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Chapter

Characterizing Power and Energy 
Efficiency of Legion Data-Centric 
Runtime and Applications on 
Heterogeneous High-Performance 
Computing Systems
Song Huang, Song Fu, Scott Pakin and Michael Lang

Abstract

The traditional parallel programming models require programmers to 
explicitly specify parallelism and data movement of the underlying parallel 
mechanisms. Different from the traditional computation-centric programming, 
Legion provides a data-centric programming model for extracting parallelism 
and data movement. In this chapter, we aim to characterize the power and energy 
consumption of running HPC applications on Legion. We run benchmark appli-
cations on compute nodes equipped with both CPU and GPU, and measure the 
execution time, power consumption and CPU/GPU utilization. Additionally, we 
test the message passing interface (MPI) version of these applications and com-
pare the performance and power consumption of high-performance computing 
(HPC) applications using the computation-centric and data-centric program-
ming models. Experimental results indicate Legion applications outperforms 
MPI applications on both performance and energy efficiency, i.e., Legion appli-
cations can be 9.17 times as fast as MPI applications and use only 9.2% energy. 
Legion effectively explores the heterogeneous architecture and runs applications 
tasks on GPU. As far as we know, this is the first study to understand the power 
and energy consumption of Legion programming and runtime infrastructure. 
Our findings will enable HPC system designers and operators to develop and 
tune the performance of data-centric HPC applications with constraints on 
power and energy consumption.

Keywords: power consumption, Legion programming model, legion runtime,  
high performance computing, energy efficiency

1. Introduction

The U.S. Department of Energy (DOE) announced to invest $258 million 
to the exascale computing project in 2017. With funding from the six selected 
companies, the total investment reaches over $430 million to achieve the goal of 
delivering at least one exascale-capable supercomputer by 2021 [1]. Building an 
exascale high performance computing (HPC) system has to overcome four major 
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challenges: parallelism, memory and storage, reliability, and energy consumption. 
An exascale system, if built using the existing technologies, will consume half 
of a gigawatt of power, which highly exceeds the expected power limit specified 
by DOE. Therefore, innovative technologies are needed to enhance the power 
and energy efficiency and improve the system performance with a low power 
consumption.

Compute nodes are a major power and energy consumer inside an HPC system. 
Deng et al. [2] found that about 60% of system power is consumed by CPU, around 
30% of power is allocated to memory, and other components account for 10%. This 
situation becomes more obvious in HPC environments where compute intensive 
and data intensive computation keeps a system always busy. Hence, reducing power 
and energy consumption of computing units and memory is the major challenge for 
efficiency of the whole system.

The message passing interface (MPI) is the de facto standard for writing 
HPC applications. It is a computation-centric programming model, where MPI 
processes are independent execution units that contain instructions and state 
information, use their address spaces, and interact with each other via inter-
process communication mechanisms defined by MPI. Application programmers 
focus on writing computation processes and dealing with their communication, 
while data-related components, including data layout, data placement, and data 
movement, are implicitly determined by computation. As the volume, variety, 
and velocity of data dramatically increase, computation-centric programming 
becomes inefficient. Data-centric programming is increasingly addressing these 
problems, because focusing on the data makes the big-data problems much 
simpler to express. It enables programmers to define data properties includ-
ing organization, partitioning, privileges, and coherence, also allows runtime 
systems to control data movement, communication, task scheduling, and 
execution.

Legion, which is jointly developed by Stanford University, Los Alamos 
National laboratory, and Nvidia, is a data-centric parallel programming system 
for writing portable high performance programs targeted at heterogeneous 
architectures [3, 4]. Legion provides abstractions which allow programmers to 
describe properties of program data, such as independence and locality [3]. By 
making the Legion programming system aware of the structure of program data, 
it can automate many of the tedious tasks programmers currently face, including 
correctly extracting task- and data-level parallelism and moving data around 
complex memory hierarchies.

Existing works mainly focus on improving the performance of Legion applica-
tions. Little is known about the energy efficiency of the Legion system and many 
questions have not been answered, such as:

• Unlike the traditional HPC programming systems, what are the distinct charac-
teristics of power and energy consumption of Legion runtime and applications?

