
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Chapter 2

Evolution and Paradigm Shift in Distributed System
Architecture

Rahul Singh Chowhan

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.80644

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Rahul Singh Chowhan

Additional information is available at the end of the chapter

Abstract

New age programming languages highlight the mobility of objects and on-the-fly com-
munication mechanism even being available on nodes with intermittent connections. We
are breathing in the era where the working framework enables the procedures to oversee
imparted information and arrangement to a domain where distinctive procedures are
executing on discrete frameworks that essentially makes use of message-based correspon-
dence or mobile communication architecture. The highlight that has been conceived for
the years has spawned the remote administration and remote access in distributed com-
puting framework and was outlined as an approach to digest the strategy call component
to use between frameworks associated through a system. These frameworks contains the
stub and skeleton on client and server side respectively which behaves as remote proxies
and deals with marshaling and unmarshalling of the incoming and outgoing data. This
has incurred the need of more distributed and platform independent communication
mechanisms, that can not only make intercalling of functions but also support features
like platform independency from various object oriented based programming languages.
The distinctions in the programming model prompt higher state of abilities and more
implicit customer side mechanisms for simple and hands-on interaction with the code
that actualizes and implements the distributed frameworks.

Keywords: distributed computing, active objects, remote calling, synchronous message
passing, network persistent storage

1. Introduction

The distributed system architecture field is more abstract, being at the level above the
algorithms and data structures fields [1]. These architectures include the global control

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

structures, protocols for communication, synchronization, physical distribution, scaling

and performance, remote access and selection among design alternatives. At this level the
common architectural styles like pipes and filters, object orientation, event-based models,
and table-driven interpreter etc., and their computing techniques and distributed network
architectures are seen. The level of performance within the distributed computing is directly
proportional degree of multiplicity of resources involved and participating in it. This is one of
the important factors that affects and regulates the usefulness within the distributed comput-
ing defining the capability of computing system to support multiplicity and migration. Most
of distributed approaches involve dispersion of data over various network machines for reli-

ability and availability of data which requires deployment of communication protocols that
can server inter-platform connectivity. The interconnections in a disseminated framework
allows machine to interact autonomously allowing them to share memory or processors. They
can communicate with each other utilizing messages, snippets of data exchanged, intimat-

ing a function on one machine and finishing on other and so on. Simply by messages many
information can be conveyed to execute with specific contentions, also they can send and get
bundles of information and can do many more such things [2].

Dispersed frameworks over the network has always been communicating and imparting the

information by means of message passing. This type of correspondence was exceptionally
straightforward where one side (client) bundles a few information, known as a message and

sends it to the opposite side where it is decoded or stored additionally. The configuration of
the message and the manner by which it will be prepared by the recipient is carried out by

application subordinate. In a few applications the recipient may react by sending an answer
message often called as acknowledgement or response while in other cases, this won’t not

occur. This approach likewise makes it difficult to reuse segments of one circulated framework
in other conveyed frameworks as the message is encoded in language could not be decodable

or readable by other language framework with different sets of library and calling mechanisms
[3]. Despite the fact that message passing can be powerful, it would be decent if there were
more uniform, reusable, and easy to understand methods for getting things done remotely by
calling remote function on local machine or by sending function for execution on server. Such
unusualness requires an extensive variety of new procedures past those utilized as a part of
conventional computing. This also involves participation of an appropriated framework by
letting the compiler or run-time libraries handle various issues of scheduling and allocation.

One of the alternatives in the design of the distributed system architecture is how to access

remote resources or make calls to remote objects and also how to send the program over net-

work. Currently, the client–server paradigm is the most common style, where the code does
not move at all. Under the code-mobility and remote programming domain there are certain
paradigm that helps in understanding the shift happened in distributed system architecture.
Like, remote method invocation allows invocation of remote objects to java enabled platforms.
Code-on-demand paradigm calls upon the code from a distant site which is then downloaded
and executed on the local machine. And, remote evaluation paradigm which sends the code to
another site where it is executed from which result is returned back to caller [4]. These distributed
mechanism helps in building up of mobile and portable code design to help effective information
and program relocation in various processing states on heterogeneous execution platforms.

