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Abstract

As infertility rates across nations become a growing concern, the interest in the develop-
ment of treatments, such as in vitro gametogenesis (IVG), increases. This is especially 
the case for male infertility. For instance, the average sperm count continues to decline 
across nations, while more adult and pediatric patients survive cancer only to be left with 
little to no options for fertility restorative therapies. Understanding the male reproduc-
tive system and the process of spermatogenesis, however, has proven to be a difficult 
task. Progress occurs slowly and inconsistencies remain in the literature while reports 
attempt to better understand spermatogonial stem cells (SSCs) in conjunction with sper-
matogenesis. Interestingly, stem cell behavior, the decision to self-renewal or commit to 
differentiation, has shown to be closely linked to the stem cell’s microenvironment (i.e. 
niche). Perhaps the missing pieces required to better understanding spermatogenesis are 
found in the re-defined perspective of SSC niche dynamics.

Keywords: spermatogenesis, spermatogonial stem cells, stem cell therapy, in vitro 
gametogenesis, organoid engineering

1. Introduction

The Center for Disease Control (CDC)’s Division of Vital Statistics released a recent report 
titled Births: Provisional Data for 2017, which placed the provisional general fertility rate (GFR) 

at approximately 60.2 births per 1000 women aged 14–44. This rate is reported to be down 3% 

from 2016 and a record low for the United States. The provisional total fertility rate (TFR) which 
is based on the age-specific births in a given year, and estimates the number of births that a 
hypothetical group of 1000 women would have over their lifetimes, is also down 3% from the 

rate reported in 2016— the lowest TFR since 1978 [1]. Though fertility rates are a multifaceted 
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phenomenon, recent findings regarding reproduction and family planning may be contribut-
ing to the increasingly low rates. For instance, a recent populations report by the U.S. Census 
Bureau found that young adults, aged 18–34, not only believe that economic and educational 

accomplishments are far more important milestones than marriage and parenthood, but that 

they are also actively delaying parenthood [2]. Moreover, a study on the temporal trends in 

sperm count also found that the average sperm counts for men, unselected for their fertility 

status, has declined in western countries by approximately 59% since 1973 [3]. This is the most 

comprehensive study to date that not only shows the continuous nature of the decline but also 

calls for the urgency in male reproductive research, as such findings have significant public 
health implications. Combine this with the increasing number of cancer survivors (both post 
and pre-pubertal patients) that also require fertility preservation therapies [4]. Currently, the 
only option available for male cancer patients is based on successful sperm retrieval and sperm 

freezing for future use. This is an option not extended to prepubertal patients, as these indi-

viduals have not yet produced viable sperm, and are left with no other alternatives to conceive 

children for their entire life. Altogether, the overall cultural shifts in family planning alongside 

the declining rates of the general fertility has led to major market research reports expecting 
the global fertility services market to grow from the current multimillion dollar industry to 

upwards of $30 billion. Therefore, the advancements in fertility services are increasingly sig-

nificant in our changing global populations.

The production of germ cells (i.e. gametogenesis), is a process that begins in embryos with the 

formation of primordial germ cells (PGCs) that continues differently in male and female repro-

ductive systems. Only recently did studies show that mouse embryonic stem cells (ESCs) and 
induced pluripotent stem cells (iPSCs) can differentiate into PGC-like cells (PGCLCs) that upon 
transplantation gave rise to both functional sperm or oocytes [5, 6]. Importantly, the culture 

conditions and differentiation protocols of murine PGCLCs still require further optimization, as 
these cells differentiate inefficiently and lack well-defined long-term culture conditions [7]. This 

is especially the case with SSCs that constitute the male testis. Understanding how these stem 
cells initiate spermatogenesis within the seminiferous tubules of the testis is vital for the future 

of IVG applications, as such knowledge would lead to optimized differentiation protocols and 
long-term SSC culture conditions that could be implemented for the treatment of infertility [8].

The focus of this chapter is on the significance of mammalian spermatogenesis as it pertains 
to both the successes of IVG, and to the push for innovation in the general field of repro-

ductive medicine. We will see how SSC fate decisions establish spermatogenesis through the 
multifaceted interaction of the stem cell and its niche. Furthermore, we discuss how novel 

technologies, which allow for SSC niche mapping and in vitro preservation of the seminifer-

ous tubules, hold the key to therapeutic and diagnostic breakthroughs—and the challenges 

and ethical implications that follow.