• Can Legion applications achieve better power and energy efficiency, at the same 
time as accelerate the execution and increase the throughput?

• How well do Legion runtime and applications utilize computing and memory 
resources on both homogeneous and heterogeneous systems?

In this chapter, we study these critical questions and analyze the energy effi-
ciency of Legion applications and runtime system. We test a number of benchmark 
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applications with varying configurations on a CPU-GPU heterogeneous platform. 
We run both the MPI version and the Legion version applications. The heteroge-
neous system offers pure CPU and CPU-GPU execution environments. We use a 
variety of power profiling tools such as PAPI [5], RAPL [6], PowerAPI [7], and 
NVML [8] to measure runtime power consumption and characterize power con-
sumption, energy consumption, and resource utilization of applications run on 
Legion. Important contributions include: (1) Legion Helper affects the performance 
and power consumption of applications; (2) Legion-based GPU applications per-
form better with regards to energy efficiency and execution time for larger problem 
size.

As far as we know, this is the first investigation of the performance and energy 
properties of Legion applications and data-centric Legion runtime system. The 
findings and results produced from this work will improve our understanding of 
Legion and develop resource scheduling to maximize system performance while 
operating under static/dynamic power caps.

The remainder of this chapter is structured as follows. Section 2 briefly presents 
the data-centric programming model and Legion runtime. The test environment 
(hardware, benchmarks, and profiling tools) is described in Section 3. Section 4 
presents the results on performance and energy efficiency on servers with only 
CPU. The results on heterogeneous servers with both CPU and GPU are presented 
in Section 5. Key findings are highlighted in Section 6. Section 7 describes and 
related research and Section 8 provides the conclusion.

2. Legion programming and runtime system

Legion [3, 4] is a data-centric programming model and it provides runtime 
system to reduce expensive data movement in the complex memory hierarchy and 
to write highly portable and data intensive programs for heterogeneous system. 
Legion Runtime extracts independent tasks and allocates them to available com-
puter resources to speed up parallel execution.

Compared to current computation-centric programming models, such as MPI 
and OpenMP, which require that programmers to explicitly specify the communica-
tion between compute nodes and data transfer for underlying parallel mechanisms, 
Legion focus more on defining data properties and the relationship between 
different data units [3]. Application developers can explicitly declare the properties 
of program data, including data organization, independence, partition, and locality. 
Therefore, Legion hides the operations of extracting parallelism and data move-
ment and provides auto mapping to avoid suffering data moving overhead. Also, 
Legion allows programmers to customize optimal mapping for specific applications 
or infrastructure.

A dynamic scheduling approach called SOOP (“out-of-order” processor) is 
 provided by the Legion runtime to map the dependences of tasks, distribute the 
tasks onto processor, map to physical instance for execution [4]. SOOP determines 
the task dependency at the logical region level by comparing the privileges and 
coherence modes to detect dependency between a newly registered task and a previ-
ous registered task. After the task dependency is satisfied, the task will be mapped 
and placed into the mapping queue, and scheduled to processors. Then task execu-
tion is performed and resources are recovered after execution. This whole process is 
automatic and  hidden from Legion users. In our next discussion, we use the Legion 
Helper to refer to the set of processes that detect the dependency, map and dispatch 
of Legion tasks.
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3. Evaluation environment

Before showing the experiment and discussing the results, we detail the plat-
forms in our experimental environment in this section, provide the specifications of 
the homogeneous servers and heterogeneous servers, and describe the benchmark 
applications and profiling tools.

3.1 Hardware configurations

In the experiments, we use a homogeneous HPC server that consists of 
Enterprise version of Haswell processor, and a heterogeneous HPC server that has 
both CPU processor and a GPU accelerator. They will be referred to as the CPU 
server or GPU server in the following discussion.

3.1.1 CPU server

The CPU server is a Dell PowerEdge T630 computer that has two sockets with 
Intel Xeon E5-2683 v3 processors, 128 GB RAM and 28 TB SSD. Table 1 contains the 
specification.

3.1.2 GPU server

To understand the power and energy characteristics of Legion on a heteroge-
neous environment, we run applications on a HP server having both Intel Xeon 
processor and NVIDIA Tesla K40c GPU accelerator, and another HP server with the 
same CPU processor and NVIDIA Tesla P100 GPU accelerator. Table 2 shows their 
specifications.

