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Chapter

Cavity Generation Modeling of
Fiber Fuse in Single-Mode Optical
Fibers
Yoshito Shuto

Abstract

The evolution of a fiber fuse in a single-mode optical fiber was studied theoret-
ically. To clarify both the silica-glass densification and cavity formation, which are
observed in fiber fuse propagation, we investigated a nonlinear oscillation model
using the Van der Pol equation. This model was able to phenomenologically explain
the densification of the core material, the formation of periodic cavities, the cavity
shape, and the regularity of the cavity pattern in the core layer as a result of the
relaxation oscillation and cavity compression and/or deformation. Furthermore, the
production and diffusion of O2 gas in the high-temperature core layer were
described on the basis of the nonlinear oscillation model.

Keywords: fiber fuse, nonlinear oscillation, Van der Pol equation

1. Introduction

Owing to the progress of dense wavelength-division multiplexing (DWDM)
technology using an optical-fiber amplifier, we can exchange large amounts of data
at a rate of over 100 Tbit/s over several hundred kilometers [1]. However, it is
widely recognized that the maximum transmission capacity of a single strand of
fiber is rapidly approaching its limit of � 100 Tbit/s owing to the optical power
limitations imposed by the fiber fuse phenomenon and the finite transmission
bandwidth determined by optical-fiber amplifiers [2]. To overcome these limita-
tions, space-division multiplexing (SDM) technology using a multicore fiber (MCF)
was proposed [3, 4], and 1 Pbit/s transmission was demonstrated using a low-
crosstalk 12-core fiber [5].

The fiber fuse phenomenon was first observed in 1987 by British scientists [6–9].
Several review articles [10–14] have been recently published that cover many
aspects of the current understanding of fiber fuses.

A fiber fuse can be generated by bringing the end of a fiber into contact with an
absorbent material or melting a small region of a fiber using an arc discharge of a
fusion splice machine [6, 15–17]. If a fiber fuse is generated, an intense blue-white
flash occurs in the fiber core, and this flash propagates along the core in the
direction of the optical power source at a velocity on the order of 1 m/s. The
temperature and pressure in the region where this flash occurs have been estimated
to be about 104 K and 104 atm, respectively [18]. Fuses are terminated by gradually
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reducing the laser power to a termination threshold at which the energy balance in
the fuse is broken.

The critical diameter dmelted, which is usually larger than the core diameter 2rc, is
a characteristic dimensional parameter of the fiber fuse effect. In the inner area
with diameter d≤ dmelted, a fiber fuse (high-temperature ionized gas plasma) prop-
agates and silica glass is melted [18]. dmelted, defined as the diameter of the melting
area, is considered as the radial size of the plasma generated in the fiber fuse [19].
Dianov et al. reported that the refractive index of the inner area with d≤ dmelted in
Ge-doped and/or pure silica core fibers is increased by silica-glass densification and/
or the redistribution of the dopant (Ge) [20].

When a fiber fuse is generated, the core layer in which the fuse propagates is
seriously damaged, and the damage has the form of periodic bullet-shaped cavities
or non-periodic filaments remaining in the core [6–9, 16–32] (see Figure 1). Need-
less to say, the density in a cavity or filament is lower than that of the neighboring
silica glass. It has been found that molecular oxygen is released and remains in the
cavities while maintaining a high pressure (about 4 atm [7] or 5–10 atm [20]) at
room temperature. Recently, several types of sensors based on periodic cavities
have been proposed as a cost-effective approach to sensor production [27–29].

The dynamics of cavity formation have been investigated since the discovery of
the fiber fuse phenomenon. Dianov and coworkers observed the formation of
periodic bullet-shaped cavities 20–70 μs after the passage of a plasma leading edge
[30, 31].

Kashyap reported that the cavity shape was dependent on the nature of the input
laser light (CW or pulses) operated at a wavelength λ0 of 1.064 μm when the
average input power was maintained at 2 W [7, 15]. When CW light was input, the
cavities appeared to be elliptical and cylindrically symmetric. On the other hand,
short asymmetric cavities were formed by injecting (mode-locked) pulses with
100 ps FWHM (full width at half maximum), while long bullet-shaped cavities
were observed by injecting pulses with 190 ps FWHM [7, 15]. Hand and Russell
reported the appearance of highly regular periodic damage tracks in germanosilicate
fibers at λ0 ¼ 488 and 514 nm [9]. Davis et al. reported that long non-periodic
filaments occurred in germanium-doped depressed clad fibers, and a periodic dam-
age pattern was observed in fibers doped with phosphorus and germanium at
λ0 ¼ 1:064μm [21, 22]. Atkins et al. observed both periodic and long non-periodic
damage tracks created in a germanosilicate-core single-mode fiber transmitting
about 2 W of power at 488 nm [32]. Dianov and coworkers reported the formation
of periodic damage in a silica-core fiber at 1.064 and 1.21 μm [18, 30, 31] and long
non-periodic damage in a germanosilicate silica core fiber at 488 and 514 nm [20].