2. The spermatogonial stem cell niche establish and regulate 

spermatogenesis

The variation in stem cell behavior, whether it is the decision to self-renew or to commit to dif-

ferentiation, is strictly linked to the stem cell’s niche [9]. The niche is highly dynamic and has 
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shown to direct such fate decisions in a variety of adult stem cells such as hematopoietic stem 

cells (HSCs) [10], intestinal [11], and epidermal stem cells [12]. The concept of the niche extends 

beyond the direct cell–cell contact and is comprised of other key components such as secreted 

factors (i.e. chemokines, hormones, growth factor receptors), inflammation (i.e. macrophages, 
T cells), physical factors (i.e. shear forces, topography, elasticity/stiffness), hypoxia (i.e. gly-

colysis-optimizing conditions), and cellular metabolism (i.e. glucose, lipids, calcium, calcium 

receptors) [9]. Importantly, the stem cell-niche communication not only occurs over short and 

long range distances, but is also reciprocal and significant in tissue homeostasis [13–15]. For 

instance, in mouse skin, the removal of the stem cell population (i.e. hair follicle stem cells) can 

result in niche cells dedifferentiating to replace them. In this case, the repopulation of epithelial 
cells (cells that do not contribute to hair growth), replace the stem cells and sustain hair regen-

eration [16]. Interestingly, with respect to the field of spermatogenesis, the key components of 
the SSC niche also appear to be as multifaceted as the examples provided above.

2.1. Direct and indirect cell contact: SSCs, Sertoli cells, and other key players

One key player in regulating the accessibility of SSCs to other components in the niche is the 
Sertoli cell. These cells extend from the basal compartment of the seminiferous tubule to the 
adluminal region. Sertoli cells take on a constantly evolving and irregular shape that is in a 
continuous three-dimensional relationship with not only the SSCs, but also the differentiating 
spermatogonia throughout spermatogenesis [17]. Due to the complexity of such a dynamic 
relationship, traditional experiments involving two-dimensional or stage-specific cell analy-

sis may have portrayed an incomplete depiction of spermatogenesis and may have attributed 
to the large discrepancy found in today’s literature [8]. Regardless, it is still worth discussing 

such findings because it provides a glimpse into the three-dimensional relationship between 
the SSC and Sertoli cells.

To begin, Sertoli cells have a large surface area that allows them to support germ cell develop-

ment at a higher ratio of germ cells to Sertoli cells [17, 18]. Such a characteristic is critical for 
providing structural support to the germ cells, but also to germ cell movements throughout 

the tubule. Furthermore, the unique structural and signaling flexibility of Sertoli cells create 
two distinct environments within the tubules that are otherwise referred to as the blood-testis 

barrier (BTB). This is where the basal compartment, the region in close contact with lymph 

and blood, is speculated to maintain earlier staged cells of spermatogenesis, such as SSCs 
and early progenitors. Later stages that are committed and differentiating spermatogonia, 
however, appear to occur in the adluminal compartment, isolated from lymph and blood [17]. 

Importantly, the BTB is created by tight or gap junctions, and desmosomes that are present 
between Sertoli cells. The BTB does not exist between Sertoli cells and germs cells or between 
germ cells [19–22]. Additionally, the specialization of the BTB was first depicted in early stud-

ies of testicular transferrin. Cells located in the later staged adluminal region of the tubule 
(i.e. cells that do not have access to serum iron), gained access to testicular transferrin through 

Sertoli cells [17, 23, 24].

In addition to the role of the Sertoli cells, Leydig cells within the interstitial space of the 
seminiferous tubules produce and signal testosterone. Without the presence of testosterone, 

spermatogenesis does not proceed completely and results in male infertility. Therefore, if 

Leydig cells were to be removed, the germ cells that have initiated meiosis and completed 
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differentiation begin to improperly detach from the Sertoli cells and die [25]. Furthermore, 

mature sperm near the lumen of the tubule (i.e. the adluminal compartment) cannot properly 

release from Sertoli cells without testosterone signaling. Another major hormone, follicle-
stimulating hormone (FSH) has shown to act synergistically with testosterone to increase and 
regulate spermatogenesis. It does this by binding to the FSH receptor (FSHR) on the surface 
membrane of Sertoli cells [25]. Peritubular myoid cells (PMCs) are also located in the intersti-
tial space of the tubules, and express the androgen receptor for testosterone. Within the semi-

niferous tubules, however, only Sertoli cells express the androgen receptor. Therefore, Sertoli 
cells, in communication with other niche cells (i.e. Leydig cells and PMCs) regulate sper-

matogenesis indirectly and thus impact the initiation, development, and survival of germs 

cells [25, 26]. Furthermore, the surface of some seminiferous tubules associates with vascular 

endothelium and perivascular cells [27]. The role of such vasculature-associated cells may be 

involved in regulation of SSC niche dynamics. For instance, some studies found that in the 
prepubescent and adult testis, macrophages are closely associated with Leydig cells and play 
a role in the signaling and production of testosterone [28]. Another study found populations 

of macrophages near the surface of the basal compartment where enriched undifferentiated 
spermatogonia were found. Such testicular macrophages expressed SSC proliferative and 
differentiating factors such as enzymes involved in retinoic acid (RA) synthesis and colony 
stimulating factor 1 (CSF1) signaling [27].

