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Abstract

The function of chromatin ultimately depends on the many chromatin-associated proteins 
and protein complexes that regulate all DNA-templated processes such as transcription, 
repair and replication. As the molecular docking platform for these proteins, the nucleo-
some is the essential gatekeeper to the genome. As such, the nucleosome-binding activity 
of a myriad of proteins is essential for a healthy cell. Here, we review the molecular 
basis of nucleosome-protein interactions and classify the different binding modes avail-
able. The structural data needed for such studies not only come from traditional sources 
such as X-Ray crystallography but also increasingly from other sources. In particular, we 
highlight how partial interaction data, derived from for example NMR or mutagenesis, 
are used in data-driven docking to drive the modeling of the complex into an atomistic 
structure. This approach has opened up detailed insights for several nucleosome-protein 
complexes that were intractable or recalcitrant to traditional methods. These structures 
guide the formation of new hypotheses and advance our understanding of chromatin 
function at the molecular level.

Keywords: nucleosome, protein interactions, epigenetics, chromatin binding,  
acidic patch, histone tails, post-translational modifications, data-driven docking,  
NMR spectroscopy, XL-MS, crystallography, cryo-EM, structural models

1. Introduction

The packaging of DNA into chromatin represents one of the most fundamental layers of the 

biology of the cell. It provides the required structural compaction of DNA to fit in the nucleus 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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and plays crucial roles in controlling cell fate and protecting genome integrity. The funda-

mental unit of chromatin is the nucleosome in which 147 base pairs (bp) of DNA are wrapped 

around an octameric protein complex composed of two copies of histone proteins H2A, H2B, 

H3 and H4 [1–3]. Nucleosomes are arranged as beads-on-a-string forming 10 nanometer (nm) 

wide fiber that subsequently condense into higher order structures [4]. Nucleosomes as the 

basis of chromatin are responsible for its dynamics. Chromatin state and changes in DNA 

accessibility are determined at the nucleosome level. These changes are mediated through 

interactions of histone proteins and nucleosomal DNA alike with a wide range of protein 

complexes that control the structure of chromatin. They interpret, write and erase post- 

translational modifications or act as ATP-dependent nucleosome remodelers. This allows 
changes in the functional state of chromatin and regulation of DNA-templated processes. 

While promoting a large variety of effects on chromatin structure, nucleosome-interacting 
proteins share the molecular basis of recognizing and binding the nucleosome. Understanding 

the basis of chromatin dynamics therefore demands understanding the molecular basis of 

nucleosome-protein interactions.

In particular, insights into the molecular mechanistic basis of how histone-modifying enzymes 

install or remove post-translational modifications (writers and erasers, respectively) and 
how these modifications are recognized by effector proteins (readers) are of immense inter-

est, especially in drug development. Deregulation of these proteins is strongly connected to 

pathological outcome, including cardiovascular diseases, neurological disorders, metabolic 

disorders and cancer [5]. So-called epigenetic drugs that target the nucleosome interaction 

of these chromatin factors offer new therapeutic potential [6–9]. A selection of epigenetic 

drugs including those currently undergoing clinical trial is described in detail elsewhere 

[10]. Advancement in their development requires insights into the underlying molecular 

mechanism of nucleosome recognition, enabling control over subsequent modification of the 
chromatin state.

In the following, we will review the molecular basis of nucleosome-protein interactions, 

focusing on the different binding epitopes presented by the nucleosome. After an over-

view of the nucleosome-protein structures determined by crystallography or cryo-electron 

microscopy (cryo-EM), we highlight several studies in which experimental data from nuclear 

magnetic resonance spectroscopy (NMR), cross-link-based mass spectrometry (XL-MS) or 

mutational analysis were used to build atomistic structural models of nucleosome complexes. 

Throughout, we emphasize the role of these data-driven models in deepening our under-

standing of nucleosome recognition.

2. Nucleosome-binding epitopes

Consisting of DNA and histone proteins, the nucleosome offers a selection of distinct interac-

tion surfaces for binding of effector proteins with high levels of specificity (Figure 1).

Histone proteins possess a globular tertiary structure with exposed, disordered N-terminal 

tails. Histone tails are known to carry a wide range of covalent, post-translational side chain 
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modifications (PTMs) such as, mono-, di- and trimethylation (Lys, Arg); acetylation (Lys); 
phosphorylation (Ser, Thr) and ubiquitination (Lys) [11, 12]. This cosmos of modifications 
maintains a dynamic nature through the reversibility of the covalent modifications. Modified 

Figure 1. A schematic depiction of different modes of nucleosome recognition. Reported types of epitopes are histone 
tails including PTMs (A), the H2A-H2B acidic patch (B), the canonical histone surface (C), specific surface motifs formed 
by histone variants (D) or nucleosomal DNA (E). A manifold of synergetic combinations of binding epitopes are known, 

such as histone mark and DNA (F), acidic patch and DNA (G) or all three epitopes (H).