Todoroki classified fiber fuse propagation into three modes (unstable, unimodal,
and cylindrical) according to the plasma volume relative to the pump beam size
[26]. When the pump power was increased or decreased rapidly, an increase in the

Figure 1.
Schematic view of damaged optical fiber.
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length of the void-free segment or the occurrence of an irregular void pattern was
observed, respectively [26].

From these observation results, the cavity patterns occurring in single-mode
fibers can be classified into the four patterns shown in Figure 2, where l is the
length of the cavity and Λ is the (periodic) cavity interval. The observed periodic
cavity patterns belong to patterns (a)–(c) with the pattern depending on the value
of l=Λ. The long non-periodic cavity pattern (filaments) can be considered as a
sequence of two or more of pattern (d).

These cavities have been considered to be the result of either the classic Rayleigh
instability caused by the capillary effect in the molten silica surrounding a vapor-
ized fiber core [32] or the electrostatic repulsion between negatively charged layers
induced at the plasma–molten silica interface [33, 34]. Although the capillary effect
convincingly explains the formation mechanism of water droplets from a tap and/or
bubbles through a water flow, this effect does not appear to apply to the cavity
formation mechanism of a fiber fuse owing to the anomalously high viscosity of the
silica glass [23, 33]. Yakovlenko proposed a novel cavity formation mechanism
based on the formation of an electric charge layer on the interface between
the liquid glass and plasma [33]. This charge layer, where the electrons adhere
to the liquid glass surface, gives rise to a “negative” surface tension coefficient for
the liquid layer. In the case of a negative surface tension coefficient, the deforma-
tion of the liquid surface proceeds, giving rise to a long bubble that is pressed into
the liquid [33]. Furthermore, an increase in the charged surface due to the repulsion
of similar charges results in the development of instability [33]. The instability
emerges because the countercurrent flowing in the liquid causes the liquid to enter
the region filled with plasma, and the extruded liquid forms a bridge. Inside the
region separated from the front part of the fuse by this bridge, gas condensation and
cooling of the molten silica glass occur [34]. A row of cavities is formed by the
repetition of this process. Although Yakovlenko’s explanation of the formation of a
long cavity and rows of cavities is very interesting, the concept of “negative”
surface tension appears to be unfeasible in the field of surface science and/or plasma
physics (see Appendix A).

Low-frequency plasma instabilities are triggered by moving the high-
temperature front of a fiber fuse toward the light source. It is well known that such
a low-frequency plasma instability behaves as a Van der Pol oscillator with instabil-
ity frequency ω0 [35–55]. Therefore, the oscillatory motion of the ionized gas

Figure 2.
Cavity patterns observed in optical fiber.
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plasma during fiber fuse propagation can be studied phenomenologically using the
Van der Pol equation [56].

In this paper the author describes a novel nonlinear oscillation model using the
Van der Pol equation and qualitatively explains both the silica-glass densification
and cavity formation observed in fiber fuse propagation. Furthermore, an investi-
gation of the relationship between several cavity patterns and the nonlinearity
parameters in the nonlinear oscillation model is reported.

2. Nonlinear oscillation behavior in ionized gas plasma

An ionized gas plasma exhibits oscillatory motion with a small amplitude when
the high-temperature front of a fiber fuse propagates toward the light source.

The density ρ of the plasma is assumed to be in the form ρ ¼ ρ0 þ ρ1, where ρ0 is
the initial density of the stationary (unperturbed) part in the front region of the
plasma and ρ1 is the perturbed density. The dynamical behavior of ρ1 resulting from
fiber fuse propagation can be represented by the Van der Pol equation

d2ρ1
dt2

� ε 1� βρ1
2 þ 2γρ1

� � dρ1
dt

þ ω0
2ρ1 ¼ 0 , (1)

where ε is a parameter that characterizes the degree of nonlinearity and β

characterizes the nonlinear saturation (see Appendix B). The nonlinearity parame-
ter γ characterizes the oscillation pattern.

The angular frequency ω0 of the oscillation of the gas plasma is determined by
the ion-sound velocity Cs and the free-running distance Lf of the ion-sound wave,
and is given by

ω0 ¼ 2πf ¼ 2π
Cs

Lf
: (2)

where f is the frequency of the oscillation of the gas plasma. The ion-sound
velocity Cs is given by [38]

Cs ¼
ffiffiffiffiffiffiffiffi

RTe

Mi

r

, (3)

where R is the gas constant, Te is the temperature of the electron, and Mi is the
mass of the ion. The author estimated Cs ¼ 1300 m=s by using Te ¼ 5760 K, which
was the average temperature of the radiation zone [57], andMi ¼ 28� 10�3 kg for a
Siþ ion. The free-running distance Lf was assumed to be 1.3 mm, which was almost
equal to the distance (about 1.5 mm [57]) of the radiation zone. Using Eq. (2) and
the Cs (= 1300 m/s) and Lf (= 1.3 mm) values, the frequency f of the oscillation was
estimated to be about 1 MHz. The relatively high f or ω0 values reported in the
literature were 426–620 kHz [52, 53] and 14.5–40.9 MHz [35, 42, 45]. These rela-
tively high frequencies are owing to the excitation of high-frequency electron oscil-
lation together with ion oscillation in the ionized gas plasma. The f value (= 1 MHz)
estimated above is comparable to these experimental values.