3.2 Benchmark applications

To demonstrate the characteristics of the power and energy consumption of 
Legion runtime and application, we select two benchmark applications, which are 
compute-intensive, to run on both servers using Legion and MPI programming 
models.

3.2.1 MiniAero

MiniAero is a fluid dynamics mini-application [9, 10] designed to evaluate 
the programming model and hardware. It is an explicit unstructured finite vol-
ume code, which use Runge-Kutta four-order method to solve the compressible 

Compute server Dell PowerEdge T630

CPU Processor 2xIntel Xeon E5-2683 v3 (Haswell-EP)

 Number of cores per socket 14

 Number of threads per socket 28 28

 Base frequency 2 GHz

 Turbo frequency 3 GHz

 Thermal design power per Socket 120 W

Table 1. 
Configuration of the CPU server.
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Navier-Stokes equations. It has the usual calculation and communication patterns 
on 3D unstructured mesh [11]. These meshes are generated on the CPU and then 
move to the devices (e.g. the CPU itself, GPU accelerator, or Xeon Phi). The original 
version of MiniAero uses multi-dimensional Kokkos arrays to store connectivity 
and flow data. Because MiniAero has a small dependency on tasks, the Legion ver-
sion of MiniAero extracts concurrency from program data and maps it to physical 
regions to speed up the execution.

3.2.2 Circuit

Circuit [3] is a sample application that simulates on any graph of integrated cir-
cuit components and wires [10]. An explicit iterative solver step through time and 
calculates the updated voltages and currents on each node and wire. It computes 
the current by examining the voltage differential across every wire, updates the 
charge for each node with new current, and then re-calculate the voltage for every 
node according to the charge. The Legion runtime controls the resource allocation, 
performs task scheduling, and moves program data. These operations decompose 
independent data and allocate it to different computational units for scalability.

3.3 Profiling tools and performance metrics

3.3.1 PAPI

The Performance API (PAPI) [5] provides a set of standard APIs to access the 
hardware performance counter to capture real-time statistics from multiple hard-
ware devices. The counter exist as a small set of registers, which record the occur-
rence of signals and events, for instance, Machine Specific Register (MSR). PAPI 
provides portability across different platforms via the ability to accept platform spe-
cific counter numbers. This enables the users to access a variety of devices for these 
counters and enable performance monitoring and tuning of these components.

Compute server HP ProLiant heterogeneous server

GPU processor NVIDIA Tesla K40c

 Number of CUDA cores 2880

 DRAM 12 GB

 Thermal design power per Socket 235w

GPU processor NVIDIA Tesla P100

 Number of CUDA cores 3584

 DRAM 12 GB

 Thermal design power per Socket 250w

CPU processor Intel(R) Xeon(R) CPU X3460

 Number of cores per socket 4

 Number of threads per socket 8

 Base frequency 2.8 GHz

 Turbo frequency 3.46 GHz

 Thermal design power per Socket 95 W

Table 2. 
Configuration of the GPU server.



High Performance Parallel Computing

6

3.3.2 RAPL

The Running Average Power Limit (RAPL) [6], introduced by Intel Xeon 
processors, which use a software power model to estimate the power and energy 
consumption of hardware. It can be used for monitoring of heat and energy and 
coverage of multiple domains such as PKG (Package Power), PP0 (Core), PP1 
(uncore) and DRAM. The Haswell EP processor used in our experiments does not 
support PP0 and PP1 domains. Meanwhile, the RAPL counters can help to tune the 
performance of processors and balance the computing workloads on the nodes. In 
our experiments, we use the RAPL module in PAPI to profile the power consump-
tion of the processor in the packet and DRAM domains.

3.3.3 PowerAPI

PowerAPI [7] provides a library for measuring power consumption at the 
process level. PowerAPI is a pure software approach to estimate power consump-
tion of various hardware devices based on energy analytical models. Additional, 
the library is actor-based framework that the users can choose modules to fit 
for their requirements, which enables lowering computational cost and high 
accuracy. Moreover, PowerAPI can provide performance statistics of a particular 
process.