2.2. The extracellular matrix, secreted factors, and their respective receptors

The extracellular matrix (ECM) and its role in the stem cell niche vary substantially in almost 
every tissue [9]. In some cases, the ECM is also involved in the maintenance of local concentra-

tions of growth factors that direct stem cell fate or target niche cells involved in the regulation 

of those SC fate decisions [29, 30]. In the testis, the ECM located at the basal compartment, 
is made up of the basement membrane that is composed of proteins like laminin, type IV 

collagen, and entactin. Importantly, the basement membrane (a modified ECM) is speculated 
to not only interact with Sertoli cells, but also regulate SSC fate decisions. Sertoli cells even 
secrete components of the ECM (i.e. laminin) that is not only useful in short-term SSC culture 
conditions, but is also involved in Sertoli cell tight junctions, and in turn, the formation of 
the BTB [8, 17, 31–33]. It is the formation of tight junctions across Sertoli cells that is said to 
create a semipermeable barrier that restricts molecule movement based on either weight or 

chemical structure [34]. The exact involvement, however, of the basement membrane with 

key components like laminin and the mechanisms of junction formation still require further 
investigation with their role in SSC niche dynamics. Nevertheless, specialized junctions have 
been found throughout the seminiferous epithelium and include junctions such as adherens, 
desmosome-like, hemidesmosome, and gap junctions that are located throughout the tubule 
from the basal to adluminal compartment. These junctions not only appear to control germ 
cell movement, but are also involved in the regulation or perhaps local concentrations of 

secreted factors in SSC fate decisions [17].

Glial cell line-derived neurotrophic factor (GDNF) is a secreted factor produced by Sertoli cells 
and PMCs that is linked to SSC fate determination, Sertoli cell proliferation and short-term 
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SSC in vitro maintenance [35–37]. Furthermore, the in vitro GDNF expression promotes the 
self-renewal and proliferation of SSCs by activating the phosphoinositide-3 kinase (PI3K)/
AKT signaling pathway [38]. Studies in vivo, however, show that ERK1/2 signaling pathway 
is activated in SSC self-renewal, while PI3K/AKT signaling is shown to be activated in SSC 
proliferation during stages where RA signaling is both low and high [39]. Based on the sig-

nificance of Sertoli cells as a key player in the niche, one can suspect that such cells and their 
respective GDNF expression is a relationship that is sufficient for the recapitulation of niche 
dynamics for in vitro studies. The current discrepancy in the literature, however, suggests 

that once SSCs are removed from in vivo conditions, the multifaceted three-dimensional SSC 
niche is then disrupted in a significant way that causes SSCs to behave differently, and per-

haps inconsistently. The establishment of a long-term and well-defined in vitro protocol for 

SSC maintenance would no longer be an open question if the maintenance of normal sper-

matogenesis were based on a fairly simplified stem cell niche model. In fact, recent reports 
appear to provide further support for a niche that is in a three-dimensional relationship with 

the SSCs. For example, a recently published report found that cyclic expression of GDNF 
is not only required for SSC homeostasis but also that GDNF cyclic expression is normally 
expressed during spermatogenesis [35]. Furthermore, the ectopic expression of GDNF during 
late staged spermatogenesis caused the accumulation of early-staged undifferentiated sper-

matogonia that was also positive for the GDNF receptor (GFRA1). Another study found that 
the lack of a RA target gene in mice called Stimulated by Retinoic Acid gene 8 (Stra8), caused 
the accumulation of undifferentiated spermatogonia and the depletion of differentiating 
spermatogonia. Furthermore, the capability of germ cells to begin differentiation or meiotic 
initiation in response to RA was distinct, periodic and limited to a particular seminiferous 

stage. This study suggests that properly timed differentiation depends on the intersection 
of cell intrinsic competence and extrinsic chemical cues. Such findings led to the conclusion 
that periodic RA-STRA8 signaling intersects with the periodic germ cell capability to regulate 
spermatogenesis [40].