The oscillatory motion for ε ¼ 0:1, β ¼ 6:5, and γ ¼ 0 was calculated using
Eq. (1). The calculated result is shown in Figure 3, where the perturbed density ρ1 is
plotted as a function of time. When t≥ 80μs, the maximum and minimum values of
ρ1 for the ionized gas plasma reach 0.86 and � 0.86, respectively. The maximum
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value (0.86) means that the increase in density of the core material reaches 86%,
which is almost equal to the experimental value (87%) estimated by Dianov et al. [20].

On the other hand, it can be seen that for ε ¼ 0:1 the motion of the Van der Pol
oscillator is very nearly harmonic, exhibiting alternate compression and rarefaction
of the density with a relatively small period Φ of about 6:3μs.

Next, the oscillatory motion for ε ¼ 5, 9, and 14 with β ¼ 6:5 and γ ¼ 0 was
examined. The calculated results are shown in Figures 4–6, respectively. It can be
seen that for ε ¼ 5, 9, and 14, the oscillations consist of sudden transitions between
compressed and rarefied regions. This type of motion is called a relaxation oscilla-
tion [56]. The Φ values of the motion corresponding to ε ¼ 5, 9, and 14 were
estimated to be about 12.9, 21.6, and 36.1 μs, respectively. These Φ values are much
larger than that (about 6.3 μs) for ε ¼ 0:1.

The oscillatory motion generated in the high-temperature front of the ionized
gas plasma can be transmitted to the neighboring plasma at the rate of Vf when the
fiber fuse propagates toward the light source. Figure 7 shows a schematic view of
the dimensional relationship between the temperature and the perturbed density of
the ionized gas plasma during fiber fuse propagation.

In Figure 7, Λ is the interval between the periodic compressed (or rarefied)
parts.

Figure 3.
Time dependence of the perturbed density during fiber fuse propagation. ε ¼ 0:1, β ¼ 6:5, γ ¼ 0.

Figure 4.
Time dependence of the perturbed density during fiber fuse propagation. ε ¼ 5, β ¼ 6:5, γ ¼ 0.
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Figure 6.
Time dependence of the perturbed density during fiber fuse propagation. ε ¼ 14, β ¼ 6:5, γ ¼ 0.

Figure 7.
Schematic view of the dimensional relationship between the temperature and the perturbed density of the
ionized gas plasma during fiber fuse propagation.

Figure 5.
Time dependence of the perturbed density during fiber fuse propagation. ε ¼ 9, β ¼ 6:5, γ ¼ 0.
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The relationship between the period Φ and the interval Λ is

Λ ¼ ΦVf , (4)

where Vf is the propagation velocity of the fiber fuse and V f ¼ 1 m/s was
assumed in the calculation. The Λ values of the motion corresponding to ε ¼ 5, 9,
and 14 are thus estimated to be about 12.9, 21.6, and 36.1 μm, respectively, using
Eq. (4) and Vf ¼ 1 m/s. If a large amount of molecular oxygen (O2) accumulates in
the rarefied part, the periodic formation of bubbles (or cavities) will be observed. In
such a case, Λ is equal to the periodic cavity interval. The estimated Λ values (12.9,
21.6, and 36.1 μm) are close to the experimental periodic cavity intervals of 13–22
μm observed in fiber fuse propagation [13, 23].

Figure 8 shows the relationship between Φ and the nonlinearity parameter ε. As
shown in Figure 8, Φ, which is proportional to the interval Λ, increases with
increasing ε. That is, the increase in Φ and/or Λ occurs because of the enhanced
nonlinearity. It was found that the experimental periodic cavity interval increases
with the laser pump power [13, 23]. It can therefore be presumed that the
nonlinearity of the Van der Pol oscillator occurring in the ionized gas plasma is
enhanced with increasing pump power.

Kashyap reported that the cavity shape was dependent on the nature of the input
laser light (CW or pulses) [7, 15]. Todoroki classified the damage to the front part of
a fiber fuse into three shapes (two spheroids and a long partially cylindrical cavity)
depending on the pump power [23]. He also found that a rapid increase or decrease
in the pump power results in an increase in the length of the cavity-free segment or
the occurrence of an irregular cavity pattern, respectively [26]. These findings
indicate that the cavity shape and the regularity of the cavity pattern may be
determined by the degree of nonlinearity of the Van der Pol oscillator.