New Trends in Industrial Automation6

2. Architectural taxonomies

2.1. Centralized paradigm

Allocation of numerous resources to a small number of computers called Server-hosts, yet keep-

ing client-hosts simpler by offloading the computation to central terminal is termed as central-
ized Paradigm. This type of architectural taxonomy relies heavily on network resources like
servers and infrastructure for computation and storage. In this typography, client-hosts are disk-

less nodes that are dependent on central network terminal to load its operating system. Simply,
it acts as an input/output interface to the server because they neither have their own operating

system nor personalized resources. The much broader infrastructure used for such paradigm
is Thin Client, which is a lightweight computer that is purposely built for remote into a server,
where many client-hosts share their computations with a server or server farm. It depends heav-

ily on another computer (server) to fulfill its computational roles. The specific roles assumed by
the server-host may vary, from hosting a shared set of virtualized applications, a shared desktop

stack or virtual desktop, to data processing and file storage on the behalf of client-hosts [5].

The server-side infrastructure makes use of cloud computing software such as application
virtualization, hosted shared desktop (HSD) or desktop virtualization (VDI). This combina-

tion forms what is known today as a cloud based system where desktop resources are central-

ized into one or more data centers. Basically, this type of architecture is described by lack of
delegation as they have single management station to initiate requests for low-level data.

2.2. Hierarchical paradigm

Distributed processing encompasses a wide range of task autonomy and semantic richness

in hierarchical architectures. This paradigm describes implementation labels that employ
vertical delegation for management functionality. Hierarchical approach includes distributed
objects and limited forms of Management-by-Delegation (MbD) with code mobility tech-

nologies such as Remote EValuation (REV) and Code-on-Demand (CoD). Distributed objects
describe a form of gateway operation allowing the communication with encapsulated data

and actions remotely. Likewise, REV provides code for execution of intended management
function while CoD retrieves and caches code to execute the intended management function
[6]. The hierarchical paradigm supports the delegation as following:

a. Delegation-by-domain: Domain delegation is referred as a simplified distributed para-

digm. In this, a central authority assigns complete management control of a specified
domain to the domain itself. The distributed domain functions independently of the cen-

tral authority. Management information is not shared, and resources and administrative
control resides with the specified domain. Central authority behaves as task coordinator
to delegate task to different domains.

b. Delegation by micro-task with low-level semantics: Delegation by micro task in distrib-

uted hierarchical paradigm allows the central authority to employ one or more manage-

ment stations to perform specified tasks. Low-level semantics signifies the little abstraction

Evolution and Paradigm Shift in Distributed System Architecture
http://dx.doi.org/10.5772/intechopen.80644

7

from the details of the management task. Likewise, this method of delegation statically
retrieved low-level data from simple agents before handing the response data to the cen-

tral authority for processing into information.

c. Delegation by micro-task with high-level semantics: High-level semantics refers to mean-

ingful abstractions from low-level data. For example, this method of delegation statically
retrieves object data from a distributed environment before handling the response object

to the central authority for processing. This framework encapsulated the protocol that
supports communication between objects. Example of this distributed object paradigm
includes common object request broker architecture (CORBA) and web based enterprise
management (WBEM).

d. Delegation by macro-task with low-level semantics: Delegation by macro task allowed
a central authority to empower one or more management stations to control specified
managed elements rather than specified element properties. The management station per-

forms necessary functions such as statically retrieving low-level data from simple agents

to be processed into information by managing application. It is also responsible for taking
corrective action if central authority is lost while communications.

e. Delegation by macro-task with high-level semantics: This form of delegation involves
one or more authorized management stations controlling specified managed elements.
Management functions include statically retrieving object data from a distributed envi-
ronment which is subsequently processed by the managing application. It allows effective
control decomposition and functional approximation to promote framework scalability,

run time overhead reductions and workload dynamics. Example of this approach is a Goal
Driven Network Management System [7].