In terms of respective receptors, in the seminiferous epithelium, some major ECM-receptors 
are integrins. In fact, studies have claimed that integrin-α6 and integrin-β1 are key surface 

markers involved in the regulation of spermatogenesis. There is still much discrepancy, 

however, on whether such markers are exclusively expressed on SSCs or germ cell progeni-
tors [8, 17]. It has been shown, however, that the deletion of integrin-β1 on Sertoli cells not 
only reduced SSC homing (i.e. the repopulation of SCs after the removal of endogenous SCs), 
but also that the adhesion receptor’s association with laminin is critical for the several steps 
involved in SSC homing [41]. Again, though the integrins are significant in niche dynamics, it 
appears that integrins cannot be used to distinguish the sub-populations of early staged germ 

cells (i.e. SSCs and their progenitors). Importantly, such studies use marker-based techniques 
(i.e. Fluorescence-activated cell sorting (FACS)) to isolate cells positive for markers such as 
integrin-α6, integrin-β1 or GFRα1, to then transplant back into germ cell-depleted testes for 

further analysis [8, 42, 43]. Though the transplantation assay [44] is a great tool to gauge stem 

cell competency, the SSC niche dynamics must also be clearly defined since germ cells have 
shown to behave inconsistently from in vivo to in vitro conditions. Therefore, perhaps the 

discrepancy in such studies highlights the limitations or inability of marker-based techniques, 
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like FACS, to suffice for the understanding of the SSC-niche relationship. Such a variation in 
SSC behavior is further highlighted in a study that modeled the entire GFRα1+ population 

within the seminiferous tubules. Results showed that during steady-state spermatogenesis, 

the GFRα1+ population comprised of a single stem cell pool that continually interconverted 

between different states of equipotent singly or syncytial states [45]. The early example of the 

hair follicle stem cells further resonates with this study because self-renewal potential may 

be influenced by the position of the stem cell within the niche. Another recent publication 
also attempted to address the heterogenous expression of markers present on early staged 
germ cells comprise of stem cells and progenitors. More specifically, the isolation of GFRα1+ 

and GFRα1-spermatogonia, interestingly, both showed elevated transplantation activity. 

Furthermore, GFRα1-spermatogonia not only produced GFRα1+ spermatogonia when nega-

tive cells were transplanted into germ cell depleted testis, but also restored spermatogenesis. 

Such results indicated that a stem cell pool of GFRα1+ and GFRα1-cells could interconvert 

between the two states of positive and negative cells in a niche-dependent mechanism. 

Additionally, though these two populations may be closely related, they still differ in key 
cell-intrinsic components [46]. Altogether, both studies display the behavioral variation in not 

only GFRα1+ germ cells, but also GFRα1+/− populations in relation to the niche. The GFRα1+ 

only population interconverts between different stem cell states while the GFRα1+/− popula-

tions reveal a niche-dependent mechanism for fate determination. How these two studies 

come together for a more cohesive story requires further investigation and an overall better 
niche understanding.

2.3. Hypoxia, metabolism and the role of inflammation

Tissue specific cell populations such as HSCs, and cardiac progenitors are found to be in low 
oxygen (i.e. hypoxic) microenvironments that contribute to cell survivability and maintenance 

[9, 47]. During hypoxic conditions, cells favor glycolysis rather than mitochondrial oxidative 
phosphorylation. In terms of the SSC niche, one recent report found that the reduction in O

2
 

tension during in vitro conditions enhanced the in vivo maintenance of the SSCs’ regenera-

tive integrity. SSCs cultured long term in hypoxic conditions (10% O
2
 tension rather than the 

standard 21% O
2
 tension), had the capacity to continue spermatogenesis following transplan-

tation in recipient tubules devoid of germ cells [48]. Previous work from the same group had 

also shown that key glycolysis regulating enzymes were elevated in cultured undifferentiated 
germ cells [49]. Furthermore, another study found that the inhibition of glycolysis (via the 

double-knockout of Myc/Mycn genes) decreased SSC activity and inhibited spermatogonial 
differentiation. The chemical stimulation of glycolysis, however, increased the frequency 
of the SSC self-renewal capacity [50]. On the contrary, another report found that the abla-

tion of Max (a key partner for Myc function) induced differentiation of germ cells in culture 
conditions [51]. Interestingly, the same group that reported on SSC self-renewal through the 
chemical activation of glycolysis also reported on a lipid-rich medium that enhanced SSC 
self-renewal for long-term culture conditions [52, 53]. The excess of free fatty acids, how-

ever, promotes fatty acid catabolism (i.e. β-oxidation and oxidative phosphorylation) rather 

than glycolytic activity [48]. Together, there are possible explanations and takeaways from 

such discrepancies regarding hypoxia and metabolism. First, low oxygen-tension may be 
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involved in the regulation of both in vitro and in vivo SSC self-renewal. Furthermore, though 
examples of HSC-niche dynamics have shown that hypoxic microenvironments contribute to 
stem cell maintenance, this in some ways contradicts the role of the BTB in spermatogenesis. 

