmosphere

pressure (AP), low pressure (LP), or ultrahigh vacuum (UHV) environments. (B) Mass transport and surface reaction

fluxes under steady state conditions. Reproduced with permission from [79]. Copyright 2010, American Chemical Society.
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a lot. The temperature, the time, and flow rate permit a sophisticated controlling on carbon

concentration toward tubular furnace (Figure 7) [92].

The additional oxide substrate (SiO2, Al2O3) to continuously supply the oxygen (O2) to Cu

surface of APCVD graphene synthesis (Figure 8a,b) [93]. Cu was placed on oxide substrates

away in 15 μm gap. Last report proved that the oxide shall slowly release O2 at above 800
�C)

[97]. To clear it, Xu et al. carried out Auger electron spectroscopy (AES) element measurement

on SiO2, as the result, O2 escaped from SiO2 after annealing in UHV or CVD (Figure 8c) [93].

Despite the small amount of O2 released, the O2 concentration between the narrow gap

(15 μm) of Cu and oxide substrate could be high because of the trapping effect; hence, the O2

attachment to Cu surface significantly trapped. Beside AP condition, high CH4 flow (5 sccm)

and high CH4/H2 ratio (�1) ensure a sufficient supply of carbon for ultrafast domain synthesis.

The large domains (�0.3 mm) appeared on the back surface of Cu (Figure 8d). Contrarily,

graphene domains at front surface of Cu are 20 times smaller (�15 μm) (Figure 8e). All these

domains are star-shaped. For further demonstration, when graphite is used as the supporting

substrate, graphene domains on both sides of Cu are also star-shaped similar with the case of

SiO2 (Figure 8g) [93].

Figure 8h,i revealed OM images of graphene/Cu in 60 and 80 min under CH4 0.000075 Pa [94].

The graphenes needed to place in air (200�C, 1 min) for chemical oxidation between Cu and air

to emerge the nonoxidized-graphene domains for the observation by OM and human-eye.

Graphene partly covered the Cu (�70%) after 60 min. Some isolated domains were �1.5 mm

(Figure 8h) [94]. But the color as well as contrast of sample were of no change after 80 min

implying that Cu got full coverage by graphene via OM image (Figure 8i) [94]. The histogram

in Figure 8j showed the growth distribution of domain sizes for 50–60 min [94]. The distribu-

tion of domain sizes increased via growth time; the domain sizes were 0.4–0.8 mm for

50–60 min. The time evolution of average domain size and coverage were clearly described in

Figure 8k [94]. The domain sizes for 100% coverage after 80 min was �1 mm [94].

A growth at APCVD in Mohsin et al. is to avoid Cu evaporation from the foil substrate, which

commonly appears in LPCVD case [95, 98]. Regarding Figure 9, firstly Cu is placed on a

tungsten (W) foil for preventing the dewetting of liquid Cu on quartz. Then, it was heated up

1100�C, which is higher melting point of Cu for 30 min under Ar (940 sccm) and H2 (60 sccm).

Figure 7. Graphene growth mechanism on new designed APCVDwith a bubbler. A single gas inlet is split into two paths

(P1 and P2) using glass. During heating/annealing/cooling, gas is passed through P1; while for graphene growth, gas

flows through P2 and bubbler containing alcohol. Inside the tubular furnace a combustion boat is placed in the center

containing a Cu foil. Reproduced with permission from [92]. Copyright 2013, Elsevier.

Atmospheric Pressure Chemical Vapor Deposition of Graphene
http://dx.doi.org/10.5772/intechopen.81293

123



Then, the temperature is lowered to 1075�C, and the Cu resolidified. Growth was carried out at

this temperature, with 0.1% dilute CH4 in Ar. On the right side of Figure 9, it shows OM image

of two hexagon domains of graphene (>1 mm) which has similar morphology [95]. These

domains obtained in Mohsin et al. are hexagons with very less roughness edges compared to

previous reports [60, 89].