2.3. Cooperative paradigm

Semantically rich delegation referred to a cooperative paradigm in distributed systems that
empower the remote agent to control specified elements with limited instructions for preset
operations. The intelligent agent relies on high-level goals and changing contextual data to
make appropriate independent determination for successful management in a complex envi-

ronment. Along with high autonomy and low task specification, cooperative paradigm uses
horizontal delegation to cooperate with other agents unlike vertical delegation in hierarchi-

cal approaches. This is also more effective for real-time data collection within large complex
and evolving networks. However, these approaches require some sort of system fidelity and
measures of consistency across all nodes ensuring cooperation towards a common goal [8].

3. Client-server architecture

Distributed application structure defines client–server model that does segregation of work-

loads between service or resource provider, called servers and service or resource requester,
called clients. These two separate components, a client and a server, which communicate over

New Trends in Industrial Automation8

a network through a TCP/IP handshake paradigm. The client requests information, while
the server responds when its advertised services are accessed. This each request/response, as
depicted in Figure 1, is a complete round trip on the network. The code that implements these
services i.e. the know-how is hosted locally by the server, also server has processing capabili-
ties. Client decides with some intelligence which of services offered by server it should use.

3.1. One-tier architecture

Single-tier architecture is the simplest, single tier on single user, and is the equivalent of run-

ning an application on a personal computer as shown in Figure 2. All the components like
user interface, business logic, and data storage, which are necessary to run an application, are

located within the system. They are the easiest to design, but the least scalable as they are not
part of a network also they cannot be used for designing web applications [9].

3.2. Two-tier architecture

Two-tier architectures supply a basic network between a client and a server. For example, the
basic web model is a two-tier architecture as illustrated in Figure 3. A web browser makes a
request from a web server, which then processes the request and returns the desired response,
in this case, web pages. This approach improves scalability and divides the user interface

Figure 1. Client server paradigm.

Figure 2. Single-tier architecture.

Evolution and Paradigm Shift in Distributed System Architecture
http://dx.doi.org/10.5772/intechopen.80644

9

from the data layers. However, it does not divide application layers so they can be utilized
separately. This makes them difficult to update and not specialized. The entire application
must be updated because layers are not separated.

3.3. Three-tier architecture

Three-tier architecture is most commonly used to build web applications. In this model, the
browser acts like a client, middleware or an application server contains the business logic, and

database servers handle data functions. This approach separates business logic from display
and data [10]. So the three layers commonly known as: presentation layer (PL/UI), business
logic layer (BLL) and data access layer (DAL) as shown in Figure 4.

a. Presentation tier (Level 1): This provides the application’s user interface (UI). Being the
topmost level it displays information related to user oriented functionality responsible for

managing user interaction with the system. This acts as common bridge into core business
logic encapsulated in business layer.

b. Business logic tier (Level 2): This is also called application layer as it controls an applica-

tion’s functionality by performing detailed processing. This layer implements the core
functionality of the system encapsulating the relevant business logic. It has components
exposing service interfaces for callers to use.

c. Data access tier (Level 3): This includes data persistence mechanisms like database serv-

ers, file shares, etc. providing access to data hosted within system and data exposed by
other networked systems. The data layer exposes generic interfaces that can be consumed
by components in the business layer. It also provides an API to application layer that
exposes methods of managing the stored data without out casting dependencies on the

data storage mechanisms.

3.4. N-tier architecture

Terms layer and tier are often used interchangeably but one point of difference is that a layer is a
logical structuring mechanism for the elements that make up the software solution. That means
logical software component groups, mainly by functionality, are used for software development

purpose. By contrast, a tier is a physical structuring mechanism for the system infrastructure [11].

Figure 3. Two-tier architecture.