Recognition of Nucleosomes by Chromatin Factors: Lessons from Data-Driven Docking-Based…
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histones are recognized by so-called reader protein domains specific for the respective modifi-

cation (Figure 1A). Interestingly, nucleosome-interacting proteins can possess more than one 

reader domain which allows cross talk between different post-translational modifications. 
Examples of PTM reader domains are Chromo, Tudor, PHD and MBT domains for methyl-
ated lysine residues, bromodomains for acetylated lysine residues and 14–3-3 proteins for 

phosphorylated serine [11, 13] (Table 1). The most recent addition to the list is YEATS domains 

that recognize crotonylated lysine [14–16]. Reader domains often have structurally conserved 

motifs that are able to complex a specific modification. The “Royal Family” of reader domains 
is in this respect a particularly instructive example. This superfamily includes the Chromo, 

MBT, PWWP and plant Agenet domains that bind methylated lysine (Tudor, Chromo, MBT, 
PWWP, plant Agenet) or arginine (Tudor) residues. Most domains of this family contain a 
barrel-shaped structure formed by 3–5 antiparallel β-strands that holds a cluster of aromatic 

residues that form the so-called aromatic cage [17]. The aromatic cage presents an electron-

rich yet hydrophobic surface that is ideally suited to bind methylated lysines through cation-π 

interactions [18]. The structural features and similarities, as well as their substrate specificity, 
have been subject to literature reviews [19–21].

Reader domains can, in addition to the post translational modification, show specificity for a 
defined amino acid sequence motif around the epigenetic mark that supports complex forma-

tion. For example, the WD40 domain of the EED (embryonic ectoderm development) protein 

selectively reads out trimethylated lysine in a A-R-K-S sequence motif (as for H3K27me3) but 

not in a R-T-K-Q motif (as for H3K4me3) [37].

(sub)Domain Modification Protein Function

Royal family

Tudor Kme1, Kme2, Kme3, 

Rme2

53BP1 DNA damage response [24]

TDRD3 Transcription activation [25]

MBT Kme1, Kme2 L3MBTL1 Transcriptional repression [26, 27]

PWWP Kme3 PSIP1 Transcriptional co-activation, DNA repair  

[28, 29]

Chromo Kme, Kme2, Kme3 CHD1 Chromatin remodeling [30, 31]

HP1 Heterochromatin [32]

MRG15 Splicing [33]

Plant Agenet Kme, Kme2, Kme3 FMRP DNA damage response [34]

Bromodomain

KAc BRD2/3 Transcriptional regulation [35]

14-3-3

Sph 14–3-3ζ Transcriptional activation [36]

aSee Refs. [21–23] for more in-depth discussion.

Table 1. Overview of selected reader domains for post-translational modificationsa.
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Next to histone tails, the nucleosome also possesses intrinsic docking platforms on its histone 

surface. The most prominent of these is composed of histones H2A and H2B. While the his-

tone octamer is overall highly positively charged, there is a patch on the H2A-H2B dimer sur-

face formed by acidic residues with negative surface charge. This structural feature is named 

the acidic patch and engages in a manifold of interactions with specific binding domains 
(Figure 1), including the tail of histone H4 of adjacent nucleosomes that promotes chromatin 

compaction. A common feature observed for acidic patch-interacting proteins is a positively 

charged arginine residue that interacts with a triad of acidic residues on H2A (Glu61, Asp90, 

Glu92). This is referred to as the arginine anchor [38]. It is often supported by surrounding 

positively charged residues interacting with acidic H2A/H2B interface residues.

Other parts of the histone core surface may also mediate protein-nucleosome interactions 

(Figure 1C). First, a solvent exposed cleft between H4 and H2B was shown to be involved in 

binding interactions with Sir3 or 53BP1 [39, 40]. Interestingly, these proteins bind simultane-

ously to both the H4-H2B cleft and the acidic patch using one nucleosome-binding domain for 

each epitope. Second, incorporation of non-canonical histones in nucleosomes introduces spe-

cific interaction surfaces that allow histone variant-specific nucleosome binding (Figure 1D). 

An example hereof are CENP-N and CENP-C that recognize the incorporated histone H3 
variant CENP-A [41, 42].

Finally, the nucleosomal DNA is a major protein interaction site. First, it forms the binding 

site of linker histone H1 [43–45] (see also Section 4.9). Second, it is often involved in additional 

synergistic interactions to nucleosome-binding domains (Figure 1E). Finally, recent studies 

have identified transcription factor proteins that primarily bind to nucleosomal DNA. These 
so-called pioneer factors bind their DNA target sites while embedded in the nucleosome 

[46–48]. The structural details of these are however still lacking.

Throughout the advances in studies on nucleosome binding, it has become clear that binding 

of effector proteins in many cases involves interactions of nucleosome-binding domains to 
multiple nucleosome epitopes (Figure 1G, H). However, due to their size and complexity 

as well as the stability and dynamics of complex formation, the nucleosome is a challenging 

system for structural biology.