Figure 8. (a) Schematic of graphene growth on Cu using O2-assisted APCVD. (b) Side view of (a). (c) Auger electron

spectroscopy (AES) of SiO2 before/after annealing at 1000�C in UHV and APCVD systems. The disappearance of O2 peak

after annealing proves the emission of O2 from the oxide at high temperature. (d, e) OM images of graphene domains on

the back (d) and front (e) Cu surfaces using fused silica as the supporting substrate. (f, g) OM images of graphene domains

on the back Cu surfaces using sapphire (Al2O3) (f) or graphite (g). Reproduced with permission from [93]. Copyright 2016,

Nature Publishing Group. (h, i) OM images of graphene/Cu after 60 and 80 min, respectively. APCVD conditions: 1 atm,

1030�C, 0.3 sccm CH4, 80 sccm H2, and 3920 sccm Ar. (j) Histogram of domain size for 50 and 60 min growth. (k) The

graphene coverage and the average domain size as a function of growth time. Reproduced with permission from [94].

Copyright 2016, Nature Publishing Group.
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APCVD-based bilayer graphene growth is another great issue for optimum electronic and

photonic devices because of higher carrier mobility and wider band gap by perpendicular

electric field compared with single-layer graphene [99, 100]. The synthesis of bilayer graphene

faced many drawbacks owing to limited grain size and nonsynchronic growth between the

first and the second graphene layer. In 2016, Sun et al. reported a cooling-APCVD to growth of

bilayer graphene on polycrystalline Cu (Figure 10) [99]. Here, the surface adsorption for

decomposed carbons and phase segregation for dissolved carbon were shown. Consequently,

the millimeter-scale hexagonal bilayer graphene (�1.0 mm) was produced. This study opens

the possibility to grow centimeter-scale bilayer graphene for optimum graphene-based appli-

cations in recent future.

4. Conclusions

Strategies for direct graphene growth using APCVD method have been reviewed. The pros-

pects of APCVD-grown graphene are bright and currently receiving considerable attention

Figure 9. (a) Simple method to grow millimeter-size graphene single crystals on melted and resolidified Cu using

APCVD. (b) OM image of the synthesized graphene domains. Reproduced with permission from [95]. Copyright 2013,

American Chemical Society.

Figure 10. (a) Schematic of bilayer graphene growth using a cooling APCVD. (b, c) SEM and OM images of bilayer

graphene domains, respectively. (d) Rama spectra of bilayer graphene. Reproduced with permission from [99]. Copyright

2016, American Chemical Society.
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from the 2D material research community. Yet, understanding the growth process and condi-

tions that affect the quality of graphene is not adequate.

Because APCVD growth depends on thermal decomposition of carbon resource, the growth

rate is usually low and size of the graphene domain is small, resulting in growth of defective

graphene layer. To date, the challenge remains for this research directions and large-scale high-

quality graphene productions are still hard. In order to obtain more advanced results, an in-

depth mechanism understanding of APCVD-based graphene growth is essential.

Cu is considered as the best substrate owing to low-carbon solubility, well-controlled surface,

and inexpensive for growing monolayer graphene. Generally, graphene is synthesized on Cu

via APCVD parameters utilizing CH4 precursor revealed that the growth is different from

single layer graphene at low CH4 concentration to multi-layer domain on a single layer at

higher CH4 concentration. In particular, APCVD-based graphene growth at higher CH4 con-

centration has no self-limiting compared with LPCVD, indicating that further investigation is

needed to point out the growth mechanism. The kinetic processes utilizing low carbon solu-

bility catalyst via APCVD parameters were presented.

Finally, APCVD-grown graphene on flexible/metal/dielectric substrates assisted by metal pow-

der precursors (solid, gas, and solution) contained inside a sub-chamber for direct evaporation

into an innovative APCVD main chamber allowing hexagonal domain formation on flexible/

metal/dielectric substrates is the secret topic and needs to be exploited in the coming time.
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