New Trends in Industrial Automation10

Like an individual running server is one tier and several running servers may also be counted

as one tier. Layer software implementation has many advantages and is a good way to achieve
N-tier architecture. Layer and tier may or may not exactly match each other. Each layer may run
in an individual tier. However, multiple layers may also be able to run in one tier.

N-tier implies more than three levels or tiers involved as depicted in Figure 5; mostly addi-

tional tiers are associated with business logic tier. Some layers in 3-tier can be broken further
into more layers. These broken layers may be able to run in more tiers. For example, applica-

tion layer can be broken into business layer, persistence layer or more. Presentation layer can
be broken into client layer and client presenter layer [12]. So, in order to claim a complete
N-tier architecture, client presenter layer, business layer and data layer should be able to run

in three separate computers (tiers).

a. Client tier: This tier is involved with users directly. There may be several different types of
clients coexisting, such as WPF, Window form, HTML web page and etc.

b. Client presenter tier: This contains the presentation logic needed by clients, such as
ASP. NET MVC in IIS web server.

c. Business tier: It handles and encapsulates all of business domains and logics; also called
as domain layer.

d. Persistence tier: This tier handles the read/write of the business data to the data layer, also
called data access layer (DAL).

e. Data tier: It is the external data source, such as a database.

Figure 4. Three-tier architecture.

Figure 5. N-tier architecture.

Evolution and Paradigm Shift in Distributed System Architecture
http://dx.doi.org/10.5772/intechopen.80644

11

4. Remote procedure mechanism

Remote procedure call works on client–server communication protocol that is used by one
program to request a service from a program located in another computer in a network with-

out understanding network details. It is based on RPC is a synchronous operation requiring
the requesting program to be suspended till the results of remote procedure are returned [13].

4.1. Working and architecture of RPC

RPC is analogous to a function call extending the notion of conventional local procedure call-
ing so that procedure need not exists in the same address space as the calling procedure. Like
a function call, the calling arguments are passed to the remote procedure and the caller waits

for a response to be returned from the remote procedure.

The client makes a procedure call that sends a request to the server and waits for response,
as shown in Figure 6. The thread is blocked from processing until either a reply is received,
or it times out. When the request arrives, the server calls a dispatch routine that performs the
requested service, and sends the reply back to the client. After the RPC call is completed, the
client program continues its normal execution [4].

Stub: Stubs are generated at the static compilation time and then deployed to the client side which
is used as a proxy for the client. Client-side proxy acts as a mediator between the client and the
broker and provides additional transparency between them and the client so that a remote object

appears like a local one. The proxy hides the inter-process communication (IPC) at protocol level
and performs marshaling of parameter values and un-marshaling of results from the server.

Skeleton: Skeleton is generated by the service interface compilation and then deployed to the
server side, which is used as a proxy for the server. Server-side proxy encapsulates low-level

Figure 6. Remote procedure call.

New Trends in Industrial Automation12

system-specific networking functions and provides high-level APIs to mediate between the
server and the broker. It also receives the requests, unpacks the requests, un-marshals the
method arguments, calls the suitable service, and also marshals the result before sending it

back to the client [2].

Sequence of events during an RPC:

• The client calls the client stub. The call is a local procedure call, with parameters pushed on
to the stack in the normal way.

• The client stub packs the parameters into a message and makes a system call to send the
message. Packing the parameters is called marshaling.

• The client’s local operating system sends the message from the client machine to the server
machine.

• The local operating system on the server machine passes the incoming packets to the server stub.

• The server stub unpacks the parameters from the message. Unpacking the parameters is
called un-marshaling.

Finally, the server stub calls the server procedure. The reply traces the same steps in the
reverse direction. Figure 7 shows the event flow of RPC.

Figure 7. Event flow in RPC.

Evolution and Paradigm Shift in Distributed System Architecture
http://dx.doi.org/10.5772/intechopen.80644

13

5. Remote method invocation

Remote method invocation is a technology introduced by java that allows invocation of meth-

ods that are remotely located by simply calling them using desired interfaces. RMI technology
allows us to distribute over business logic i.e. making the business logic available on a remote
server letting it accessible to clients [14].