The regions where early staged spermatogenesis occurs are in the basal compartment of the 

tubule, near lymph and blood. One would then suspect that the basal environment favors 

oxidative phosphorylation over glycolysis. Another possibility, however, is that the Sertoli 
cell tight junctions may create a highly restrictive, thus semi-hypoxic, niche for the SSCs in 
order to tightly regulate self-renewal. Second, there is also the possibility that the connection 
of low oxygen-tension to SSC maintenance may only be an in vitro phenomenon. As previ-

ously stated, the three-dimensional relationship of the niche to the SSCs may be significant 
enough to cause these cells to behave differently once removed from in vivo conditions. For 

instance, the disruption of this multifaceted communication may cause SSCs to begin to favor 
glycolytic activity during in vitro conditions. Furthermore, reactive oxygen species (ROS) 
were shown to also influence the outcome of in vitro SSC maintenance. Moreover, modulating 
ROS levels demonstrated that moderate concentrations may promote SSC self-renewal and 
that achieving this may be possible by manipulating or reducing the use of β-oxidation as 

the primary bioenergetics pathway [48, 54]. Such speculations, however, only point to the 
need for further investigations of the three-dimensional relationship of the SSC and its niche. 
Overall, cellular metabolism is critical in determining whether stem cells proliferate, differ-

entiate or remain quiescent. There is typically a balance that is established between oxidative 

phosphorylation, glycolysis, and oxidative stress for the adult stem cells [9]. Such a balance is 
further exemplified in the dynamic niche with the role of inflammation.

The general understanding regarding immune privilege (i.e. the capacity to tolerate the intro-

duction of new antigens without the trigger of an inflammatory response) is the evolutionary 
adaptation to protect tissues from loss of functions due to their limited capacity for regenera-

tion [55, 56]. In the testis, however, this protection against loss of function is for the tissue’s 
reproductive capacity. The production and differentiation of male germ cells are unique in 
that sperm matures at puberty, which is long after the maturation of the immune system and 

systemic self-tolerance [55]. Due to these phenomena, the BTB plays a role in protecting the 
maturation of sperm from an autoimmune reaction. For instance, the various junctions and 
desmosomes between Sertoli cells have created such a limited access in the passage of other 
molecules that the composition of the basal, adluminal, and interstitial spaces differ signifi-

cantly. Additionally, while the BTB’s ability to isolate meiotic and postmeiotic germ cells from 
lymph and blood is significant in testicular immune privilege, there are also physical and 
immunological components required for the immunotolerance of the testis [55]. The expres-

sion of anti-inflammatory cytokines by immune and somatic cells and the role of androgens 
also play a role in the immunoprivileged niche.

Meiotic and postmeiotic germ cells express a large variety of neoantigens that emerge during 

puberty and long after self-tolerance is already established. Furthermore, once spermatogen-

esis begins, the BTB is established and immediately isolates post pubertal germ cells from 

the immune system [55]. Interestingly, germ cell neoantigens are also present on SSCs and 
progenitors that are located in the basal compartment, and not isolated from lymph and 

blood, unlike the adluminal compartment of the BTB [55, 57, 58]. This suggests that other 
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components of the testes also play a role in the immunoprivileged niche. For instance, accu-

mulating evidence suggests that PMCs secrete cytokines like transforming growth factor-β 

(TGF-β), leukemia inhibitory factor (LIF), and macrophage chemoattractant protein 1 (MCP-
1) that directly affect leukocytes in the interstitial space of the testis [59, 60]. Furthermore, 

the local high concentrations of testosterone appear to play an important role in the immu-

noprivileged niche within the testis. For example, when testosterone was incubated with 

stimulated human macrophages, monocytes and non-immune cells, the suppression of cyto-

kines and adhesion molecules occurred while the production of anti-inflammatory cytokines 
increased [61, 62]. In transplantation studies, rats that were treated with estrogen to suppress 

Leydig cell production of testosterone immediately rejected allotransplanted cells within the 
seminiferous tubules. This directly contrasted the untreated control group where no rejection 
occurred in allotransplanted cells [55]. Though this provides evidence that the local high con-

centrations of testosterone plays an important role in the immunoprivileged niche, the exact 

mechanism testosterone and its anti-inflammatory function on testicular leukocytes, still 
remains unknown. There may be an indirect regulatory mechanism involved in the balance 

between the expression of pro and anti-inflammatory cytokines in Sertoli cells, Leydig cells, 
and PMCs [55]. Such a balance between pro and anti-inflammatory cytokines may also play 
a significant role in the protection and maintenance of SSCs that are not isolated from lymph 
and blood. For instance, in vitro studies have shown that rat testicular macrophages exhibit 

immunosuppressive characteristics [63]. Interestingly, a heterogeneous macrophage popula-

tion resides in the rat testis’ interstitium where one population participates in the inflamma-

tory response while the other is thought to have a role in the immunoprivileged niche [63, 

64]. This suggests that the testis is capable of initiating both a normal inflammatory response 
and maintaining an immunoprivileged niche. Such a balance appears to be crucial in the SSC 
niche, especially since there is mounting evidence of immune-related male infertility [65, 

66]. Importantly, the microvasculature in the interstitium not only contains macrophages, 

lymphocytes, and mast cells but also dendritic cells (DC). Studies have shown, thus far, that 
testicular DCs may play a significant role in maintaining the balance of testis tolerance and 
intolerance [63, 67], but still require further investigation. The role of inflammation and the 
extent of its connection to SSC function are still unclear. One would speculate, however, that 
because the immune privileged testis protects the tissue’s reproductive capacity, that this 
may also directly connect to SSC fate decisions.