In what follows, the results of examining the relationship between the interval Λ
and the input laser power P0 observed in fiber fuse propagation are described.

2.1 Power dependence of periodic cavity interval

It is well known that the fiber-fuse propagation velocity Vf increases with
increasing input laser power P0 [7, 8, 22, 23, 25, 26, 58–60]. Furthermore, in

Figure 8.
Relationship between the period Φ and the nonlinearity parameter ε. β ¼ 6:5, γ ¼ 0.
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addition to Vf , Todoroki reported the P0 dependence of Λ in an SMF-28e fiber at
λ0 ¼ 1:48μm [13, 23].

In this study the author investigated the P0 dependence of Λ using the experi-
mental Vf values [23, 26] and the calculated Φ values shown in Figure 8.

To explain the experimental Λ values in the P0 range from the threshold power
(Pth ≃ 1:3W [61]) to 9 W, Λ P0ð Þ can be represented by

Λ P0ð Þ ¼ Φ0V f P0ð Þ 1� ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Φn εð Þ � Φn ε ¼ 0ð Þ
p

Φ0

" #

, (5)

where Φ0 and ζ are constants and Φn is the calculated Φ value shown in Figure 8.
The second term �ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Φn εð Þ �Φn ε ¼ 0ð Þ
p

Vf P0ð Þ on the right of Eq. (5)
represents the contribution of the nonlinearity to the overall Λ value.

On the other hand, the relationship between the nonlinearity parameter ε and P0
can be expressed as

ε ¼ χ P0 � Pthð Þ m=2ð Þ, (6)

where χ is a constant and m is the order of the square root of the power
difference P0 � Pth. ε and χ correspond to the induced polarization and nonlinear
susceptibility in nonlinear optics, respectively [62]. In the calculation, the author
adopted χ ¼ 1 and m ¼ 2.

Using Eq. (5), Φ0 ¼ 31:5μs, ζ ¼ 3:6, and the Φn values shown in Figure 8, the Λ
values were calculated as a function of P0. The calculated results are shown in
Figure 9. The blue solid line in Figure 9 is the curve calculated using

Λ P0ð Þ ¼ Φ0Vf P0ð Þ, (7)

which is the first term on the right of Eq. (5).
As shown in Figure 9, Λ increases abruptly near the threshold power (Pth) and

increases with increasing P0. The Λ values at P0 ¼ 2:0–2:5 W satisfy Eq. (7).

Figure 9.
Relationship between the interval Λ and the input power P0. The blue and black solid lines were calculated
using Eqs. (7) and (5), respectively. The red open circles are the data reported by Todoroki [23, 26].
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However, with increasing P0, the Λ values at P0>2:5W are less than those calculated
using Eq. (7) and approach the Λ values estimated using Eq. (5).

This may be related to the modes of fiber fuse propagation reported by Todoroki
[23, 26]. Todoroki classified the damage to the front part of a fiber fuse into three
shapes (two spheroids and a long partially cylindrical cavity) depending on the
pump power, and the appearance of the long partially cylindrical cavity was
observed at P0>3:5 W [23] or P0>2:3 W [26]. As shown in Figure 9, the distinct
contribution of the nonlinearity to the overall Λ value begins at P0 of 2.3–3.5 W, and
the oscillatory motion of the gas plasma changes from a nearly harmonic oscillation
(see Figure 3) to a relaxation oscillation (see Figure 4) with increasing P0. There-
fore, the change from the spheroids of unstable and unimodal modes to the long
partially cylindrical cavities of the cylindrical mode may be related to the contribu-
tion of the nonlinearity.

3. Effect of nonlinearity parameters on cavity patterns

The nonlinearity parameter γ characterizes the oscillation pattern. The oscilla-
tory motion for ε ¼ 9, β ¼ 6:5, and γ ¼ 0 was shown in Figure 5, where the
perturbed density ρ1 is plotted as a function of time. It can be seen in Figure 5 that
the oscillations consist of sudden transitions between compressed and rarefied
regions, and the retention time τr of the rarefied regions equals that of the com-
pressed regions τc. The relationship between the period Φ (¼ τr þ τc) and the inter-
val Λ is given by Eq. (4), and the relationship between τr and the length l of the
cavity is

l ¼ τrV f : (8)

The Λ and l values of the motion corresponding to ε ¼ 9, β ¼ 6:5, and γ ¼ 0 are
estimated to be about 10.8 and 21.6 μm, respectively, using Eqs. (4) and (8) and
V f ¼ 1 m/s. That is, l=Λ ¼ 0:5 in the case of γ ¼ 0.

