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Abstract

Authentication of food products is of ongoing interest to consumers in developed coun-
tries. Recently, a general interest in the sustainability of food productions, from both 
societal and environmental perspectives, developed and added a new dimension. Fish 
and fish products are common targets for food adulteration. The most important issue 
is fish management, e.g., the environmental impact of overfishing. Analytical means 
would be helpful for verification. The aim of the present study was to evaluate various 
marker groups for the distinction of European plaice from the North Sea from European 
plaice from other geographical origins: volatile organic compounds (VOCs), fatty acids 
(FA), and isotope ratios. VOCs were analyzed using proton transfer reaction mass spec-
trometry (PTR-MS); the FA composition was analyzed using gas chromatography with a 
flame ionization detector, and carbon, hydrogen, nitrogen; and sulfur isotope ratios were 
analyzed using isotope ratio mass spectrometry. In a principal component analysis, FA 
profiling appeared the best option to distinguish European plaice from the North Sea 
from those originating from other seas.

Keywords: European plaice, fatty acid composition, geographical origin, isotope ratio, 
PCA, Pleuronectes platessa, PTR-MS

1. Introduction

In food science and technology, considerable attention to the preservation and quality of foods 
has been paid throughout history. Food authenticity is a typical food quality issue and is not 
new either. Some food authenticity infringements were reported over 2000 years ago, and the 

first related food standards appeared 150 years ago. The classical form of food authenticity 
violations is the removal or addition of undeclared ingredients or constituents. However, 
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more recently, a general interest in the sustainability of food productions, from both societal 

and environmental perspectives, developed and added a new dimension. With advancing 

technology and increased awareness of social corporate responsibility, new questions have 
emerged in the food authenticity arena. How are production in terms of raw materials and 

processing mirrored in unique product characteristics? Do special production (farming man-

agement systems, geographical origin, etc.) result in special traits? How to discern and mea-

sure these relevant characteristics? And, can these characteristics be used for discriminatory 
purposes and/or substantiate the produce quality?

Adulteration has been defined as “the fraudulent addition of non-authentic substances or 
removal or replacement of authentic substances without the purchaser’s knowledge for eco-

nomic gain of the seller” by the United States Pharmacopeial Convention (USP). Fish and fish 
products are common targets for food adulteration [1]. There are different issues in regard to 
the traceability of fish: (1) the species of the fish, (2) geographical origin, and (3) the produc-

tion method [2]. During production, fish types can be completely interchanged or mixed with 
cheaper or less sustainable fish types. According to European law (Regulation 1379/2013), 
information concerning the commercial designation, the catch area, and the production 

method shall be available at each stage of marketing of the species concerned [3]. Next to 
the fact that geographical origin of food products is laid down in legislation, consumers find 
it important because of economic, safety, and sustainability reasons. Different types of food 
adulteration can be distinguished: most types influence the product composition by, e.g., 
substitution or dilution, while other issues involve cultivar and variety of products of plant 

origin, species of products of animal origin, geographical origin of foods, production system, 

and processing. Geographical origin has become a more important issue in recent years for 

economic, safety, and sustainability reasons [4]. Counterfeiting occurs, for example, with the 
European Union’s protected designation of origin, like certain cheeses or olive oils.

Authenticity and traceability research aims to combine different complementary analytical 
strategies to determine the authenticity of materials and commodities. Various techniques 
have been studied based on organic constituents, mineral contents or composition, light- or 

heavy-element isotope ratios, or combinations thereof. If the components have sufficient dis-

criminatory power, the set of their concentrations will form a characteristic pattern or “finger-

print” relating to the geographical origin of the sample. Chemometrics provides the ability 

to detect these patterns, and is essentially helpful when the number of components necessary 
to differentiate samples from different geographical origins increases [5]. The three major 
groups of analytical techniques are: mass spectrometry techniques, spectroscopic techniques, 
and separation techniques.