2.4. Physical factors

The physical surroundings such as the three-dimensional physical shape, shear forces, and 

topography (i.e. the physical arrangement of cells) all contribute to the stem cell and its 

niche [9]. For example, shear forces such blood flow, have shown to play a role in either 
the acceleration or reduction of in vivo development of zebrafish embryonic HSCs [68]. 

Distinct niche topographies have also shown to have an effect on signaling pathways and 
the regulation of differentiation on mesenchymal stem cells [69]. Testicular blood flow, and 
its connection to niche dynamics and spermatogenesis, is largely an under-investigated 

area. Interestingly, older reports showed that a reduction of approximately 70%, for 5 hours, 

from normal blood flow led to varying degrees of damage to the seminiferous tubules and 
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resulted in an inflammatory-like response (i.e. increased number of leukocytes within 
the testis interstitial space was found) [70]. Additionally, one important suggestion from 

this study was that vasomotion, the smooth muscle oscillations of the blood vessel walls 

(independent of heartbeat), contributed to testicular function. Some studies even found 
that vasomotion was directly regulated by testosterone, and indirectly by Sertoli cells [71, 

72]. More specifically, vasomotion was not detected in the testes where Leydig cells were 
removed but was induced with a dose of testosterone [72]. More recently, however, one 

report found that Sertoli cells may play a direct role in supporting the testicular vascular 
network. Results showed that loss of germ cells had no effect on testicular vasculature while 
loss of Sertoli cells led to the reduction of total vascular branches, volume, and the number 
of small micro-vessels [73]. The mechanism by which Sertoli cells influence vasomotion still 
remains unclear. Perhaps the multifaceted communications between Sertoli cells, Leydig 
cells and PMCs also work to regulate vasomotion.

Furthermore, the biophysical cues involved in the in vivo ECM, including the basement 
membrane and the formation of the BTB, are all significant factors in the SSC niche topogra-

phy. Equally importantly, however, is the distribution of germ cells within the seminiferous 

tubules. One study found that the distribution of early mouse germ cells, typically termed 

type A spermatogonia that are either a single cell, paired or aligned, within the spermato-

genic cycle is nonrandom [74]. Interestingly, the transplantation of a single SSC first results 
in asymmetrical spermatogenesis followed thereafter by uniform spermatogenesis (i.e. sper-

matogenesis around the entire tubule) [74, 75]. What this suggests is that SSCs are capable of 
movement. Further evidence provided by Chiarini-Garcia et al. indicated that spermatogonia 

were not only mobile, but also cyclically positioned themselves at periodic intervals along the 

tubules to ensure uniform spermatogenesis. Such a nonrandom distribution of germ cells was 
made possible because tubules remained in somewhat of a constant relationship with each 

other. This contact with one another also allowed the same group to map the topography of 

these tubules [74]. Together, one can speculate that the three-dimensional physical shape and 

the biophysical cues of the testis may be significant in the SSC niche dynamics. The physical 
factors involved in the SSC niche, however, appear to be undervalued in the field of spermato-

genesis as many questions remain to be unanswered.

2.5. Niche mapping and its significance in the seminiferous tubule 
microenvironment

Modulating the SSC niche requires well-defined and reproducible studies. Since SSCs appear 
to be highly interconnected with their niche, the in vivo dynamics must be clearly defined, and 
more importantly, encompass all the key components of the stem cell-niche interactions. Just 

as Handel et al. made the necessary case for applying ‘gold standards’ (i.e. benchmarks) to 
in vitro-derived germ cells, we make the case for extending and expanding such benchmarks 

in the studies involving spermatogenesis. Handel et al. made the vitally important argument 

for the scientific community to apply the highest standards in evaluating and conducting 
IVG research. To further emphasize their point, we believe that much of the discrepancy 

in the literature today is due the lack of consensus or a laid out rigorous criteria by which 
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to evaluate SSC identity, SSC fate decisions, and the general understanding of mammalian 
spermatogenesis, as it is the foundational knowledge for future IVG practices. Moreover, 