Next, the oscillatory motion for γ ¼ 2 and � 2 with ε ¼ 9 and β ¼ 6:5 was
examined. The calculated results are shown in Figures 10 and 11, respectively. As
shown in Figure 10, the retention time τr of the rarefied regions is larger than that
of the compressed regions τc. As a result, the ratio l=Λ is larger than 0.5 in the case of

Figure 10.
Time dependence of the perturbed density during fiber fuse propagation. ε ¼ 9, β ¼ 6:5, γ ¼ 2.
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γ ¼ 2. On the other hand, as shown in Figure 11, τr is smaller than τc and l=Λ <0:5 in
the case of γ ¼ ‐2.

Figure 12 shows the relationship between l=Λ and the nonlinearity parameter γ.
As shown in Figure 12, l=Λ increases with increasing γ and approaches its maxi-
mum value (about 0.71) at γ � 2.8. In contrast, l=Λ approaches its minimum value
(about 0.29) at γ � �2:8.

3.1 Deformation of cladding due to plasma formation

The inside of the high-temperature core of 4,000–10,000 K has a high internal
pressure p of 1 � 104–5 � 104 atm [18]. The inner wall of the core (in the solid state)
will be expanded by this internal pressure p. To simplify the calculation, the existence
of molten silica glass (liquid state) between the solid-state cladding layer (inner
radius ri, outer radius rf ) and the inner high-pressure gas plasma is ignored [33].

ri for the cladding is assumed to be dmelted/2. With increasing inner pressure p,
the inner radius of the cladding layer increases in the radial direction owing to the

Figure 11.
Time dependence of the perturbed density during fiber fuse propagation. ε ¼ 9, β ¼ 6:5, γ ¼ ‐2.

Figure 12.
Relationship between l=Λ and the nonlinearity parameter γ. ε ¼ 9, β ¼ 6:5.
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compression of the cladding layer. The increment δr in the radius r of the solid-state
cladding layer can be expressed in terms of the Young’s modulus E and Poisson’s
ratio ν of the (solid-state) silica glass, and is given by the following equation [63].

δr ¼ r2i p

E r2f � r2i

� � 1� νð Þ þ 1þ νð Þ
r2f
r2

" #

� r (9)

Todoroki reported that dmelted and the diameter d of periodic cavities with
Λ � 22μm, which is equal to that in the case of ε ¼ 9 and γ ¼ 0, were about 20 and
6.5 μm, respectively [13]. We adopted ri ¼ dmelted=2 ffi 10μm and rf ¼ 62:5μm.
Using E ¼ 73 GPa and Poisson’s ratio ν ¼ 0:17 for silica glass, the relationship
between δr=ri and r=ri at p ¼ 2 GPa (=1:97 � 104 atm) is calculated. The results are
shown in Figure 13. It can be clearly seen from Figure 13 that the elongation rate
δr=ri of the inner radius has a maximum value (about 3.35%) when r=ri.

We consider the tensile stress σθ acting on the inner wall (r ¼ ri) of the cladding
layer. σθ is related to p by the following expression [63]:

σθ ¼
r2f þ r2i

r2f � r2i
� p: (10)

σθ increases with increasing p. Using ri � 10μm and rf ¼ 62:5μm, σθ was esti-
mated to be about 2.1 GPa when p ¼ 2 GPa. If this σθ value exceeds the ideal
fracture strength σ0 of the silica glass, a crack will be generated on the inner wall of
the cladding layer.

On the other hand, it is well known for various solid materials that the σ0 value is
related to the Young’s modulus E of the material by the following equation [64]:

σ0≈E=10: (11)

By using Eq. (11) and E ¼ 73 GPa for silica glass, we can estimate σ0 to be
approximately 7.3 GPa. Since this value is larger than the estimated σθ value
(2.1 GPa), the cladding layer is never broken, but it can be seen that a relatively
large expansion of the inner radius occurs as a result of the internal pressure.

Figure 13.
Relationship between δr=ri and r=ri.
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The excess volume ΔV produced by the expansion of the inner radius over the
interval Λ of the cavity can be estimated as follows using the maximum δr value
δrmax at r ¼ ri:

ΔV ¼ Λπ ri þ δrmaxð Þ2 � r2i

h i

: (12)

As the maximum elongation rate δrmax=ri was about 3.35% (see Figure 13), δrmax

was estimated to be about 0.335 μm by using ri ffi 10μm.
On the other hand, the volume V of a cavity with diameter d and length l is

given by

V ¼ lπ
d

2

� �2

: (13)

It is considered that the volume required to generate a cavity was compensated
by the excess volume ΔV [33]. If the value of V required to generate a cavity in the
interval Λ is smaller than ΔV, the oscillation pattern predicted by Eq. (1) will be
maintained and periodic cavities having a size corresponding to V will be formed in
the core. That is, the necessary condition for the formation of a periodic cavity
pattern is that the ratio of V to ΔV is smaller than 1, which is expressed as follows:

V

ΔV
¼ l

Λ

d2

4δrmax 2ri þ δrmaxð Þ ≤ 1: (14)

Rearranging Eq. (14), we obtain the following inequality for l=Λ:

l

Λ
≤

4
d2

δrmax 2ri þ δrmaxð Þ: (15)

When ri � 10μm, δrmax � 0:335μm, and d � 6:5μm, we obtain

l

Λ
≤0:645:

When l=Λ satisfies this condition, the periodic cavities predicted by Eq. (1) will
be formed in the core.