Markers that have been successfully used for the verification of the geographical origin of 
food and feed products are volatile organic compounds (VOCs), the fatty acid (FA) profile, 
and isotope ratios. These markers can be analyzed using mass spectrometry (like isotope ratio 
mass spectrometry—IRMS; and proton transfer reaction mass spectrometry—PTR-MS), spec-

troscopic techniques (like NMR and infrared spectroscopy), and separation techniques (such 
as liquid chromatography—LC; and gas chromatography—GC) [6].
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1.1. VOC profile in the verification of geographical origin

VOCs have shown to satisfactorily predict the country of origin of olive oil, truffles, Grana 
Padano cheese, as reviewed by Luykx et al. [5] and crude palm oil, butter, cumin cheese, dry 
cured hams, and coffees, as listed by Pustjens et al. [6]. More recently, VOCs have also shown 
to successfully verify geographical origin of Chinese cabbage [7], plant-related liquors [8], 

saffron [9], rosemary [10], teas [11], and capers [12]. For plant products, the difference in VOC 
profile was ascribed to differences in climate and soil type [13]. This can be translated to fish, 
since the sea bed and climate will vary for fish from different geographical origins. The VOC 
profile of fish has been linked to lipid type and source and would therefore be determined by 
the diet they consumed [14].

1.2. FA profile in the verification of geographical origin

FAs have shown to satisfactorily predict the country of origin of milk and olive oils, as 

reviewed by Luykx et al. [5] and chocolate and wheat, as listed by Pustjens et al. [6]. More 
recently, FAs have also shown to successfully verify geographical origin of berries [15], cock-

les [16], and almonds [17]. FAs in the fish feed are incorporated into its tissues; therefore, the 
FA profile of the fish tissue reflects the diet over a longer period of time [18]. Especially the 

content of polyunsaturated fatty acids (PUFAs) seems to be dependent on the geographical 
origin, i.e., the latitude, and thus broadly related to temperature [19]. They found that at a 
higher latitude, marine organisms contain more n-3 long-chain PUFAs.

1.3. IR in the verification of geographical origin

All food products have their own isotopic composition, which is determined by the animal’s 

diet (carbon and nitrogen), climate (hydrogen and oxygen), and soil composition (sulfur) [6]. 

IRMS analysis combined with or without other techniques and/or chemometric models has 
been successfully applied to determine the geographical origin of dairy and animal products, 

vegetables, natural flavors, honey, wines, coffee, and fruit, as reviewed by Luykx et al. [5] 

and cereals, fish and crustaceans, and olive oil and wine, as listed by Pustjens et al. [6]. IRMS 
analysis of carbon, hydrogen, nitrogen, and oxygen has shown to be able to verify geographi-
cal origin of different fish species [20, 21].

1.4. Case study: geographical origin of European plaice

European plaice (Pleuronectes platessa) is the principal commercial flatfish in Europe [22]. 

European plaice live at the bottom of the sea not far from the shore, predominantly in 

the North Sea, but extend to the Baltic Sea, the Barents Sea, and the sea around Ireland 
and Iceland [23]. Juvenile European plaice feed on a variety of microbenthic species [24], 

whereas larger European plaice mainly feed on Polychaeta and mollusks [25]. The habitat 
of European plaice is dependent on: (a) their life stages: they gradually move from shal-

low coastal nurseries into deeper water [26, 27] and (b) climate change: European plaice 
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have shifted toward deeper and more northern areas [28]. This information can be used to 
find specific groups of markers potentially useful for the verification of their geographi-

cal origin.

The aim of this study was to examine how well VOCs, FAs, and isotope ratios are able 
to distinguish European plaice from the North Sea from European plaice from other 

provenance.

2. Materials and methods

2.1. Samples

A reference set of 49 European plaice were collected by local fishermen from five different 
locations in the Northeast Atlantic ocean—FAO area 27: the North Sea, subarea IV a, b, c 
(n = 31); other research institutes from the Baltic Sea, subarea IIId (n = 3); the Barents Sea, 
subarea I (n = 5); the sea around Ireland, subarea Va (n = 5); and the sea around Iceland, 
subarea VIIj2 (n = 5). Locations are labeled as NS, BalS, BarS, SIr, and SIc, respectively, in 
Figure 1. European plaice from the North Sea were both collected in 2013 and 2014; all other 
samples were collected in 2014. Samples were transported on dry ice to our institute, filleted 
and stored at −18°C until further analyses. In 2014, a set of market samples were also col-
lected: 11 non-breaded and non-marinated frozen European plaice fillets from Italian (n = 6), 
German (n = 4), and Dutch (n = 1) supermarkets. According to the package, they originated 

from the Northeast Atlantic Ocean (FAO zone 27). For some fish, the North Sea, which is part 
of this FAO catch area, was mentioned specifically.