Lane et al. effectively organized the composition of the general stem cell niche into reciprocal 
interactions of different cellular components, secreted factors, ECM, immunological control, 
metabolic control and physical factors that we sought out to re-evaluate and highlight some of 

the literature in the field of spermatogenesis, under that same style of organization. As the lit-
erature shows, SSC niche dynamics appear to include all of those reciprocal interactions. Our 
understanding of spermatogenesis, however, still remains incomplete due to perhaps the lack 

of aerial or three-dimensional perspective with regards to not only the types of experiments 

conducted, but also the interpretation of those results. SSCs, and niche cells alike, appear 
to behave much differently during in vitro conditions than in vivo dynamics as much of the 

inconsistencies in the literature suggests. Aside from the variability in culture protocols that 

may contribute to this dilemma, we believe two actions are required for the push forward 

in the field of spermatogenesis. First, it is imperative for a set of benchmarks to be put into 
place when evaluating the in vitro recapitulation of spermatogenesis. Perhaps this involves 

the modification of Lane et al.’s organization of the stem cell niche to the SSC niche dynamics 
as summarized pictorially in Figure 1. Second, emerging methodologies and technologies 
may be required to facilitate the implementation of better in vitro analyses of spermatogenesis.

A recently published report characterized a three-dimensional multilayer model (termed the 

Three-Layer Gradient System (3-LGS)) that allowed for the reorganization of dissociated rat 
testicular cells into testicular organoids with the formation of a functional BTB and germ 

cell maintenance. This system used three concentric layers of Matrigel to not only increase 

Figure 1. The spermatogonial stem cell and its niche, reimaged.
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the area for factor exchange but also for testicular cell reorganization into organoids to take 

place [76]. Furthermore, the cellular organization of this in vitro three-dimensional multilayer 

model more closely represented the in vivo stem cell-niche interactions. This group also pro-

posed that the 3-LGS is a new platform to better investigate the SSC niche in vitro [76, 77]. 

Interestingly, such an in vitro three-dimensional multilayer model represents an emerging 

methodology that not only signified the three-dimensional relationship of the SSC-niche 
interactions, but also provided a potential avenue to further study the SSC niche in a work-

ing in vitro model. Alongside the more appropriate development of three-dimensional in 

vitro models, methodologies that can image three-dimensional in vivo conditions still remain 

either undervalued in the field or lack the technological capabilities for in-depth analysis. 
For instance, though some work has been done using time-lapse imaging and histological 

staining of the seminiferous tubules, high quality data and clear analysis of the undisturbed 

in vivo environment is still a clear hurdle [78]. This same challenge remains in general biol-

ogy, where obtaining high-resolution information from a complex system without losing 

the global perspective required to understand how the system functions, is still lacking [79]. 

Tissue clearing technologies, however, a technique developed for brain mapping [80] may 

address such challenges, especially in spermatogenesis where three-dimensionality appears 

to be highly significant. Through chemical transformations, this method (i.e. CLARITY) pas-

sively or actively transitions the whole tissue into a lipid-extracted, thus clear, and structur-

ally stable tissue that is fully intact with its native biological molecules [81]. Brain mapping 

has significantly advanced due to technological innovations in tissue clearing methodologies 
like CLARITY [81]. The uniqueness of such a technique not only enables clear accessibility, 

but also maintains a global perspective in a three-dimensional analysis. Perhaps the mapping 

of complex systems through tissue-clearing technologies can also be expanded to the SSC 
niche dynamics (i.e. SSC niche mapping).

3. Recapitulating in vivo spermatogenesis through in vitro 

preservation

The in vitro propagation and maturation of germ cells is especially necessary for the devel-

opment of therapies for prepubertal pediatric patients undergoing chemotherapy. Typically 

the storage of sperm for cancer patients has become routine since therapeutic agents, like 

radiation and chemotherapy, either directly or indirectly affect the SSC pool and ultimately 
patient fertility. Such options, however, do not extend to pediatric patients, as those individu-

als have not yet produced viable sperm [4]. Therefore, an alternative approach to studying 

spermatogenesis has shown great promise through the use of organoid static conditions or 

three-dimensional fluidic conditions. For instance, the in vitro production of functional sperm 

from neonatal mouse testes, using a well-defined organ culture protocol, was significant in 
providing a new avenue for in vitro spermatogenesis [82]. This study not only maintained 

organoids for approximately 2 months to obtain spermatids and sperm, but also produced 

healthy and competent offspring through micro-insemination. The system, however, still 
lacks the controlled monitoring necessary for the manipulation and study of SSC niche 
dynamics [83]. Furthermore, the use of testis fragments (i.e. testicular organoids) in static 
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conditions has limitations on the tubule maturation and tubule viability since the diffusion of 
nutrients and oxygen are constrained by the lack of a functional vascular system [84]. In order 

to address such limitations, the same group developed a different approach to in vitro sper-