RMI is often called as “RPC with object orientation”, i.e. the RPC but with ability to pass
one or more objects along with the request. The objects can include the information that will
change the service that is performed in the remote computer as delineated in Figure 8.

For example, when a user at a remote computer fills out an expense account, the Java program
interacting with the user could communicate, using RMI, with a Java program in another
computer that always had the latest policy about expense reporting. In reply, that program
would send back an object and associated method information that would enable the remote

computer program to screen the user’s expense account data in a way that was consistent with

the latest policy [15]. The user and the company both would save time by catching mistakes

RMI RPC

Location neutral, language dependent Language neutral mechanism

Supports object oriented design It is procedural like C

It allows objects passing as arguments and return values It supports only primitive data types

This allows usage of design patterns No such capability

Table 1. RMI v/s RPC difference table.

Figure 8. Remote method invocation.

New Trends in Industrial Automation14

early. Whenever the company policy changed, it would require a change to a program in only
one computer (Table 1).

RMI is implemented as three layers (as illustrated in Figure 9):

a. Stub/Skeleton layer: A stub program represents the remote object and also acts as gateway
to a corresponding skeleton at the server end. The stub appears to the calling program to
be the program being called for a service.

b. Remote reference layer: This can behave differently depending on the parameters passed
by the calling program. For example, this layer can determine whether the request is to call
a single remote service or multiple remote programs as in a multicast.

c. Transport connection layer: This sets up and manages the request. A single request travels
down through the layers on one computer and up through the layers at the other end.

RMI Registry is a central repository keeping a track of all services being exposed from the cur-

rent network. Since all the clients’ requests for services through the RMI Registry the location
of the application or service is unknown to the clients hence making the application location

neutral [16].

6. Code-on-demand paradigm

Typically, code on demand is used for any technology that sends executable code from a
server host to a client host on the request of the client’s application. Code on demand is a

Figure 9. Event flow in RMI.

Evolution and Paradigm Shift in Distributed System Architecture
http://dx.doi.org/10.5772/intechopen.80644

15

specific use of mobile code under the field of code mobility. In the code-on-demand style,
as delineated in Figure 10, a client component has an access to a set of resources, but not

the know-how on how to process them. It sends a request to a remote server for the code
representing that know-how, receives that code, and executes it locally. So as per the code-on-
demand paradigm, knowing the know-how is necessary when in need [17].

Say for example, one host (A) initially is unable to execute its task due to a lack of code
(know-how). And another host (B) in the network provides the needed code. Once the code
is received by A, the computation is carried out on A’s machine. Host A holds the processor
capability as well as the local resources. Unlike in the client–server paradigm, A does not need
knowledge about the remote host, since all the necessary code will be downloaded.

Java applets are excellent practical examples of this paradigm. Applets get downloaded in
Web browsers and execute locally.

Figure 11. Architecture of applet.

Figure 10. Code-on-demand.

New Trends in Industrial Automation16

6.1. Working and architecture of applets

The internet is a combination of various kinds of systems or platforms that are often required
to communicate with each other. The client that makes a request may be from a completely
different platform for instance the application may be hosted on the windows based server
and client may be requesting from a Linux-based system.

Java introduced a new technology that would allow any client from any network platform to
host and execute applications over the internet. This new technology was called as applets
[18]. The word applet stands for an “application scriplets”. This can be defined as a piece
of java code residing on a server machine requested via a browser downloaded over the
internet and executed on the client machine via the browser. In order to execute the applet
on a client machine, the browser must be java enabled i.e. JRE must be enabled. An applet is
typically embedded inside a web page and runs in the context of a browser. The browser’s
Java Plug-in software manages the lifecycle of an applet. The architecture of applet is shown
in above Figure 11.