Figure 1. Habitat of European plaice, with the sample locations marked as NS—North Sea, BalS—Baltic Sea,  
BarS—Barents Sea, SIr—sea around Ireland, and SIc—sea around Iceland. Original figure from FAO Fish Finder (23).
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2.2. Chemicals

All chemicals used were of analytical grade purchased from Merck (Darmstadt, Germany), 
Sigma-Aldrich (St. Louis, MO, USA), or VWR International (Radnor, PA, USA), unless stated 
otherwise.

2.3. Analytical methods

2.3.1. PTR-MS

The samples were thawed to room temperature in their package and 1 gram of finely sliced mate-

rial was placed in a 250-mL glass bottle. The headspace above the samples was equilibrated in 
a waterbath at 25°C for 30 minutes and kept at 25°C for the duration of the measurement. Two 
independent replicates of each sample were analyzed. The headspace was drawn from the sample 
flask at a rate of 60 ml/min, which was led through a heated transfer line into a high-sensitivity 
PTR-MS system (Ionicon GmbH, Innsbruck, Austria). A constant drift voltage of 600 V and a 
pressure of 2.20 ± 0.02 mbar were maintained in the reaction chamber. Data were collected for the 
mass range m/z 20–160 using a dwell time of 0.2 s/mass, resulting in a duration of 28 s/cycle. The 
instrument was operated at a standard E/N (ratio of electric field strength across the drift tube, E, 
to buffer gas density, N) of 138 Td (1Td = 10−17 cm2 V molecule−1). Inlet and drift chamber tempera-

tures were 60°C. Masses are analyzed after H3O
+ ionization in a quadrupole mass spectrometer 

and detected as ion count/s, resulting in a fingerprint of the volatiles. Each sample was analyzed 
for five full mass cycles. The headspace concentrations of the compounds during the second, 
third, and fourth cycles were calculated as described by Hansel et al. [29]. Blank measurements 
(empty bottle) were performed for five cycles, with the average of the third, fourth, and fifth mass 
cycles subtracted from the samples’ spectra as background correction. These corrected headspace 
concentrations (ppbv) were subsequently used for further statistical analysis.

2.3.2. GC flame ionization detection (GC-FID)

The samples were freeze-dried. Fat was extracted from the samples (2 g) using 
chloroform:methanol (2:1, v/v) as described by Tres et al. [30]. Fatty acids were methyl esteri-
fied according to Guardiola et al. [31]. The obtained methyl esters were analyzed in duplicate 
using an Agilent 7890A GC system, fitted with a flame ionization detector, using a CP7419 
50 m × 0.25 mm FAME column (Agilent, Santa Clara, CA, USA). Temperature was kept at 
100°C for 1 minute and then increased to 230°C with 5°C/min, after which the temperature 
was kept at 230°C for 9 min. Helium was used as a carrier gas using a flow of 0.9 ml per min 
and a split ratio of 1:50. Fatty acids were identified by comparing retention times with those of 
standard mixtures (Supelco 37 component FAME mix (Supelco, St. Louis, MO, USA)). Results 
were expressed as normalized peak areas (% of total fatty acids).

2.3.3. IR-MS

The dried defatted samples (1 g) were placed in a paper filter and washed three times with 
10 ml of distilled water for removal of sodium sulfate, then three times with 10 ml of acetone 
to accelerate drying, and then placed into glass containers and dried in vacuum overnight.
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For analysis of δ2H, 250–300 μg of dried sample material was weighed into a silver capsule. 