3.3.4 NVML

The NVIDIA Management Library (NVML) [8] monitors and manages NVIDIA 
GPU devices. It provides interfaces for querying and controlling device states, 
handling events, and reporting errors. Real-time query-able statistics such as ECC 
error counting, active processes and utilization, temperature and energy con-
sumption can be captured via these interfaces. Also, some modifiable state can be 
accessed (e.g. ECC mode, compute mode, Persistence mode). In our K40c GPU and 
P100 GPU, we record the real-time board power draw by querying the performance 
counters.

4. Legion power and energy consumption on CPU server

To better understand the power and energy consumption patterns of Legion 
applications, we compare the performance of processors and power consumption 
of both MPI versions and Legion versions of MiniAero and the circuit with different 
problem sizes on different CPU cores.

To reduce noise and measurement errors, we perform each experiment 10 
times and calculate the average of the measurements, and each run has the same 
initial conditions. The two applications are computationally intensive. Package and 
DRAM are the most important consumers of energy. To better characterize Legion 
applications and runtime, we separately measure and analyze the power and power 
consumption of Legion helper and computational processes.

4.1 Experimental results of MiniAero

For the MPI version of MiniAero, their processes have to be explicitly defined 
and they only share a part of the problem. The Legion version of MiniAero has some 
calculation processes and Legion helpers. We test the 3D-Sod with three problem 
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sizes, that is 128 × 128 × 4, 256 × 256 × 4 and 512 × 512 × 4, on one, two and four 
CPU cores.

4.1.1 CPU utilization of MiniAero application

The CPU utilization, which is used to estimate the system performance, mea-
sures the percentage of CPU cycles used on a core. On a multi-core processor, a load 
of more than 100% indicates that two or more cores are being used by applications. 
Figure 1 shows CPU usage of MiniAero with different problem sizes running on 
different number of CPU cores. The figures show that the CPU usage of the MPI 
version is relatively stable and reaches about 100%. However, for the Legion ver-
sion, the CPU cycles are not fully utilized by the Legion helper when the number 
of compute cores is less, but the usage keep increasing as the number of cores 
increases. On the other hand, those CPU cycles used by computational processes are 
reduced in our experiments. When the core number increases from 1 to 4, shown 
in Figure 1a–f and g–i, the Legion helper CPU usage increases from about 48% to 
more than 92%. In contrast, the average CPU utilization of the calculation processes 
drops from 75–25%. This suggests that identifying dependencies, mapping, and 
scheduling tasks on Legion can cause significant overhead that interferes with the 
useful calculation. The problem size, however, does not affect the CPU usage very 
much. In Figure 1a, d and g, the execution time and CPU utilization of the Legion 
version are almost identical, while the execution time of the MPI version increases 
exponentially. Other experimental results with same number of compute cores 
show a similar trend. The Legion runtime system offers better scalability.

Figure 1. 
CPU utilization of MPI and Legion versions of the MiniAero application (a) Workload:128*128*4, 1 
core, (b) Workload: 128*128*4, 2 cores, (c) Workload: 128*128*4, 4 cores, (d) Workload: 256*256*4, 1 
core, (e) Workload: 256*256*4, 2 cores, (f) Workload: 256*256*4, 4 cores, (g) Workload: 512*512*4, 1 core, 
(h) Workload: 512*512*4, 2 cores, and (i) Workload: 512*512*4, 4 cores.
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4.1.2 Power usage of MiniAero application

The power consumption of the package and DRAM of both processors is similar. 
The biggest difference which is 12 W between packages is observed when MiniAero 
runs on a core as shown in Figure 2a, d and g. With the Legion runtime, the threads 
for arithmetic computational tasks are evenly pinned to cores of the two processors, 
while the Legion helper threads hovers between the cores and migrate across the cores 
some time. When the Legion helper floats to a processor running computational pro-
cesses, the power consumption of that processor increases. For example, Figure 2b  
shows that the Legion helper is running on processor 0 and two computation pro-
cesses are running on processors 0 and 1. Therefore, Package 0 draws 5.1 W more 
power when the processor is running at peak power. In Figure 2c, however, the 
Legion Helper runs on processor 1, which leads to more power consumption through 
this package. Despite this uncertainty, the total power consumption of both packages 
does not vary much when using the same number of cores. For example, in  
Figure 2c, f and i, the total power consumption of the package is 83.7–
85.2 W. Memory consumes a small amount of power, that is 3.1–4.5 W and the 
 variation is small as well. Combined with the CPU utilization results discussed in  
the previous subsection, we can observe that when the number of cores increases, the 
Legion Helper uses more CPU cycles and power consumption are also increased.