6.2. Life cycle of an applet

Atop these five methods, depicted in Figure 12, an applet is been created:

a. Init(): This method is intended for whatever initialization is needed for your applet. It is
called after the param tags inside the applet tag have been processed.

b. Start(): This method is automatically called after the browser calls the init method. It is
also called whenever the user returns to the page containing the applet after having gone

off to other pages.

c. Stop(): This method is automatically called when the user moves off the page on which the
applet sits. It can, therefore, be called repeatedly in the same applet.

d. Destroy(): This method is only called when the browser shuts down normally. Because
applets are meant to live on an HTML page, you should not normally leave resources
behind after a user leaves the page that contains the applet.

e. Paint(): Invoked immediately after the start() method, and also any time the applet needs
to repaint itself in the browser. The paint() method is actually inherited from the java.awt.

Figure 12. Life cycle of applet.

Evolution and Paradigm Shift in Distributed System Architecture
http://dx.doi.org/10.5772/intechopen.80644

17

7. Remote evaluation

In computer science, remote evaluation is a term that belongs to the family of mobile code,

within the field of code mobility. It is for any technology that involves the transmission of
executable software code from a client hosts to a server hosts for execution to be happen at the

server and the result is sent back to the client after execution for this resources of server sside

are used [19]. A simple model of remote evaluation is illustrated in Figure 13.

An example for remote evaluation is grid computing: An executable task may be sent to a
specific computer in the grid. After the execution has terminated, the result is sent back to the
client. The client in turn may have to reassemble the different results of multiple concurrently
calculated subtasks into one single result.

7.1. Working and architecture of servlets

7.1.1. Basic idea and architecture

Web based technologies are of two different types: Client Side Technologies and Server Side
Technologies. The Client Side Technology has the code completely downloaded on the cli-
ent machine and executed on the client itself, any changes that need to be incorporated or

updated in the application will be on client system after re-downloading by the client. The
processing of this application will take place on the client, completely.

In a Server Side Technology the complete business logic is maintained on the server and on
the request of the client it will be executed on the server, delivering the response to the clients.
The Java Servlets technology provides on such simple, vendor-independent mechanism to
extend the functionality of a web server [20]. Servlets technology is similar to common gate-

way interface (CGI) scripts, Javascripts (on client side) and hypertext preprocessor (PHP).
Additionally, scripting languages can be used in servlets to dynamically modify or generate
hypertext markup language (HTML) pages. It also supports various HTTP methods, such as
GET and POST, which is used to redirect requests and responses as shown in Figure 14.

7.1.2. Working and life cycle

Whenever a client sends a request to the J2EE application server for a particular servlet, the
J2EE Application server passes the request to the Web container. The Web container checks

Figure 13. Remote evaluation.

New Trends in Industrial Automation18

whether an instance of the requested servlet exists. If the servlet instance exists then the Web
container delegates the request to the servlet, which process the client request and sends back
the response (Shown in Figure 15).

It is the job of Web container to get the request and response to the servlet. The container
creates multiple threads to process multiple requests to a single servlet. So in case the serv-

let instance does not exist, the Web container locates and loads the servlet class. The Web
container then creates an instance of the servlet and initializes it. The servlet instance starts
processing the request after initialization. The Web container passes the response generated
by the servlet to the client.

Servlets don’t have a main() method that’s why Web container manages the life cycle of
a Servlet instance. The life cycle of the servlet includes three states: new, ready and end.
The servlet is in new state if servlet instance is created. After invoking the init() method,
Servlet comes in the ready state [21]. In the ready state, servlet performs all the tasks.
When the web container invokes the destroy() method, it shifts to the end state. It is shown
in Figure 16.

7.1.3. Life cycle of servlet

a. Servlet class is loaded: The class loader is responsible to load the servlet class. The servlet
class is loaded when the first request for the servlet is received by the web container.

b. Servlet instance is created: The web container creates the instance of a servlet after loading
the servlet class. The servlet instance is created only once in the servlet life cycle.

c. Init method is invoke: The web container calls the init method only once after creating the
servlet instance. The init method is used to initialize the servlet.