3. Crystal clear: lessons from crystallography and single particles

A key role in the research of protein interactions are high-resolution three-dimensional struc-

tures of the complexes, typically obtained by crystallography and, increasingly, cryo-electron 

microscopy. These structures enable the identification of binding sites and intermolecular 
interactions, offering a guided approach to design binding-deficient mutants or competitive 
binders. The history of nucleosome structural biology peaked with the publication of the high-

resolution crystal structure of the nucleosome in 1997 [3]. Luger et al. achieved crystallization of 

the nucleosome together with a palindromic version of human α-satellite DNA [49]. This mile-

stone study provided the foundation to also study the structures of nucleosomes together with 

chromatin factors in complexes. Table 2 lists the structures of nucleosome-protein complexes 
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solved to date by crystallography and cryo-electron microscopy [39, 50–58]. The most recent 

addition to this ever-growing list is the spectacular structures of the complex between the 

INO80 chromatin remodeler and the nucleosome [59, 60]. Below, we discuss a few cardinal 

studies to highlight the different nucleosomal binding modes of effector proteins.

3.1. The first crystal structure of a nucleosome complex (LANA)

The first high-resolution structure of a nucleosome-protein complex was the crystal structure 
of a peptide model of Kaposi’s sarcoma-associated herpesvirus LANA N-terminal region 

bound to the nucleosome [61]. The binding site identified in this study was the acidic patch. 
The atomistic resolution allowed to identify intermolecular side chain interactions including 

the arginine anchor bound to the acidic triad. Ever since, the LANA-nucleosome has become 

a golden standard for comparisons with other acidic patch interactions [50, 55]. Importantly, 

LANA is used to investigate the acidic patch binding ability of other proteins by competitive 

binding [62–64]. Interestingly, this exact epitope happened to be the binding interface also for 

the first full protein domain that was crystalized in its nucleosome-bound state.

Name PDB-id Role Year Technique Reference Resolution [Å]

Proteins

RCC1 3MVD Ran recruitment 2010 X-Ray [50] 2.9

Sir3 BAH 4JJN, 3TU4, 

4LD9, 4KUD

Chromatin 

compaction

2011, 2011, 

2013, 2013

X-Ray [39, 51–53] 3.0 – 3.3

CENP-C 4X23 H3 variant binding 2013 X-Ray [54] 3.5

Ring1B 4R8P E3 ligase 2014 X-Ray [55] 3.3

53BP1 5KGF Reader 2016 EM [40] 4.5

SAGA/DUB 4ZUX Eraser 2016 X-Ray [56] 3.8

Set8 5HQ2 Writer 2016 X-Ray [57] 4.5

Chd1 5O9G Remodeler 2017 X-Ray [74] 4.8

Snf2 5X0X, 5X0Y Remodeler 2017 EM [71] 4.0

CENP-N 6BUZ, 6C0W H3 variant binder 2017, 2018 EM [72, 73] 3.9/4.0

H1 4QLC, 5NL0 Linker histone 2015, 2017 X-Ray [45, 75] 3.5

INO80 6FML, 6ETX Remodeling complex 2018, 2018 EM [59, 60] 4.4/4.8

Peptides

LANA 1ZLA, 5GTC Viral protein 2006, 2017 X-Ray [61, 76] 2.9/2.7

IE1 5E5A Viral protein 2016 X-Ray [77] 2.8

GAG 5MLU Synthetic acetylation 

system

2017 X-Ray [78] 2.8

Table 2. Structures of nucleosome-protein or nucleosome-peptide complexes deposited in the RCSB protein databank 

PDB.
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3.2. The first crystal structure of a nucleosome-bound protein domain (RCC1)

The first structure of a protein bound to the nucleosome was the RCC1-nucleosome complex 
published by the Tan lab in 2010. RCC1 (regulator of chromosome condensation) is essential 

during mitosis by recruiting Ran GTPase, which plays a role in nucleus reorganization, to 
the nucleosome [65, 66]. A comparison with LANA highlighted the crucial and conserved 

interaction of arginine residues with the acidic patch triad [50]. Strikingly, RCC1 binds to 

the acidic patch using the canonical arginine anchor, here contained in a loop, and also binds 

the nucleosomal DNA through its N-terminal tail. Such synergetic interactions have been 

observed later in many other nucleosome-binding proteins [50, 55, 67–70]. This study was the 

first to show such complexity of nucleosomes as interaction platforms. It also highlights the 
importance of properly defining the boundaries of binding domains to capture all binding 
epitopes in order to reveal possible synergetic interactions and fully understand complex 

formation and subsequent effects on chromatin structure.