The total power consumption when running the Legion version, including 
both the computational tasks and the Legion helper, is 71.3–80.7% of that for the 
MPI version. The two limits are reached when the workload is 128 × 128 × 4. The 

Figure 2. 
Package and DRAM power consumption of MPI and Legion versions of the MiniAero application (a) 
Workload: 128*128*4 1 core, (b) Workload: 128*128*4, 2 cores, (c) Workload: 128*128*4, 4 cores, (d) Workload: 
256*256*4 1core, (e) Workload: 256*256*4, 2 cores, (f) Workload: 256*256*4  4 cores, (g) Workload: 512*512*4, 
1 core, (h) Workload: 512*512*4, 2 cores, and (i) Workload: 512*512*4, 4 cores.
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power consumption of the Legion version on 1, 2 and 4 cores is 57.8, 72.6 and 
81.7 W respectively, while the MPI counterpart consumes 81.1, 90 and 101.2 W.

In addition, we use PowerAPI to measure the power consumption of the MPI 
version and Legion version of MiniAero at the process level. The power consump-
tion is depicted in Figure 3. Figure 3 compares the power consumption of proces-
sors measured by PowerAPI on varying problem sizes and settings (128 × 128 × 4, 
256 × 256 × 4, 512 × 512 × 4 on 1,2,4 cores respectively). The power consumption mea-
sured by PowerAPI is close to the results provided by RAPL. Overall, the difference 
between the two tools is within a range of [2.4w, 2.9w]. As both versions of MiniAero 
consume a little amount of power from DRAM, we do not include it in the figure.

4.1.3 Execution time and energy consumption of MiniAero

The execution time as shown in Figure 4 and energy consumption as shown in 
Figure 5 of Legion-version of MiniAero are relatively stable except the rise, when the 
Legion helper sends tasks to more cores for parallelism. In contrast, the MPI version 
follows the normal trend, where more cores accelerate execution and save energy. 
The results indicate that while Legion provides more partitions for the application, it 
distributes the workload equally among the cores and slows down tasks, which can 
be caused by the Legion helper. As a result, the power consumption of each processor 
does not change much while the execution time is prolonged, resulting in increased 
power consumption. The MPI version, on the other hand, fully exploits the extra 
cores, reducing execution time and power consumption.

Figure 3. 
Power consumption of MPI version of MiniAero measured by Power API (a) Power consumption of MPI 
version of MiniAero mea- sured by Power API, and (b) Power consumption of Legion version of MiniAero 
measured by Power API.

Figure 4. 
Execution time of the MiniAero application.
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Figure 6. 
CPU utilization and power consumption of the circuit application (a) CPU utilization, and (b) Power 
consumption.

The highest reduction in Legion execution time and energy is achieved when 
using a single core for a 512 × 512 × 4 problem size. The MPI version requires 36 
times more execution time, and 45 times more energy than the Legion version 
respectively. Although the Legion helper causes more overhead, it reduces 89.1% of 
execution time and saves 90.8% energy compared to its MPI counterpart.

4.2 Experimental results of circuit

The Legion version of the circuit application is much more scalable than Legion 
version of MiniAero. The CPU utilization of Legion Helper jump to 17% at the 
beginning of the execution, and then the amount of utilization drops to 5% for the 
rest of the execution, as shown in Figure 6a. On the other hand, the CPU cores that 
perform computational tasks are fully used and the utilization is over 100% some-
time. All the execution of Circuit on different numbers of cores has similar pattern.

In Figure 6b display that more power is consumed by the packet domain when 
more cores are used for computational tasks. From one core to two cores, power con-
sumption increases by 6.6 W and an additional 6.8 W is consumed by two cores into 
four cores. In the meanwhile, the power draw of DRAM remains low and constant.