δ2H was determined using a high-temperature pyrolysis system working at 1450°C on the 
basis of ceramic tubes with glassy carbon reactor filling coupled with a Thermo Finnigan 
Delta-Plus XL IRMS system (Thermo Fisher Inc.), designed for continuous flow isotope ratio 
mass spectrometry (CF-IRMS) of hydrogen isotopes in helium carrier gas.

For the other isotopes (for δ13C, δ15N, and δ34S), 3–4 mg of sample material was weighed 
into tin capsules. The measurements of δ13C, δ15N, and δ34S were carried out on an elemental 

analyzer (Vario EL, Elementar, Hanau, Germany) coupled with an isotope-ratio mass spec-

trometer, IRMS (IsoPrime, GV Instruments, Manchester, UK). All isotopes were analyzed 
in duplicate.

The values of the isotope ratios are expressed in δ (‰) and correspond to international stan-

dards (V-SMOW for δ2H, V-PDB for δ13C, air for δ15N, and V-CDT for δ34S) according to the 

relation:

  δ  (‰)  = 1000 x   
 R  sample   −  R  standard  

 ___________ 
 R  standard  

    (1)

where R represents the ratio of the higher mass to the lower mass isotopes measured in the 

sample (R
sample

) and in the standard (R
standard

).

2.4. Data analysis

Normality of the distribution of VOC profiles, FA profiles, and isotope ratios within the groups 
of geographical origin was checked using the Shapiro-Wilk test. Distributions appeared to be 
nonnormal (Shapiro-Wilk P < 0.05). Therefore, Kruskal-Wallis test for group comparisons was 
performed among the provenance groups using SPSS version 23.0.0.2 (IBM Corp., Armonk, 
NY, USA). Principal component analysis (PCA) was performed using the Unscrambler 

(Version X 10.3). Raw data were auto-scaled prior to PCA.

3. Results and discussion

3.1. Distinction of the provenance of European plaice

3.1.1. VOC profiles analyzed by PTR-MS

The reference set of 49 European plaice samples was subjected to PTR-MS analyses. Most 
abundant masses of protonated VOCs of European plaice collected from the North Sea are 

m/z 33, 45, and 59. Subsequently, significant differences in mass intensities between European 
plaice originating from the North Sea versus other provenance were examined (Kruskal-
Wallis P < 0.05). Results are presented in Table 1.

In order to explore the data, PCA was carried out. PCA (Figure 2A) revealed grouping of 

samples, with two-third of the samples from the North Sea showing high positive scores in 
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the first dimension. Samples from the other seas demonstrated high negative scores in this 
dimension. Remarkable is the fact that there is more variation in European plaice from the 

North Sea than in European plaice from the other seas. This might be caused by the fact that 
the European plaice from the North Sea have been sampled at six different locations within 
the North Sea, while the other seas have been sampled only on one location. For this reference 

set, distinction of the North Sea European plaice from other European plaice by their VOCs 

is a promising approach.

However, the VOC profiles are affected not only by the fish diet [14] but also by the freshness 

of the fish [32, 33]. This factor may interfere in the analysis. VOCs formed during storage 
are alcohols, aldehydes, esters, organic acids, and sulfur compounds, which can be either of 

microbial or nonmicrobial origin [34]. Their non-protonated masses range from m/z 46 for 
ethanol to m/z 176 for 3-hydroxy-2-butanone. This is a complicating factor and can influence 
the robustness of the method.