3.3. Specificity of effector protein orientation in nucleosome complex formation 
(PRC1)

Besides determining the binding mode, synergetic interactions can also provide the struc-

tural basis for specificity of effector protein activity. This was shown in the crystal structure, 
also from the Tan lab, of the polycomb repressive complex 1 (PRC1) that ubiquitinates H2A 
K119 in a highly specific manner [55]. On its surface, the nucleosome displays various lysine 

residues that can be ubiquitinated by the respective writer proteins. However, the down-

stream response wildly differs depending on the position of the ubiquitinated lysine. Thus, 
target specificity is of high importance for ubiquitin writer proteins. In case of PRC1, this is 
based on two distinct binding processes. For one, there is the interaction between acidic patch 

and the arginine anchor of the Ring1B/Bmi1 subunit. In addition, the E2 subunit UbcH5c 

engages the nucleosomal DNA. Combined, both contributions are responsible for exact posi-

tioning of the catalytic center of the ubiquitin carrying E2 to the target H2A K119 (Figure 2B).

Besides LANA, RCC1 and PRC1, other crystal structures of nucleosome complexes offered 
further insights into nucleosome recognition. In particular, the structure of the nucleosome 

complex of the SAGA DUB deubiquitination module showed a non-canonical acidic patch 

binding. Morgan et al. found that the SAGA nucleosome-binding DUB module possesses 

three equally crucial arginine residues distributed over an α-helix [56] (Figure 2A). This per-

haps points towards yet other acidic patch interaction modes.

Recently, also cryo-EM-derived structures of nucleosome-protein complexes have been pub-

lished. The first structure, solved in 2016, yielded the structure of the complex with 53BP1, a 
reader protein for post-translational histone modifications [40]. Subsequently, the structures 

of Snf2 and CENP-N were solved and published [71–73].

Since the first crystal structure two decades ago, the list of nucleosome complexes deposited 
in the RCSB PDB protein databank is continuously growing. Still, the 12 high-resolution struc-

tures solved to date only encompass a fraction of all nucleosome-protein interactions. This 

discrepancy highlights the need for alternative techniques in chromatin structural biology.

Recognition of Nucleosomes by Chromatin Factors: Lessons from Data-Driven Docking-Based…
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Figure 2. A detailed depiction of the acidic patch region and the triad of H2A that complexes the canonical arginine 

anchor. (A) LANA was the first peptide model of a binding domain to be crystalized (green, pdb: 1zla). (B) The first 
crystalized protein domain was RCC1 (pink, pdb: 3mvd). (C) They all share the acidic patch as a common binding 
epitope for the arginine anchor residue, as is also the case for the PRC1 complex with its acidic patch binding RING 
domain (cyan, 4r8p). (D) Interestingly, acidic patch binding is not necessarily limited to one single arginine anchor 

residue. As for the nucleosome-bound structure of the deubiquitinase complex SAGA-DUB (yellow, pdb: 4zux), three 
arginine residues are essential part of the acidic patch binding, of which none occupies the position in the center of the 

acidic triad. Combination of nucleosomal DNA and acidic patch binding is shown in the structure of RCC1 and PRC1. 
(E) PRC1 (cyan, pdb: 4r8p) that besides the acidic patch also engages DNA with its UbcH5c subunit. (F) The same holds 
true for RCC1 (pink, pdb: 3mvd) that contacts to DNA with the unstructured tail region.
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4. Data-driven modeling

An attractive alternative to traditional structure determination methods is the modeling of 
structures of complexes based on some sort of experimental information on the interaction 

[79, 80]. In such data-driven modeling of a complex structure, the two interaction partners are 

docked together, guided by the experimental data, and respecting their biophysical proper-

ties. The exact binding interface and relative orientation of the binding partners are typically 

refined over several steps. Prerequisite for this approach is the availability of the 3D structures 
of the interacting partners. Several molecular docking programs allow the incorporation and 

use of experimental data and so increase the accuracy of resulting structures [81]. Hence, data 

from diverse biophysical techniques are translated into restraints guiding the docking pro-

cess [82–84]. The type of information includes interaction interface, distances or shape of the 

complex and its subunits. Techniques that can provide these information are listed in Table 3.

Interestingly, all three classes of information can be provided by NMR spectroscopy. It is 

possible to gather data on intermolecular distances and shape by paramagnetic relaxation 

enhancement (PRE) and the nuclear Overhauser effect (NOE) as well as information on bind-

ing interfaces and binding affinity through chemical shift perturbation (CSP). The use of these 
NMR methods in docking studies is reviewed in detail elsewhere [79]. An overview of publi-

cations that used data-driven docking to investigate nucleosome-protein complexes is listed 

in Table 4.