It is also shown in Figure 7 that with more cores for computational tasks, execu-
tion time and power consumption are reduced. For example, if you run on two cores 
and four cores, 49.7 and 73.3% of execution time and 42.3 and 64.1% of energy, 
respectively, is reduced as if only one core is running.

The power per watt of the Legion version of the circuit is 6.7 MFLOPS/W on 
a core. It reaches 11.6 MFLOPS/W on two cores and 18.0 MFLOPS/W on 4 cores, 

Figure 5. 
Energy consumption of the MiniAero application.
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which is 1.73 times and 1.55 times higher than one core and two cores. This obser-
vation indicates good scalability and energy efficiency of Legion runtime and 
application.

5. Power and energy consumption with legion on CPU-GPU server

To discover the power and energy consumption of Legion runtime and appli-
cation on heterogeneous platform, we perform circuit tasks on GPU cores and 
compare them to the results of the CPU server. The Legion helper of the circuit 
identifies dependencies, maps logical areas, schedules tasks on CPU cores, and 
performs tasks on GPU CUDA cores.

5.1 CPU utilization of circuit

Figure 8 shows the resource usage when connecting to the CPU server and the 
heterogeneous server. During the initialization phase, the CPU utilization on both 
platforms has a steep jump and reach beyond 100%, while the GPU utilization 
remain 0. After that, the GPU starts with parallel circuit tasks. For the two problem 
sizes (2 loops and 4 pieces, 4 loops and 8 pieces) shown in Figure 8, the circuit tasks 
run at a high CPU utilization of nearly 100%. The Circuit takes advantage of 2880 
CUDA cores in the Tesla K40c GPU, and the massive parallelism leads to a distinct 
reduced execution time. In Figure 8a, the execution time of the circuit on the GPU 
server is only about 1/3 of that on the CPU server, although the initialization phase 
requires another 7.6 s. The larger problem size, as shown in Figure 8b, causes the 
execution time on the CPU server to be increased 3.2-fold, while the increase on  
the GPU is only 0.8-fold. This indicates that Legion scales are scaled very well in the 
heterogeneous CPU-GPU environment.

5.2 Power consumption of circuit on heterogeneous server

Figure 9 shows the power consumption of the circuit on the CPU server and 
heterogeneous server with Tesla K40c. The power consumption of the CPU at the 
process level, measured with PowerAPI [7], is 3.05 W and remains stable in both 
cases. The power consumption of GPU, as measured by NVML [8], varies as the 
problem size changes; which is 50.5 W for 2 loops and 4 pieces of components and 
55.1 W for 4 loops and 8 pieces of components respectively. This is because GPU 

Figure 7. 
Execution time and energy consumption of the circuit application.
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has more capacity to handle more independent tasks and gain more throughput but 
consume more power.

5.3 Execution time and energy consumption of Circuit

Figure 10 depicts the execution time and energy consumption of the Circuit. Not 
surprisingly, the GPU version of Circuit runs on heterogeneous platform shorten 
the execution time but at the cost of consuming more power. For the problem size 
of 2 Loops and 4 Pieces, it takes 65.3 s for CPU version and 26.7 s for GPU version to 
execute, and consumes 389.6 J and 2164.1 J energy respectively. That means CPU ver-
sion takes 1.45 times more execution time and saves 72.0% of the power compared to 
the GPU execution. In another situation for the problem size of 4 Loops and 8 Pieces, 
it takes 240.4 s and 1469.9 J for CPU version, and 53.9 s and 4782.6 J for GPU version 
to execute. That means CPU version of the circuit takes 3.46 times more execution 
time and saves 69.3% of the energy. This result indicates that Legion applications 
with large problem sizes should be delivered onto heterogeneous platform to reduce 
their execution time, which can lead to a slight increase in energy consumption.

Figure 8. 
The circuit application run on CPU-GPU heterogeneous server (a) CPU utilization of circuit (loops = 2 and 
pieces= 4), and (b) CPU utilization of circuit (loops = 4 and pieces= 8).