Protonated VOC 

(m/z)
NS (n = 31) BalS (n = 3) BarS (n = 5) SIr (n = 5) SIc (n = 5) P-value NS 

versus other seas

33 398 ± 623 43 ± 14 60 ± 15 30 ± 17 26 ± 3 0.000

38 3 ± 1 3 ± 0 4 ± 0 4 ± 0 4 ± 0 0.000

39 10 ± 1 10 ± 1 12 ± 1 11 ± 2 10 ± 1 0.063

41 14 ± 7 12 ± 4 11 ± 2 12 ± 3 7 ± 4 0.044

42 39 ± 43 2 ± 1 1 ± 0 0 ± 0 0 ± 0 0.000

43 23 ± 12 13 ± 4 10 ± 1 7 ± 1 16 ± 5 0.001

45 301 ± 240 204 ± 161 69 ± 34 101 ± 29 579 ± 239 0.044

46 7 ± 5 4 ± 4 2 ± 1 2 ± 1 13 ± 6 0.051

47 6 ± 8 14 ± 12 3 ± 1 2 ± 1 55 ± 25 0.793

55 6 ± 3 4 ± 1 6 ± 1 5 ± 1 5 ± 1 0.983

57 10 ± 10 4 ± 1 3 ± 1 25 ± 13 2 ± 1 0.049

59 168 ± 112 79 ± 8 53 ± 17 45 ± 13 66 ± 52 0.000

60 6 ± 4 3 ± 0 2 ± 1 2 ± 0 2 ± 2 0.000

63 1 ± 1 2 ± 2 1 ± 0 1 ± 0 2 ± 0 0.001

69 7 ± 2 3 ± 2 4 ± 1 3 ± 1 4 ± 2 0.000

71 4 ± 2 1 ± 0 0 ± 0 1 ± 0 3 ± 1 0.000

73 7 ± 2 8 ± 1 9 ± 4 6 ± 1 6 ± 3 0.369

87 3 ± 2 1 ± 1 2 ± 0 1 ± 0 1 ± 0 0.000

Table 1. Average protonated VOC composition (ppbv) of European plaice sampled from the North Sea (NS), the Baltic 
Sea (BalS), the Barents Sea (BarS), the sea around Ireland (SIr), and the sea around Iceland (SIc); mean intensity, standard 
deviation, and significant differences between European plaice from the North Sea and European plaice caught in other 
seas (Kruskal-Wallis).
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Figure 2. Principal component analysis plot of (A) PTR-MS data, (B) fatty acid profile, and (C) all data combined, on 
European plaice from the North Sea (1—box), the Baltic Sea (2—dot), the Barents Sea (3—triangle), the sea around 
Ireland (4—diamond), and the sea around Iceland (5—inverted triangle).
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FA NS (n = 31) BalS (n = 3) BarS (n = 5) SIr (n = 5) SIc (n = 5) P-value NS 
versus other 
seas