Method Signature: public void init(ServletConfig config) throws ServletException

d. Service method is invoked: The web container calls the service method each time when
request for the servlet is received [22]. If servlet is not initialized, it follows the above
three steps then calls the service method. The servlet is initialized only once so if servlet is
already initialized, it directly calls the service method.

Method Signature: public void service(ServletRequest request, ServletResponse response)
throws ServletException, IOException.

Figure 14. Architecture of servlets.

Evolution and Paradigm Shift in Distributed System Architecture
http://dx.doi.org/10.5772/intechopen.80644

19

e. Destroy method is invoked: The web container calls the destroy method before removing
the servlet instance from the service. It gives the servlet an opportunity to clean up any
resources like memory, thread etc. Figure 16 shows life cycle methods of servlets.

Figure 15. Various stages in request and response mechanism of servlets. (a) Clients request handling carried out by
web container. (b) Object formation. (c) Calling servlet thread. (d) Thread execution. (e) Submission of response. (f) Final
response toclient.

New Trends in Industrial Automation20

8. Conclusion

In the past couple of years there has been a development of enthusiasm for versatile platform
innovation and a few stages have been developed and innovated to allow more independen-

cies in programming platform. In this chapter we have surveyed and researched the various
computing environment provided for remote execution that has incurred the need of mobile

codes, intelligent agents, autonomous objects, etc. raising issues with flexibility, efficiency and
security in present system that can promises to resolve existing problems and add on more

facilities like remote execution, auto-scheduling and many more. Some of them have just been
utilized for look into purposes while others have been conveyed as business items. A few
technologies that incorporated in evolution of mobile agents have been discussed on the basis

of the usefulness of have been displayed in this exploration.

Acknowledgements

I would like to impart my sincere thanks to my guide Late. Dr. Rajesh Purohit, who has inspir-

ited and fostered my interest in multifarious streams and disciplines of remoting and mobile-

objects. Further I would like to extend my regards to all academic friends and lecturers who

Figure 16. Life cycle of servlets.

Evolution and Paradigm Shift in Distributed System Architecture
http://dx.doi.org/10.5772/intechopen.80644

21

supported and motivated to move on with my work. They are (alphabetical order) Ashish
Sharma, Poonam Purohit, Purva Dayya and Shivam Lohiya.

The following presents the acronyms used throughout this chapter.

Abbreviations

HSD hosted shared desktop

VDI desktop virtualization

CORBA common object request broker architecture

WBEM web based enterprise management

MbD management-by-delegation

REV remote revaluation

CoD code on demand

TCP/IP transfer control protocol/internet protocol

PL/UI presentation layer

BLL business logic layer

DAL data access layer

API application programmable interface

UI user interface

WPF windows presentation foundation

HTML hyper text markup language

RPC remote procedure call

RMI remote method invocation

Applets application scriplets

Servlets server scriplets

CGI common gateway interface

HTTP hyper text transfer protocol

PHP hypertext pre processor

New Trends in Industrial Automation22

Author details

Rahul Singh Chowhan

Address all correspondence to: word2rahul@gmail.com

Agriculture University, Jodhpur, India

References

[1] Aridor Y, Lange DB. Agent design patterns: Elements of agent application design. In:
Proceedings of the Second International Conference on Autonomous Agents; 1 May
1998. ACM. pp. 108-115

[2] Juziuk J. Design patterns for multi-agent systems. Linnaeus University, Faculty of
Science and Engineering, School of Computer Science, Physics and Mathematics; 2012

[3] Pandey R, Sharma N, Rathore R. Aglets (A java based Mobile agent) and its secu-

rity issue. International journal of emerging trends & technology in computer science
(IJETTCS). 2013;2(4):107-114