Figure 9. 
Power consumption of circuit on the heterogeneous server. The CPU power usage is measured by PowerAPI, 
and the GPU power usage is measured by NVML (a) Power consumption of circuit (loops = 2 and pieces = 4), 
and (b) Power consumption of circuit (loops = 4 and pieces = 8).
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5.4 Influence of GPU frequency scaling

Dynamic voltage and frequency scaling (DVFS) is often used to find the best 
configuration for optimal energy and energy savings. Figure 12 compares the 
performance of circuit running on GPU accelerator with different frequencies scal-
ing, where Figure 11 shows the power consumption of circuit running on different 
frequencies, Figure 12a compares the execution time. Figure 12b and c describe the 
energy consumption and the “FLOPS” which indicate the energy efficiency of the 
circuit application. From the figure we can see that the standard frequency which is 
745 MHz of the Tesla K40c GPU is not the best setting for the Legion circuit. With 
the lowest frequency at 324 MHz, the circuit takes 2.21 times more execution time 

Figure 10. 
Execution time and energy consumption of circuit on two platforms (a) Execution time of circuit, and (b) 
Energy consumption of circuit.

Figure 11. 
Power consumption with GPU frequency scaling.
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while saving 35% of power. Execution time is reduced by 18.8 with 3.4% energy 
savings when operating the circuit with the highest GPU frequency. In both cases 
the power consumption is lower than at the standard frequency. Both frequency 
settings provide good energy efficiency. The frequency selection depends on the 
power requirements.

To follow the advance of hardware technology, we not only test Legion 
applications on our Nvidia K40 GPU, but also run the Legion version of circuit on 
a new GPU, that is P100 GPU Accelerator(12 GB Card). We scale the frequency 
of P100 to its base frequency at 1126 MHz and its max frequency at 1303 MHz 
to evaluate the performance of circuit. Figure 13 shows the performance of 
the Legion version of circuit with a workload of loops = 4 and pieces = 8. From 
Figure 13a, we can see if the frequency of P100 is set to 1303 MHz, the power 
consumption exceeds 100 W, while the power consumption is around 88 W, if 
the frequency is set to 1126 MHz. Figure 13b–d depict the execution time, energy 
consumption, and the processing power of P100 for Legion circuit respectively. 
Compared to Tesla K40c, there is a big improvement on performance, while the 
energy consumption has a significant drop. This is due to the reduced execution 

Figure 13. 
Performance of circuit run at different GPU frequencies (loops = 4 and pieces = 8) (a) Power consumption of 
different GPU frequency scaling, (b) Execution time, (c) Energy, and (d) GFLOPS.

Figure 12. 
Performance of circuit run at different GPU frequencies (loops = 4 and pieces = 8) (a) Execution time of 
different GPU frequency scaling, (b) Energy Consumption of different frequency GPU scaling, and (c) FLOPS 
of different frequency GPU scaling.
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time. Hence, we expect that the Legion version of circuit will have a better 
performance on the latest GPUs.

6. Findings and discussion

The Legion -based MiniAero is a good example to highlight the Legion Helper’s 
scalability problem. If the Legion helper is unable to isolate independent tasks 
quickly enough with the increased number of associated compute resources (such 
as CPU cores), this becomes a performance bottleneck. The resource utilization 
of Legion helper processes continues to increase and the throughput of com-
pute tasks decreases. This leads to a longer execution time and reduced energy 
efficiency.

In cases where the Legion system and legacy applications have good scal-
ability, energy and energy savings become more effective as more computational 
resources are used. The execution time of an application is significantly reduced, 
while the power consumption does not increase much, resulting in better energy 
efficiency.

Legion offers significant benefits through GPU computing. As GPU-mapped 
and scheduled tasks can be performed in parallel, performance enhancement and 
energy efficiency can be further improved.

7. Related works

Some new Legion program model features, model components, and how these 
components work were presented in [4]. A combination of static and dynamic 
checks to improve the solidity of the Legion system and a compositional parallel 
semantics are described in [12]. An event-based runtime system [13] is embedded 
in Legion asynchronously for heterogeneous and distributed storage architectures. 
Structure slicing [14] breaks the specification of data usage, identifies data paral-
lelism, and reduces data movement. A highly productive programming language, 
Regent [10], which can be translated into Legion implementation, runs sequentially 
without explicit synchronization.