C12:0 0.03 ± 0.04 0.02 ± 0.01 0.02 ± 0.01 0.06 ± 0.03 0.01 ± 0.01 0.436

isoC14:0 0.03 ± 0.05 0.00 ± 0.00 0.02 ± 0.01 0.01 ± 0.02 0.00 ± 0.01 0.146

C14:0 2.02 ± 0.72 2.01 ± 0.28 2.54 ± 0.24 3.10 ± 0.91 2.69 ± 0.83 0.002

C14:1n5 0.15 ± 0.13 0.06 ± 0.01 0.06 ± 0.04 0.04 ± 0.04 0.03 ± 0.02 0.000

isoC15:0 0.06 ± 0.04 0.00 ± 0.00 0.03 ± 0.02 0.01 ± 0.02 0.01 ± 0.01 0.000

C15:0 0.74 ± 0.16 0.95 ± 0.05 0.70 ± 0.04 0.76 ± 0.11 0.50 ± 0.10 0.332

isoC16:0 0.26 ± 0.19 0.38 ± 0.00 0.35 ± 0.07 0.28 ± 0.09 0.26 ± 0.06 0.004

C15:1n5 0.02 ± 0.04 0.01 ± 0.01 0.03 ± 0.02 0.00 ± 0.00 0.05 ± 0.03 0.279

C16:0 17.22 ± 2.06 17.57 ± 0.23 15.89 ± 1.83 18.89 ± 2.84 20.02 ± 0.68 0.134

C16:1n9 0.43 ± 0.17 0.65 ± 0.06 0.53 ± 0.06 0.70 ± 0.16 0.42 ± 0.04 0.006

C16:1n7 4.28 ± 1.97 7.64 ± 2.21 16.74 ± 3.10 4.88 ± 1.24 6.45 ± 1.53 0.000

isoC17:0 0.43 ± 0.16 0.36 ± 0.05 0.39 ± 0.08 0.33 ± 0.11 0.28 ± 0.06 0.033

anteisoC17:0 0.40 ± 0.29 0.52 ± 0.05 0.49 ± 0.12 0.34 ± 0.14 0.35 ± 0.13 0.140

C17:1n7 0.31 ± 0.17 0.65 ± 0.03 0.28 ± 0.05 0.34a ± 0.15 0.25 ± 0.08 0.371

C18:0 4.53 ± 0.64 4.07 ± 0.04 3.16 ± 0.43 4.15 ± 0.42 3.94 ± 0.73 0.001

Trans C18:1 + C18:T2 0.38 ± 0.33 0.49 ± 0.10 0.40 ± 0.15 0.91 ± 0.40 0.65 ± 0.23 0.001

C18:1n9 6.38 ± 2.41 8.60 ± 1.06 8.81 ± 1.41 8.46 ± 1.62 8.21 ± 1.23 0.000

C18:1n7 3.31 ± 0.93 4.50 ± 0.47 4.17 ± 0.62 3.03 ± 0.66 4.23 ± 0.53 0.018

C18:2n6t 0.09 ± 0.07 0.14 ± 0.01 0.08 ± 0.02 0.09 ± 0.06 0.13 ± 0.06 0.253

c9t12C18:2 0.01 ± 0.03 0.02 ± 0.03 0.01 ± 0.02 0.02 ± 0.03 0.03 ± 0.05 0.189

t9c12C18:2 0.21 ± 0.11 0.14 ± 0.00 0.09 ± 0.02 0.23 ± 0.09 0.10 ± 0.02 0.001

C18:2n6c 0.84 ± 0.95 0.85 ± 0.08 1.21 ± 0.29 1.20 ± 0.57 0.41 ± 0.12 0.095

C18:3n6 0.07 ± 0.05 0.13 ± 0.03 0.16 ± 0.03 0.09 ± 0.02 0.06 ± 0.01 0.019

C18:3n3 + C20:0 0.38 ± 0.18 0.41 ± 0.02 0.57 ± 0.18 0.63 ± 0.19 0.29 ± 0.08 0.057

C20:1n9 1.16 ± 0.52 1.99 ± 0.07 2.45 ± 0.71 3.49 ± 1.36 1.98 ± 0.57 0.000

C21:0 0.07 ± 0.06 0.12 ± 0.02 0.08 ± 0.01 0.04 ± 0.02 0.09 ± 0.03 0.482

C20:2n6 0.35 ± 0.19 0.53 ± 0.01 0.40 ± 0.09 0.69 ± 0.33 0.30 ± 0.11 0.054

C20:3n6 0.14 ± 0.05 0.17 ± 0.04 0.09 ± 0.06 0.13 ± 0.05 0.05 ± 0.01 0.044

C20:3n3 + C20:4n6 + C22:0 6.00 ± 2.20 3.44 ± 0.26 3.28 ± 1.20 4.24 ± 0.75 2.44 ± 0.91 0.000

C22:1n9 0.19 ± 0.26 0.41 ± 0.04 0.41 ± 0.07 0.64 ± 0.17 0.48 ± 0.15 0.000

C20:5n3 17.70 ± 3.27 13.72 ± 1.45 13.19 ± 3.05 15.63 ± 3.33 19.44 ± 2.70 0.075

C22:2n6 0.07 ± 0.03 0.06 ± 0.00 0.10 ± 0.04 0.04 ± 0.05 0.05 ± 0.02 0.991
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3.1.2. FA profiles by GC-FID

Subsequently, the reference set of European plaice was subjected to GC-FID analysis. European 
plaice contains around 0.8% fat [35]. This was extracted and its FA composition was analyzed. 
The most abundant FAs in European plaice were palmitic acid (C16:0), eicosapentaenoic acid 
(EPA, C20:5n3), and docosahexaenoic acid (DHA, C22:6n3) (Table 2). Karl et al. [35] found a 

similar FA profile for European plaice from the North Sea.