[4] Ahila SS, Shunmuganathan KL. Overview of mobile agent security issues—Solutions. In:
2014 International Conference on Information Communication and Embedded Systems
(ICICES); 27 Feb 2014. IEEE. pp. 1-6

[5] Bertsekas, Dimitri P. Dynamic programming and optimal control. Vol. 1. Belmont,
Massachusetts: Athena Scientific; 1996

[6] Puterman ML. Markov decision processes: Discrete stochastic dynamic programming.
Wiley Series in Probabilty and Statistics. Hoboken, New Jersey: John Wiley & Sons, Inc.;
2014

[7] Bellman RE, Dreyfus SE. Applied dynamic programming. Princeton Legacy Library.
London: Oxford University Press, Princeton University Press; 2015 Dec 8:2050

[8] Wang D, Mu CX, Liu DR. Data-driven nonlinear near-optimal regulation based on itera-

tive neural dynamic programming. Zidonghua Xuebao/Acta Automatica Sinica. 2017
Mar;43(3):366-375

[9] Ahmed K, Bigagli D, Hu Z, Wang J. Inventors; International Business Machines Corp,
assignee. Resource Manager for Managing the Sharing of Resources Among Multiple
Workloads in a Distributed Computing Environment. United States Patent US 9,632,827;
2017 Apr 25

[10] Kurniawan B. Java for the Web with Servlets, JSP, and EJB. New Riders Publishing; 2002

[11] Siek K, Wojciechowski PT. Atomic RMI: A distributed transactional memory framework.
International Journal of Parallel Programming. 2016 Jun;44(3):598-619

Evolution and Paradigm Shift in Distributed System Architecture
http://dx.doi.org/10.5772/intechopen.80644

23

[12] Czaja L. Remote procedure call. In: Introduction to Distributed Computer Systems.
Cham: Springer; 2018. pp. 141-155

[13] Kaur M, Sharma S. A dynamic clone approach for mobile agent to survive server fail-
ure. In: 2015 4th International Conference on Reliability, Infocom Technologies and
Optimization (ICRITO) (Trends and Future Directions); 2 Sep 2015. IEEE. pp. 1-5

[14] Diaz J, Munoz-Caro C, Nino A. A survey of parallel programming models and tools in
the multi and many-core era. IEEE Transactions on Parallel and Distributed Systems.
2012 Aug;23(8):1369-1386

[15] Hwu WM, Ryoo S, Ueng SZ, Kelm JH, Gelado I, Stone SS, Kidd RE, Baghsorkhi SS,
Mahesri AA, Tsao SC, Navarro N. Implicitly parallel programming models for thou-

sand-core microprocessors. In: Proceedings of the 44th annual Design Automation Con-
ference; 4 Jun 2007. ACM. pp. 754-759

[16] González-Vélez H, Leyton M. A survey of algorithmic skeleton frameworks: High-level
structured parallel programming enablers. Software: Practice and Experience. 2010
Nov;40(12):1135-1160

[17] Manogaran G, Lopez D. Health data analytics using scalable logistic regression with
stochastic gradient descent. International Journal of Advanced Intelligence Paradigms.
2018;10(1-2):118-132

[18] Haefner JW. Parallel computers and individual-based models: An overview. In: Individual-
based models and approaches in ecology. Chapman and Hall/CRC; 2018. pp. 126-164

[19] Murphy R, Sterling T, Dekate C. Advanced architectures and execution models to sup-

port green computing. Computing in Science & Engineering. 2010 Nov;12(6):38-47

[20] Marowka A. On parallel software engineering education using python. Education and
Information Technologies. 2018 Jan;23(1):357-372

[21] Kemp R. Current developments in open source software. Computer Law and Security
Review. 2009 Nov 1;25(6):569-582

[22] Coulthard P, Yantzi DJ, Simpson EV. Inventors; International Business Machines Corp,
assignee. Framework to Access a Remote System from an Integrated Development
Environment. United States patent US 8,296,720; 2012 Oct 23

New Trends in Industrial Automation24