matogenesis. A simple microfluidic device with a porous membrane was created to mimic the 
microvascular system of the testis [85]. The porous membrane separated the tissue from the 

flowing medium and successfully maintained spermatogenesis for approximately 6 months. 
Furthermore, the seminiferous tubules of testis were spread flat in the microfluidic chamber 
and in direct contact with the porous membrane. Interestingly, germ cell count, and thus, 

differentiation decreased over time in the long-term microfluidic culture. This may be the 
result of poor homeostasis between the tissue and the medium [83]. Tissue homeostasis is key 

in modulating the stem cell niche and the homeostatic imbalance may have also resulted from 

the distortion of the tubule-to-tubule contact found in vivo. Furthermore, perhaps the tubules 

spread flat in the chamber led to the loss of the interstitial fluid and niche cells, such as Leydig 
cells and PMCs that could have also contributed to the decrease in germ cells over time.

Together, the controlled monitoring of a fluidic in vitro system that uses testicular organoids 

is significant. Preserving the complete SSC niche in a fluidic platform, however, is something 
that has not yet been successfully achieved. The static organoid culture is limited to oxygen 

and nutrient diffusions and cannot maintain overall tubule viability (i.e. organoid necrosis 
typically found in the center of testis fragments during static culture). Furthermore, the recent 

publications on microfluidic culture protocols also distort the three-dimensional environment 
of the testis that ultimately affects SSC maintenance [85, 86]. An optimized fluidic platform 
that will not only recapitulate the SSC niche, but also allow for the easy manipulations of SSC 
niche dynamics may be the next step for in vitro spermatogenesis.

4. Initiating innovation: promises, challenges, and the ethical 

implications for the push toward IVG

Human embryogenesis and gametogenesis is crucial to our understanding of reproduction, 

development, disease and evolution [87, 88]. The recent successes in the generation of human 

PGCLCs from human ESCs and human iPSCs solidified the prospects that the reconstitution 
of human IVG may be near [7]. In the future, IVG combined with IVF can allow infertile 

couples trying to conceive to generate their own gametes through iPSC technology [7, 89]. 

Interestingly, IVG has the potential for even broader implications in reproductive medicine. 

With the increasing cultural shift in family planning, such as the delay in marriage and parent-

hood from young adults, is a shift that will most likely impact the GFR and the replacement 

fertility rate in any given country. Countries that have a low GFR have a larger aging popula-

tion that is not only positioned to shrink, but also has fewer populations in the working age to 

support the older dependents. Therefore, the replacement fertility rate, highly dependent on 

the GFR, is the rate in which women give birth to enough babies to sustain population levels 

in any given country [90]. With the availability of contraceptives, young adults can now easily 

delay parenthood to ages where fertility begins to decline and conceiving may become more 

difficult and at times no longer possible. IVG/IVF therapy combined with iPSC technology 
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can potentially provide a solution to the significant implications in the new cultural shifts that 
will affect the GFR and the replacement fertility rate across countries. Until such a promis-

ing therapy can come into fruition, there are many scientific and ethical challenges that we 
must undertake. The need for robust and reproducible studies in both spermatogenesis and 

oogenesis are crucial for the future in IVG practices. It is imperative to evaluate claims of IVG 

and germ cell meiosis through the use of standardized benchmarks and the demonstration 

of the ‘gold standards’ for meiosis [91]. Furthermore, the advancement in both knowledge 

(i.e. understanding SSC niche dynamics) and technology (i.e. creating comprehensive fluidic 
devices and viable in vitro platforms) are still clear challenges that need to be addressed.

In terms of the ethical implications of IVG, it is imperative for us to revisit the relevant regulatory 

measures. For instance, 10 countries permit human embryo research under the 14 day culture 

rule [87]. Of these countries, not including the United States, only seven include regulations to 
human IVG for medical or scientific applications. Interestingly, though the United States has 
no federal laws or regulations to prohibit IVG for research, the Dickey-Wicker amendment 
(signed in 1995) forbids federal funding for human embryo research [87, 92]. Even though the 

National Institutes of Health (NIH) recognized the value of it, and the CDC continues to report 
the GFR at record lows. Combine this with the 2017 provisional CDC report that birth rates are 
declining for nearly all age groups of women under 40, but rising in women aged 40–44 by 2% 

from 2016 [1]. Furthermore, just as the development of IVF was initially highly controversial, it 
has now become a widely accepted treatment for infertility, and more commonly used among 

women with declining fertility. Therefore, if the scientific and societal value of human IVG 
research is agreed to be significant, IVG research should then be conducted under balanced 
regulations with careful ethics review and close oversight [87]. Scientists, appropriate policy-

makers and the public should all be included for all future discussions regarding human IVG 

research.
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