Power profiling in production computer systems provides valuable data and 
knowledge for the development of power simulators and resource scheduling 
policies. Fine-grained power profiling techniques measure the power consump-
tion of individual hardware components such as CPU [15], memory [16], hard 
disk [17] and other devices [18]. In contrast, coarse-grained performance profil-
ing aims to characterize system-wide performance dynamics, such as the macro 
stream framework [19]. Moreover, a power meter for virtualized environments 
was presented in [20]. CPU event counters and the Performance Programming 
Interface Library were used to estimate the power usage on a per-thread basis. 
Kamil et al. profiled HPC applications on multiple test platforms and projected the 
performance profiling results from a single node to a complete system [21]. Ge et al. 
investigated the influence of software and hardware configurations on system-wide 
power consumption [22]. They found that properties of HPC applications affect the 
power consumption of a system. Hackenberg et al. conducted a detailed analysis 
of Haswell’s P-state and C-state transition latencies and the impact of Haswell’s 
new power management mechanisms on memory bandwidth and performance 
reproducibility [23]. Our work differs from these previous efforts by measuring 
and analyzing the impact of new Haswell power management capabilities on the 
performance and performance of HPC codes.
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Some researchers analyzed the power and energy efficiency of different types 
of applications run on HPC systems. Bari et al. investigated OpenMP’s runtime 
configurations on power constrained systems at different power levels [24]. They 
found that a suitable selection of OpenMP’s runtime parameters could improve 
the execution time and reduce the energy consumption of a parallel program by 
up to 67 and 72%, respectively. Qasem et al. [25] evaluated the impact of data 
layout and placement on the energy efficiency of heterogeneous applications by 
means of memory divergence, data access patterns, arithmetic intensities and data 
placement. They found that data layout and placement had a significant impact on 
the energy efficiency. Additionally, analytical models were developed to analyze 
energy efficiency in [26]. The models were able to support a priori selection of 
the operating frequency that leaded to a near optimal energy consumption for the 
execution of multi-threading applications. Meanwhile, Heinrich et al. aimed to 
predict the energy consumption of MPI applications by developing a computa-
tion model, a communication model, and an energy model which were integrated 
into the SimGrid simulation toolkit [27]. To improve the system performance by 
utilizing the available power budget more efficiently on multiple-node platforms, a 
hierarchical multi-dimensional power aware allocation framework was developed 
in [28] for power bounded parallel computing. The power allocation was performed 
using memory power-level settings, thread concurrency throttling, and core-thread 
affinity, and the scheduler outperformed other methods by 20% on average.

To control the power consumption of HPC systems, power limitation [29] is a 
promising and effective approach. System operators can balance the performance 
and power consumption of clusters by adjusting the maximum amount of power 
(also called the power budget) that clusters can consume. Pelly et al. presented a 
dynamic current sourcing and coverage method at the [30] Power Distribution 
Unit (PDU). They proposed using a heuristic policy to shift the capacity weak-
ness to servers with increasing power requirements. Zhang et al. proposed a 
hybrid software/hardware power capping system and proved that their power cap 
outperforms the hardware power capping system provided by Intel and has the 
same reaction time [31]. For HPC jobs, many factors affect power consumption, 
including hardware configurations and resource usage. Femal et al. developed a 
hierarchical management policy to distribute the power budget to clusters [32]. Kim 
et al. investigated the relationship between CPU voltages and system performance 
and energy efficiency [33]. Utilizing Dynamic Voltage Scaling (DVS) technologies, 
a Task Planning Policy has been proposed that aims to minimize energy consump-
tion while meeting specified performance requirements. Rountree et al. proposed 
guidelines for overprovisioning hardware with hardware-enforced performance 
limitations and system-wide performance reallocation in an application-indepen-
dent manner [34, 35]. We have developed a complete system simulator, TracSim 
[36], which estimates the capacity of trapped energy under various power-limiting 
and job-planning guidelines.

8. Conclusion

In this chapter, we describe the power consumption, energy efficiency, perfor-
mance, and resource usage of Legion runtime environment and applications. Our 
experimental results show that Legion offers favorable energy efficiency, although 
in some cases its scalability can be influenced by Legion Helpers. The Legion 
programming model is consistent with the massively parallel nature of the GPU 
design and shows good performance and energy efficiency for large problem-size 
applications.
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