4.1. Bringing data-driven modeling to nucleosome complexes (LSD1-CoREST)

A pioneer study for data-driven modeling of a nucleosome complex was successfully applied 

for the lysine-specific demethylase 1 and CoREST complex [86]. Both proteins cooperate in the 

demethylation of mono- and dimethylated H3K4. While it was possible to solve the crystal 

structure of LSD1-CoREST, their nucleosome-bound state remains elusive. Yang et al. gained 

insight into the molecular basis of LSD1-CoREST interaction by identifying point mutations 

that interfere with the LSD1-CoREST ability to demethylate a methylated peptide model of 

the histone H3 tail. Since it was previously shown that LSD1 recognizes a specific stretch 
of the H3 tail [94], it was possible to employ modeling to identify intermolecular interac-

tions between the peptide and both the LSD1 active site and the LSD1-CoREST interface 

(Figure 3B). Lastly, NMR titration experiments of the CoREST SANT2 domain with DNA 

revealed a DNA-binding interface on SANT2. These pieces of interaction data were used to 

Interaction interface Distances Shape

Mutagenesis XL-MS Cryo-EM

H/D exchange Forster resonance energy transfer (FRET) Small angle X-ray or neutron scattering (SAXS/
SANS)

Electron paramagnetic resonance (EPR) Ion-mobility mass spectrometry (IM-MS)

Table 3. Biochemical and biophysical techniques for structural analysis of protein complexes.

Recognition of Nucleosomes by Chromatin Factors: Lessons from Data-Driven Docking-Based…
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guide a docking approach resulting in a complete structural model of the LSD1-CoREST-

nucleosome complex (Figure 3A). With the lack of experimental data on the nucleosome 

interaction, this is a prime example of combining crystal structures, mutagenesis and NMR 

data to overcome limitations of the separate techniques.

Protein Role Data source Reference

PSIP1-PWWP Trimethyl lysine reader H3K36 NMR [67, 68, 85]

CoREST/LSD1 Demethylase Crystallography/NMR [86]

Rad6-Bre1 Ubiquitin ligase XL-MS [70]

LANA Viral protein ssNMR [87]

NSD1 Methyltransferase H3K36 Mutagenesis [88]

RNF169 Ubiquitin reader NMR, SAXS [69, 89]

H1 Linker histone NMR [43, 90]

ISW2 Chromatin remodeler XL-MS [91]

Rad18 DNA repair factor NMR [89]

RCC1 Ran-recruitment Crystallography [62]

PHF1 Tudor Trimethyl lysine reader H3K36 Crystallography/NMR [92]

HMGN2 Chromatin decompaction NMR [93]

Table 4. Structural models of nucleosome-protein complexes based on biophysical data.

Figure 3. (A) Structural model of LSD1-CoREST bound to the nucleosome. The DNA binding of the SANT2 domain 

was elucidated by NMR spectroscopy. A previously identified binding motif in the H3 tail sequence was docked onto 
the interface of amine oxidase (AOD) and SWIRM domain revealing a second binding epitope. (B) The resulting model 

of the model peptide binding to AOD-SWIRM is shown as a close-up, highlighting how the tail is positioned on the 

interface of both domains. Figure generated using the author-provided PDB file [86].
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4.2. NMR-based structural biology of nucleosome-protein complexes

Over recent years, several studies have demonstrated that state-of-the-art solution NMR 

can offer high-resolution and site-specific characterization of the structures and dynamics 
of nucleosome-protein complexes. NMR has the particular advantage of its sensitivity to 

dynamics and the ease with which interactions can be studied, allowing detailed insights 

into molecular recognition processes. NMR allows studies when systems are dynamic, or 

(partially) disordered, while this typically hampers high-resolution structure determination 

by crystallography and cryo-EM.

The molecular size of nucleosomes, and even more so of complexes with effector proteins, 
poses a challenge to traditional NMR methods. However, this challenge can be overcome 

through the use of methodologies designed for high-molecular weight systems. This method, 

methyl group-based transverse-relaxation-optimized spectroscopy (methyl-TROSY), relies 

on the highly sensitive observation of NMR signals of protein methyl groups [95]. Here, a 

specific isotope-labeling scheme is used, which typically results in observation of isoleucine, 
leucine, valine (ILV) methyl groups. The methyl-TROSY NMR spectra can subsequently be 

used to delineate binding sites of effector proteins on the nucleosome surface and vice versa 
[68, 69, 93, 96]. Extracting more detailed structural information is possible through the use of 

so-called spin-labels that can generate long-range distance restraints between the interaction 

partners [97, 98]. Whichever way used, NMR-based interaction data are of unique value in the 

modeling of nucleosome-protein complexes.

4.3. Expanding data sources for nucleosome complex models to NMR (HMGN2)

Kato et al. were the first to use the methyl-TROSY approach for the study of nucleosome-
protein interactions [93]. Importantly, they reported the NMR signal assignments of the 

ILV-methyl groups for all histones in the nucleosomes. These assignments are essential in 

determining protein-binding sites on the nucleosome surface. The approach was demon-

strated using high mobility group nucleosomal protein 2 (HMGN2), which regulates a variety 

of chromatin functions. HMGN2 was found to bind both the acidic patch and nucleosomal 

DNA. Based on these NMR data, supported by mutagenesis, it was possible to determine a 

structural model of the complex (Figure 4A). HMGN2 binds to the nucleosome as a staple, 

using two main interaction sites. On one side, HMGN2 is anchored to the acidic patch using 

a canonical arginine anchor in the N-terminal region of the binding domain, while the lysine-

rich motif in its C-terminal region binds to nucleosomal DNA (Figure 4B). This binding mode 

provided a structural basis for the antagonistic function of HMGN2 towards linker histone 

H1 for nucleosome binding.