However, as shown in Figure 12, l=Λ can be larger than 0.645 when γ> 1.5. In
this case, the cavities formed in the core will be compressed and deformed as shown
in Figure 14.

Figure 14.
Schematic view of cavity compression and deformation in core.
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As shown in Eq. (15), the allowable value of l=Λ increases with decreasing cavity
diameter d. Figure 15 shows the relationship between the maximum allowable value
of l=Λ and the diameter d. As shown in Figure 15, when d is reduced by 20% from
6.5 to 5.2 μm, we obtain.

l

Λ
≤ 1:

Under this condition, cavity pattern (d) (long filaments) in addition to periodic
pattern (c) in Figure 2 can be formed in the core. As the number of repetitions of
pattern (d) can change freely, the period of long filaments can be irregular. This
may be the cause of the long non-periodic filaments observed by several researchers
[20–22, 32].

Kashyap reported that the diameter of a short asymmetric cavity with l=Λ <0:5
was larger than that of an oblong and cylindrically symmetric cavity with l=Λ of
about 0.5 and that the diameter of a long bullet-shaped cavity with l=Λ <0:5 was
smaller than that of the cavities described above [7]. These findings are consistent
with the calculation results shown in Figure 15. In what follows, the production and
diffusion of O2 gas in the high-temperature core layer are described.

3.2 Oxygen production in optical Fiber

When gaseous SiO and/or SiO2 molecules are heated to high temperatures of
above 5,000 K, they decompose to form Si and O atoms, and finally become Siþ and
Oþ ions and electrons in the ionized gas plasma state.

In a confined core zone, and thus at high pressures, SiO2 is decomposed with the
evolution of SiO gas or Si and O atomic gases at elevated temperatures [65]:

SiO2⇄SiOþ 1=2ð ÞO2⇄Siþ 2O: (16)

The number densities NSiO, NSi, and NO (in cm�3) can be estimated using the
procedure described in [57, 66] and the published thermochemical data [67] for Si,
SiO, O, O2, and SiO2.

The dependence of NO on the temperature T is shown in Figure 16. NO gradu-
ally approaches its maximum value (3:3� 1021cm�3) at 11,100 K and then decreases

Figure 15.
Relationship between the maximum allowable value of l=Λ and the cavity diameter d. dmelted ¼ 20 μm.
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with further increasing T. This is because oxygen (O) atoms are ionized to produce
Oþ ions and electrons in the ionized gas plasma as follows:

O⇄Oþ þ e�: (17)

The number density NOþ of Oþ ions can be estimated using the Saha equation
[66, 68]:

N2
Oþ

NO
≈2

2πmekTð Þ3=2

h3
Zþ
Z0

exp �Ip=kBT
� �

, (18)

where Ip (= 13.61 eV [69]) is the ionization energy of a neutral O atom, me is the
electron mass, h is Planck’s constant, and kB is Boltzmann’s constant. Zþ and Z0 are
the partition functions of ionized atoms and neutral atoms, respectively, and
Zþ≈Z0. The relationship between NOþ and T is also shown in Figure 16. NOþ

increases gradually at temperatures above 7,000 K and reaches 8:9� 1021 cm�3 at
2� 104 K.

It has been found that molecular oxygen is released and remains in the cavities of
a damaged core layer while maintaining a relatively high pressure (about 4 atm [7]
or 5–10 atm [20]) at room temperature. The molecular oxygen (O2) is produced
from neutral O atoms as follows:

2O ! O2: (19)

The rate equation of this reaction is [70]

dNO2

dt
¼

ffiffiffi

2
p

πσ2
ffiffiffiffiffiffiffiffiffiffi

8RT
πMO

r

NO
2 exp �Ea=RTð Þ, (20)

where σ (= 1.5 Å) is half of the collision diameter, MO (¼ 16:0� 10�3 kg) is the
atomic weight of O, and Ea is the activation energy. The bond energy (493.6 kJ/mol
[71]) of oxygen was used for Ea.

The dependence of dNO2=dt on the temperature T is shown in Figure 17. The
rate of O2 production dNO2=dt exhibits its maximum value (2:96� 1031 cm�3s�1) at
12,700 K. This means that the oxygen molecules are produced most effectively at
12,700 K.

Figure 16.
Temperature dependences of the number densities of O and Oþ.
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Figure 18 shows the temperature distribution of the high-temperature front
along the z direction at t ¼ 3 ms after the incidence of 1.8 W laser light for IA ¼ 8
dB. The calculation of the temperature distribution was described in Ref. [72]. In
Figure 18 the initial attenuation IA of 8 dB corresponds to an optical absorption
coefficient α of 1:84� 106m�1 when the thickness of the absorption layer, which
consists of carbon black, is about 1 μm [72]. In this figure, the center of the high-
temperature front is set at L ¼ 0 μm. As shown in Figure 18, ΔLs, which is about
36.5 μm, is the distance between the high-temperature peak (L ¼ 0 μm) and the
location with a temperature of 12,700 K.