When comparing the origins for each FA, 19 out of 35 FAs revealed significant differences 
between European plaice from the North Sea and European plaice from other seas (Kruskal-
Wallis P < 0.05; Table 2). European plaice from the Barents Sea seems to have a rather distinct 
FA profile compared to the other seas. When considering groups of FAs instead of individual 
FAs, contents of MUFA (monounsaturated FA), PUFA (polyunsaturated FA), OFA (other FA), 
omega-3 FAs, and omega-6 FAs were significantly different in North Sea European plaice from 
European plaice originating from other seas (Kruskal-Wallis P < 0.05). Colombo et al. [19] sug-

gested that fish originating from a higher latitude would contain more PUFA. However, this 
was not confirmed in our study. European plaice from the sea with the highest latitude, the 
Barents Sea, showed to have the lowest PUFA content, namely 25%. The sea around Ireland, 
which has the lowest latitude, showed a rather average PUFA content, namely 33%.

PCA reveals clustering of samples (Figure 2B). Generally, the samples from the North Sea 

and those from the other seas are separated in the second dimension. Therefore, the FA 
profile seems to be a suitable option to distinguish North Sea European plaice from those 

FA NS (n = 31) BalS (n = 3) BarS (n = 5) SIr (n = 5) SIc (n = 5) P-value NS 
versus other 
seas

C24:0 0.15 ± 0.08 0.19 ± 0.05 0.23 ± 0.12 0.15 ± 0.11 0.07 ± 0.05 0.889

C24:1n9 0.23 ± 0.29 0.47 ± 0.07 0.25 ± 0.08 0.52 ± 0.15 0.41 ± 0.12 0.000

C22:6n3 15.78 ± 4.22 13.31 ± 2.72 6.35 ± 1.30 10.60 ± 4.34 11.45 ± 3.24 0.000

SFA* 26.51 ± 1.62 25.77 ± 0.08 23.50 ± 1.83 28.15 ± 2.00 28.05 ± 0.77 0.788

MUFA 16.31 ± 4.99 24.42 ± 3.93 32.07 ± 4.75 20.10 ± 3.57 21.52 ± 2.78 0.000

PUFA 41.52 ± 6.35 32.75 ± 4.23 25.31 ± 4.74 33.14 ± 6.83 34.53 ± 2.89 0.000

OFA 15.66 ± 3.89 17.06 ± 0.38 19.12 ± 1.90 18.60 ± 5.64 15.90 ± 1.24 0.016

Omega 3 39.05 ± 7.85 27.32 ± 4.17 20.01 ± 3.83 26.58 ± 6.68 31.05 ± 2.66 0.000

Omega 6 1.38 ± 1.04 2.05 ± 0.20 2.12 ± 0.36 2.48 ± 0.74 1.14 ± 0.21 0.002

Omega 3/omega 6 ratio 38.09 ± 18.72 13.51 ± 3.33 9.90 ± 3.66 11.75 ± 5.44 28.21 ± 6.26 0.000

*SFA = saturated fatty acids, MUFA = monounsaturated fatty acids, PUFA = polyunsaturated fatty acids, OFA = other 
fatty acids.

Table 2. Average fatty acid composition of European plaice sampled from the North Sea (NS), the Baltic Sea (BalS), 
the Barents Sea (BarS), the sea around Ireland (SIr), and the sea around Iceland (SIc); mean concentration, standard 
deviation, and significant differences between European plaice from the North Sea and European plaice caught in other 
seas (Kruskal-Wallis).
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originating from other seas. This was expected since the FA composition of the fish tissue 
is reflected by their diets and these will vary for the different geographical locations [18].