4.4. Latest applications of NMR to investigate structures of nucleosome 
complexes (RNF169 & Rad18)

Two recent studies relied on methyl-TROSY NMR-derived binding data to elucidate the 

recognition of ubiquitinated nucleosomes. Both focused on the interaction between ubiqui-

tylated H2A K13/15 and the DNA repair factor RNF169. The work of Kitevski-LeBlanc et al. 
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established the molecular basis of this interaction. The α-helical MIU2 (motif interacting with 

ubiquitin) domain binds to a hydrophobic patch on the K13/15-conjugated ubiquitin while a 

disordered region anchors RNF169 on the nucleosome by binding to the acidic patch. They 

subsequently reconstructed a model structure that presents both epitopes in their nucleosome-

bound state (Figure 5A). The work of Hu et al. combined traditional NOESY-based structure 

determination at the level of histone-dimers with interaction studies at the nucleosome level 

and complemented these with SAXS data into a final model [89]. The authors also extended 

their findings to an NMR-based structural model for the complex with DNA repair factor 
Rad18. Both RNF169 and Rad18 are known to interfere with the binding of 53BP1 to nucleo-

somes ubiquitinated at H2A K13/15. These NMR-based structural models have allowed to 

hypothesize on the molecular mechanism for this interference.

4.5. Importance of the nucleosomal context in epigenetic read-out (PSIP1-PWWP & 
PHF1-Tudor)

The complexity of nucleosome recognition by reader proteins is well illustrated by the 

NMR-based studies on the recognition of H3K36me-nucleosomes by the PWWP domain of 
PSIP1(Ledgf). NMR studies of this reader interaction found that the PWWP domain has bind-

ing affinity orders of magnitude lower for a H3K36me peptide compared to H3K36me3 in 
a nucleosomal context. Interestingly, a similar observation was made for the Tudor domain 

of the H3K36me reader PHF1 [85]. Here, an isolated peptide model of the H3 tail showed 

decreased affinity as well. Due to the proximity of H3K36 to nucleosomal DNA, a role of DNA 
binding was hypothesized for both proteins. NMR studies showed for PSIP1 and PHF1 alike 

Figure 4. (A) Structural model of HMGN2 (red) bound to the nucleosome. The binding occurs along the nucleosome 

surface and is driven by interactions with the acidic patch and nucleosomal DNA, resulting in HMGN2 competing 

with H1 for nucleosome binding. (B) Close view on the acidic patch binding N-terminal HMGN2 region depicting the 

canonical arginine anchor R26 surrounded by the Glu 91, Asp 89, Glu 60 acidic triad motif of H2A. Figure generated 

using the author-provided PDB file [93].
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a binding site for nucleosomal DNA, resulting in a simultaneous binding mechanism of both 

trimethyl lysine and nucleosomal DNA.

For PHF1-Tudor, a crystal structure bound to a trimethylated H3 tail peptide was already 
available to use. The additional importance of the nucleosomal context and synergetic bind-

ing mechanism can be understood from the corresponding nucleosome-bound structure 

(Figure 6A). In case of PSIP1-PWWP, the domain structure was solved by NMR and, together 
with NMR titration data, used to determine a structural model of nucleosome-bound pro-

tein (Figure 6B) [67, 68, 85]. The structural models of both highlighted the importance of the 

nucleosomal context in H3K36me3 recognition, emphasizing that complex formation criti-

cally depends on two synergetic binding processes. Firstly, the aromatic residues that form 

the aromatic cage bind to trimethylated lysine H3K36me3. This recognition of the PTM is cru-

cial for the binding, but the readers reach their full binding affinity only when their positive 
surface residues interact with the nucleosomal DNA. This makes both studies outstanding 

examples of synergetic interplay of epitopes in nucleosome-binding proteins (Figure 6C, D).

The insights derived from these structural models were used to design experiments to vali-

date the structural model and may offer possible tools for further research approaches. In case 
of PSIP1-PWWP, the structural model sparked current efforts in the design of nucleosome-
mimicking peptides to modulate the PSIP1-chromatin interaction.