This ΔLs can be converted into the time lag Δτs from the passage of the high-
temperature front as follows:

Δτs ¼
ΔLs

Vf
: (21)

Figure 17.
Temperature dependence of the production rate of O2.

Figure 18.
Temperature distribution of the high-temperature front versus the length along the z direction at t ¼ 3 ms after
the incidence of 1.8 W laser light for IA ¼ 8 dB. The center of the high-temperature front is set at L ¼ 0 μm.
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It is expected that the O2 molecular gas in the ionized gas plasma will be
observed most frequently after a time lag of Δτs from the passage of the high-
temperature peak. If the produced O2 gas diffuses into the rarefied part of the
oscillatory variation in density shown in Figures 4–6, 10, and 11, periodic cavities
containing some of the oxygen molecules will be formed (see below).

When Vf ¼ 1 m/s, the Δτs values were estimated at a time of t ¼ 1:55–3 ms after
the incidence of 1.8 W laser light for IA ¼ 8 dB. The calculated Δτs values are
plotted in Figure 19 as a function of t. The fiber fuse phenomenon was initiated at
t ¼ 1:5 ms (see Figure 14 in Ref. [72]). As shown in Figure 19, Δτs increases rapidly
with increasing t immediately after the fiber fuse is initiated and reaches a constant
value (36.5 μs) at t> 1.65 ms. This value is in reasonable agreement with the
experimental values (20–70 μs) reported by Dianov and coworkers [30, 31].

3.3 Diffusion length of oxygen gas

The O2 gas produced near the high-temperature front diffuses from the com-
pressed part into the rarefied part of the oscillatory variation during a short period
Φ of 10–30 μs (see Figure 8).

The diffusion coefficient D of the O2 gas is given by [70].

D ¼ 2
3πσ2NO2

ffiffiffiffiffiffiffiffiffiffiffiffi

RT

πMO2

s

, (22)

where MO2 (¼ 32:0� 10�3 kg) is the molecular weight of O2 gas. As NO2 is
smaller than NO=2, NO2≈NO/2 is assumed in the calculation.

The mean square of the displacement Δz2 along the z direction of the optical
fiber can be estimated from D and time t as follows [73]:

Δz2 ¼ 2Dt: (23)

The Δz values at T ¼ 12, 700 K were estimated using Eqs. (16) and (17). When
t ¼ 20μs, the calculated Δz value is given by

Δz ¼ �16:7 μm:

Figure 19.
Δτs values versus t after the incidence of 1.8 W laser light for IA ¼ 8 dB.
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This Δz value is of the same order as the observed periodic cavity interval
(13–22 μm) [13].

Figure 20 shows a schematic view of the diffusion of the O2 gas from the
compressed part into the rarefied part in the high-temperature plasma. If the abso-
lute value of Δz is larger than half of the interval Λ between the periodic rarefied
parts, many of the O2 molecules produced in the compressed part can move into the
rarefied part during the period Φ (10–30 μs) of the relaxation oscillation. This O2
gas will form temporary microscopic cavities that can constitute the nuclei neces-
sary for growth into macroscopic bubbles [74].

As described above, the nonlinear oscillation model was able to phenomenolog-
ically explain both the densification of the core material and the formation of
periodic cavities in the core layer as a result of the relaxation oscillation and the
formation of O2 gas near the high-temperature front.

4. Conclusion

The evolution of a fiber fuse in a single-mode optical fiber was studied theoret-
ically. To clarify both the silica-glass densification and cavity formation, which are
observed in fiber fuse propagation, we investigated a nonlinear oscillation model
using the Van der Pol equation. This model was able to phenomenologically explain
the densification of the core material, the formation of periodic cavities, the cavity
shape, and the regularity of the cavity pattern in the core layer as a result of the
relaxation oscillation and cavity compression and/or deformation.

This nonlinear oscillation model including the relaxation oscillation is a phe-
nomenological model, and the relationship between the nonlinearity parameters
(ε, β, γ) and the physical properties observed in the fiber fuse experiments is
unknown. Therefore, to clarify this relationship, further quantitative investigation
is necessary.

A. Electrostatic interaction between charged surface and plasma

In a confined core zone, and thus at a high pressure, SiO2 is decomposed with
the evolution of SiO gas or Si and O atomic gases at elevated temperatures, as
described in the main text. When the Si and O atomic gases are heated to high

Figure 20.
Schematic view of diffusion of oxygen gas from the compressed part into the rarefied part in the high-
temperature plasma.
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temperatures of above 3,000 K (Si) and 4,000 K (O), they are ionized to produce
Siþ and Oþ ions and electrons in the ionized gas plasma state.