3.1.3. Isotope ratios by IR-MS

Finally, all reference samples were subjected to IR-MS for analysis of carbon, hydrogen, nitro-

gen, and sulfur isotope ratios. Results are visualized in a scatter plot (Figure 3). Hydrogen iso-

tope ratio (δ2H) is severely depleted compared to sea water, ranging from −43.7 to −112.5‰ 
(versus Vienna Standard Mean Ocean Water). This can be explained by the fact that organic 
tissue is synthesized from metabolized products and their isotopic composition is referenced 

to local food chains rather than dissolved water isotopes [36]. Sulfur isotope ratio (δ34S) is 

enriched in European plaice, ranging from +4.6 to +20.1‰. This is typical for marine fish, 
whereas freshwater fish typically shows depleted δ34S [37]. Carbon isotope ratio (δ13C) is 

depleted, ranging from −14.6 to −21.1‰. Nitrogen isotope ratio (δ15N) is enriched, ranging 

from +8.9 to +13.0‰. Both δ13C and δ15N ratios are in accordance with previous research on 

flatfish from the southern North Sea and claimed to reflect the European plaices’ diet [38].

In both scatter plots, grouping of the samples according to their geographical origin is clearly 
visible. Only samples from the seas around Ireland and Iceland seem to group together. 

Nitrogen and hydrogen isotope ratios in the North Sea European plaice were significantly 
different from the ratios in European plaice from other seas (Kruskal-Wallis P < 0.05). This was 
expected based on the results previously described on the carbon, hydrogen, nitrogen, and 
oxygen isotope ratios of various fish species [20, 21].

3.1.4. All data combined

All VOC, FA, and isotope ratio data acquired in this study were also combined and subjected 
to PCA plot (Figure 2C). Again, groups of samples from the same geographical origin cluster 

together, with 80% of the European plaice from the North Sea demonstrating high positive 

Figure 3. Scatter plot of IRMS data on European plaice: δ13C versus δ15N (left) and δ2H versus δ34S (right) on European 

plaice from the North Sea (box), the Baltic Sea (dot), the Barents Sea (triangle), the sea around Ireland (diamond), and 
the sea around Iceland (plus).
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scores in the first dimension and samples from other seas clustering together with the rest 
from the North Sea and showing negative scores in the first PCA dimension. Distinction of 
North Sea European plaice from others appears less effective with all data combined in com-

parison to some of the individual datasets.

3.1.5. Retail European plaice samples

Eventually, a set of 11 non-breaded and non-marinated European plaice fillets from German, 
Italian, and Dutch supermarkets were analyzed for their FA profiles and compared with the 
reference set, since FA profiling showed a good distinction and is a robust method. They were 
projected on the PCA plot of the FA profiles as a sixth class (Figure 4). All retail samples clus-

ter in the same region as European plaice samples from the Baltic Sea, the Barents Sea, and the 
sea around Ireland. According to their label, they originated from the North Sea specifically 
(n = 4), or more generally from FAO zone 27 (n = 7). In this phase of the research, it cannot 
be explained why all retail European plaice samples would cluster together away from the 
samples from the North Sea. This is possibly caused by the fact that samples were collected 
in a different year and season. However, more research would be needed to evaluate the 
seasonal effect on the FA composition.

4. Conclusion

This case study showed that the geographical origin of food products is reflected in its 
product characteristics, which can be measured by several analytical techniques. From the 
techniques evaluated in this study, it appears that VOC, FA, and isotope ratios all provide 

Figure 4. PCA plot of fatty acid profile of European plaice from the North Sea (1—box), the Baltic Sea (2—dot), the 
Barents Sea (3—triangle), the sea around Ireland (4—diamond), the sea around Iceland (5—inverted triangle), with 
projection of retail European plaice samples (6—star).
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relevant information regarding the provenance of European plaice. VOC analysis by PTR-MS 
allows rapid analysis, but may be influenced by factors like freshness and packaging. FA and 
isotope ratio analyses are more robust from that perspective, and both allow automated rou-

tine analyses. More samples should be collected to provide insight into differences between 
seasons and for building chemometric classification models. Nevertheless, the approaches 
are promising for future provenance verification of European plaice. The results may help to 
underpin sustainable fishing. Sustainable fishing is an important topic for governmental and 
possible certification organizations.

In a broader perspective, provenance of food products has become an important topic in food 

authenticity because of: (a) a quality perspective: the geographical origin of a food product 
influences its composition and thereby its quality and (b) an environmental perspective: some 
production locations are more sustainable than others. Consumer awareness on these topics 

is growing rapidly; they want their food to be of high quality and with a clear geographical 
identity.
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