4.6. LANA goes solid state

The studies mentioned above illustrate the potential of data-driven modeling of nucleosome-

protein complexes based on state-of the-art solution NMR. Recent advances in solid-state 

Figure 5. (A) Structural model of nucleosome-bound RNF169 (red) and ubiquitin (green). (B, top) The proposed main 

acidic patch anchoring residue R700 (conserved position throughout the docking solutions) is shown in the conserved 

arginine anchor position between the acidic triads (Glu 60, Asp 89, Glu 91). (B, bottom) Side chain interactions between 
RNF169 MIU2 (red) and ubiquitin (green). Figure generated using the author-provided PDB file [69].
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NMR (ssNMR) have enabled the detailed investigation of large, soluble biomolecular com-

plexes. Very recently, our lab capitalized on these advances and tailored them for application 

to nucleosome-protein complexes [87]. Unlike the methyl-TROSY methods, this approach 

allows observation of all residues, in principle allowing for a more complete mapping of 

binding interfaces. In this approach, NMR spectra are recorded on sediments, generated by 

ultracentrifugation, of nucleosomes or their complexes. After assignments of NMR signals of 

histone H2A in the unbound nucleosome, spectra were recorded on the nucleosome complex 

with the LANA peptide, analogous to the LANA crystal structure (Figure 7A) [61, 87]. Based 

on the chemical shift changes, the binding site of LANA could be mapped to the acidic patch 

Figure 6. Structural model of nucleosome-bound PHF1 (red; A) and PSIP1-PWWP (green; B). The electrostatic potential 
of nucleosomal DNA and the surface of PHF1 (C) and PWWP (D), respectively, act in combination with H3K36me3 
recognition by the aromatic cage motif (trimethyl lysine side chain shown as sticks). Figure generated using the author-

provided PDB file [85].
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and a structural model generated. The large agreement between the crystal structure and 

ssNMR-derived structural model (Figure 7B) illustrates the power of this approach. In our 

view, ssNMR, just as the solution NMR approach, is an attractive alternative for structure 
determination for nucleosome-protein complexes. While its application awaits to be extended 

to larger nucleosome-binding domains, we anticipate that it will be a valuable addition to the 

tool kit in chromatin structural biology.

4.7. Modeling nucleosome-bound Rad6-Bre1 based on cross-linking MS

Next to NMR, cross-linking mass spectrometry has found increasing application as a data 

source on nucleosome-protein interactions. With cross-linking, intermolecular contacts 

between the proteins of interest are captured and converted to covalent connections. These 

connections are introduced by small molecule linkers, specific for the fusion of well-defined 
side chains or less specific as radical-forming photo cross-linkers. Furthermore, cross-linkers 
possess a spacer between their terminal functional groups to define the range of cross-linking 
ability [99, 100]. Both characteristics can be tuned for the study of a specific system, resulting 
in a manifold of reported linker molecules. After cross-linking, the protein complex undergoes 

trypsin digestion resulting in peptide fragments of the complex. Here, covalently cross-linked 

fragments stay connected. An analysis of these fragments by liquid chromatography mass 

spectrometry (LC-MS) enables identification of the sequence positions. The cross-links can 
thus be converted to distance restraints between two residues, with the distance depending 

on the length of the cross-linker. These restraints can be used to guide structural modelling 

of the complex [80]. In one of the earliest examples for nucleosome complexes, XL-MS was 

used to map the binding sites of the various nucleosome-binding domains of the chromatin 

Figure 7. (A) Structural model for nucleosome-bound LANA peptide. ssNMR data derived from NMR titration 

experiments were used to direct the docking simulation. (B) Alignment of the ssNMR-derived model for LANA (red) 

and the crystal structure (green, pdb: 1zla) shows remarkable accuracy of the docking-derived solution. For both, the 
canonical arginine anchor is depicted as sticks in the typical central position between the acidic triad of H2A (yellow).
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remodeling complex ISW2 onto the nucleosome surface [91]. These data were subsequently 

used to build a structural model of the ISW2-nucleosome complex. A recent case of cross-

linking-based modeling in nucleosome research is the E2/E3 ubiquitin ligase complex Rad6-

Bre1 (Figure 8A). Bre1 is known to act as a homodimer in a complex with Rad6 to specifically 
ubiquitinate H2B K123 [101, 102]. However, the molecular mechanism of specific ubiquiti-
nation remained unknown without any nucleosome-bound complex structure available. 

Gallego et al. addressed exactly this problem by using XL-MS data to identify the binding 

interface between the Bre1 RING domain and the nucleosome. Next to nucleosomal DNA 

binding, they observed binding of the homodimer to the acidic patch (Figure 8B), which was 

verified by LANA-induced inhibition of Bre1 RING nucleosome binding. As a first step in the 
modeling, the authors modeled the Rad6-Bre1 complex structures based on homology with 

known E2/E3 RING ligases. Importantly, the resulting model was supported by the observed 

cross-links. The Rad6-Bre1 model could then be docked onto the nucleosome guided by the 

observed cross-links. This provided the structural basis for the specificity of Bre1 towards 
H2B K123 ubiquitination [70].