Siþ O⇄Siþ þ Oþ þ 2e� (24)

If thermally produced electrons in the plasma are not bound to positive species
(Siþ or Oþ ions), they can move freely in the plasma under the action of the
alternating electric field of the light wave. Such free diffusion is possible only in the
limiting case of very low charge densities. However, as shown in Figure 16 and also
Figure 1 in Ref. [66], the densities of Siþ and Oþ ions and electrons are reasonably
large above 1� 104 K. At high charge densities, it is known that the positive and
negative species diffuse at the same rate. This phenomenon, proposed by Schottky
[75], is called ambipolar diffusion [76, 77]. Ambipolar diffusion is the diffusion of
positive and negative species owing to their interaction via an electric field (space-
charge field). In plasma physics, ambipolar diffusion is closely related to the con-
cept of quasineutrality.

Some electrons arrive at the surface of melted silica glass, and they attach to
oxygen atoms on the surface because oxygen atoms have a high electron affinity
[78]. As a result, a negatively charged surface, which was proposed by Yakovlenko
[33], may be formed as shown in Figure 21.

However, the negative charges on the surface will immediately be balanced by
an equal number of oppositely charged Siþ and Oþ ions because these positive ions
move together with the electrons as a result of ambipolar diffusion. In this way, an
atmosphere of ions is formed in the rapid thermal motion close to the surface. This
ionic atmosphere is known as the diffuse electric double layer [79].

The thickness δ0 of the double layer is approximately 1/κ, which is the charac-
teristic length known as the Debye length. The parameter κ is given in terms of Ne

and T as follows [77]:

κ2 ¼ 2Nee
2

ε0kBT
, (25)

Figure 21.
Schematic view of the negatively charged surface and ionic atmosphere.
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where e is the charge of an electron and ε0 is the dielectric constant of vacuum.
When T ¼ 1� 104 K, Ne ¼ 2:2� 1020 cm�3. Using these values and Eq. (25),
the thickness δ0 of the double layer at 1� 104 K was estimated to be about
3:3� 10�10 m.

A cross section of the high-temperature plasma in the optical fiber with the
double layers is schematically shown in Figure 22.

In the central domain of the high-temperature plasma, electrically neutral atoms
(Si and O) and charged species (Siþ, Oþ, and e�) exist. As the charged species are
balanced, electrical neutrality is achieved in the domain. Moreover, the dimensions
of the domain are almost equal to those of the high-temperature plasma excluding
the very thin (Å order) electric double layers at the surface of the melted silica glass.

B. Nonlinearity parameter β in Van der pol equation

The dynamical behavior of the perturbed density ρ1 resulting from fiber fuse
propagation can be represented by the Van der Pol equation

€ρ1 � ε 1� βρ1
2� �

_ρ1 þ ω0
2ρ1 ¼ 0, (26)

where €ρ1 ¼ d2ρ1=dt
2, _ρ1 ¼ dρ1=dt, ε and β are nonlinearity parameters, and the

nonlinearity parameter γ ¼ 0 is assumed.
If the solution of Eq. (26) is written as

ρ1 ¼ A cos ω0tþ φð Þ, (27)

where the amplitude A and phase φ are slowly varying functions, then A satisfies
the following equation:

A2 ¼ ρ1
2 þ _ρ1

ω0

� �2

: (28)

Differentiating Eq. (28), we obtain

Figure 22.
Schematic view of the cross section of the high-temperature plasma in the optical fiber.
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_A ¼ _ρ1

ω0
2A

€ρ1 þ ω0
2ρ1

� �

¼ _ρ1

ω0
2A

ε 1� βρ1
2� �

_ρ1
	 


¼ ε

ω0
2A

_ρ1
2� �

� εβ

ω0
2A

ρ1
2

_ρ1
2� �

¼ εA sin 2 ω0tþ φð Þ � εβA3 sin 2 ω0tþ φð Þ cos 2 ω0tþ φð Þ

¼ ε

2
A 1� cos 2ω0tþ 2φð Þ½ � � εβ

8
A3 1� cos 4ω0tþ 4φð Þ½ �:

(29)

Because of the slowly varying property of A, the oscillatory terms
A cos 2ω0tþ 2φð Þ and A3 cos 4ω0tþ 4φð Þ on the right of Eq. (29) are averaged out
every cycle and can be discarded [80], thus reducing Eq. (29) to

_A ≃
ε

2
A� εβ

8
A3

≃
ε

2
A 1� β

4
A2

� �

:

(30)

The maximum value of A, Am, is obtained under the condition of _A ¼ 0. To
satisfy this condition,

Am ¼ 2
ffiffiffi

β
p : (31)

This means that the nonlinearity parameter β determines the maximum and
minimum values of ρ1. In the calculation, we used β ¼ 6:5, which corresponds to
Am ≃0:8.
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