4.8. Adding new perspective on binding modes

Data-driven structural models complement high-resolution structures in many ways. An 

interesting example is the RCC1-nucleosome interaction, which serves as binding platform 

for subsequent binding of Ran, a protein relevant during mitosis (see Section 3.2). Biochemical 

data have shown that Ran activity is increased in the nucleosome-bound complex. The crys-

tal structure suggests no nucleosome-Ran interactions upon modeling Ran to the RCC1 

Figure 8. (A) Structural model of homodimeric Bre1 (red) bound to the nucleosome together with the E2 ligase Rad6 

(blue) with attached ubiquitin (green). The study was conducted by identifying the interactions between positive Bre1 
RING residues and the acidic patch. The docking was further facilitated due to the known target lysine residue. (B) Close 

view on Bre1 bound to both the acidic patch and nucleosomal DNA. The homodimeric nature allows the engagement of 

both epitopes in simultaneous binding. Figure generated using the author-provided PDB file [70].
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Ran-binding interface. Before the crystal structure of nucleosome-bound RCC1 was solved, 

a data-driven model was reported, which does feature Ran-nucleosome interactions. [62]. 

The authors suggest that, upon Ran binding, the nucleosomal DNA contacts with RCC1 

N-terminal tail observed in the crystal are broken in favor of Ran-nucleosome interactions as 

observed in model. Even though additional studies have to elucidate the exact mechanism of 

RCC1-Ran nucleosome binding, the use of crystal structure and data-driven model in combi-

nation outlines a possible mechanism to further investigate.

4.9. Debating H1

Another cardinal topic is the nucleosome-bound state of linker histone H1. To date, the struc-

ture of the chromatosome, consisting of the four canonical histones and 166bp of DNA in a 

complex with linker histones, is strongly debated. In this case as well, there are contradictions 

between structural models and a nucleosome-bound crystal structure of the chromatosome. 

The crystal structure reported by Zhou et al. displays the globular domain of linker histone 

H5 (chicken H5) with truncated tails in an on-dyad binding mode encountering both entering 

and leaving ends of linker DNA [75]. As for linker histone H1 (X. laevis H1.0b, human H1.5), a 

similar on-dyad binding mode was reported by cryo-EM and crystallography independently 

from absence or presence of H1 tails [45]. In fact, while not vital for linker histone position-

ing, the H1 C-terminal domain engages in binding of one of both linker DNAs preferably, 

introducing asymmetry into the nucleosome-bound complex.

In contrast to the proposed on-dyad complex, computational studies on linker histone bind-

ing suggest an alternative, off-dyad binding geometry of the complex in which the linker 
histone shows interactions with but one strand of linker DNA [103]. This binding mode was 

shown experimentally in the case of the globular domain of linker histone H1 (D. melano-

gaster). Here, NMR-based distance information, obtained through paramagnetic relaxation 

enhancement (PRE), was used to derive the nucleosome-binding mode of H1, showing an 
asymmetric, off-dyad binding [43]. Interestingly, it was shown by PRE as well that the muta-

tion of a set of five crucial amino acids in H5 to its equivalents in H1 is sufficient to change the 
binding mode of H5 from on-dyad (crystal) to off-dyad [90]. This points out the importance 

of linker histone subtype sequence and the interacting residues in determining the binding 

mode towards the nucleosome [44].

5. Conclusions

Chromatin structural biology is an equally important as demanding field. This is not only 
clear from the tremendous efforts necessary for the first nucleosome structure but also from 
the limited number of structures for nucleosome-protein complexes. While crystallography 

and cryo-EM resulted in various high-resolution structures, not every interaction is acces-

sible this way due to either of many experimental limitations, such as the need for crystalliza-

tion, the fleeting nature of some complexes or the pervasive role of highly dynamic protein 
regions. Here, an increasing number of studies shift towards a combined approach utilizing 
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various sources of interaction data to direct sophisticated data-driven docking. This way all 

knowledge on a nucleosome-interacting system can be integrated into a structural model 

that is otherwise inaccessible. These models strongly depend on the quality and quantity 

of data and contain an inherent ambiguity. However, as in the case of linker histone H1, 

structural models can point to alternative binding modes and thus result in new, testable 

hypotheses. Additionally, crucial residues for nucleosome binding can be identified, allow-

ing design of, for example, loss of function or loss of binding mutants to silence specific 
pathways. It also offers the possibility to drive the design of competing small molecule or 
peptide structures as potential candidates for epigenetic drugs interfering with specific effec-

tor binding. Remarkably, these developments might be otherwise lost due to the lack of a 

structure. However, as for now, a database for such structural models, akin to the RCSB 

protein databank, remains to be established. This might however be essential to advance the 

study of chromatin effector proteins. Publicly available structures including their data-based 
restraints could be used for further refinements upon availability of new, additional datasets 
from an array of techniques. It also would offer the possibility of negative results, otherwise 
rarely reported, to contribute to drive or score the quality of already reported models. Data-

driven modeling of nucleosome-protein complexes has the potential to yield unique funda-

mental insights into nucleosome-binding dynamics and enable advances in modulation of 

chromatin effector proteins, which would be otherwise inaccessible.
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