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Abstract

In climatology, there are mainly two types of models used, that is, global circulation/
climate models (GCMs) and regional climate models (RCMs). GCMs can be run for the 
whole globe, while RCMs can be run only for a part of the globe. In this chapter, we 
provided a general statistical methodology for evaluating process-based (GCM or RCM) 
climate models. To bridge observed and simulated data sets, statistical bias correction 
was implemented. A meta-analysis technique is used for selecting a model or scenarios, 
which have good performance compared to others. For model selection and ensemble 
projection, Bayesian model averaging (BMA) is used. Posterior inclusion probability 
(PIP) is used as model selection criterion. Our analysis concluded with a list of best 
models for maximum, minimum temperature, and precipitation where the rank of the 
selected models is not the same for the listed three variables. The outputs of BMA closely 
followed the pattern of observed data; however, it underestimated the variability. To 
overcome this issue, 90% prediction interval was calculated, and it showed that almost 
all the observed data are within these intervals. The results of Taylor diagram show that 
the BMA projected data are better than the individual GCMs’ outputs.

Keywords: bias correction, climate change, meta analysis, model selection, posterior 
inclusion probability

1. Introduction

This chapter is basically about statistical evaluation of climate models; however, prior to model’s 
evaluation, it is important to highlight briefly about climate models and their types. In the lit-
erature, climate models are also known as process-based models as these models work closely 

to the physical process of the climate of our planet. Broadly speaking, climate models can be 
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divided into two types, global circulation/climate model (GCM) and regional climate model 

(RCM). As the name of these models suggests, GCM can be run for the whole globe, while 

RCM can be run for a particular location of interest. Due to different uncertainties, we need to 
evaluate these models before using their outputs for further analysis. Evaluation of a climate 

model means assessing a model’s performance so as to articulate the grounds on which a model 
can be declared good enough for its anticipated use. Model’s evaluation is an important step 
in climate change assessment and impact assessment studies. It provides guide lines to choose 

the best models or scenarios for further analysis. For evaluation of climate models, we need 

observational data and historical simulated data by using climate models for the same variables 

and for the same time period. This chapter presents a combination of classical and Bayesian 

statistical approaches for the evaluation of climate models. This chapter is structured as: right 

after this brief introduction, climate models in general and GCM and RCM in particular and 

their evaluation are briefly explained, and methodology is discussed in Section 2, Section 3 is 
reserved for results and discussion, and Section 4 comprised of summary and conclusion.

1.1. Climate model

A climate model is a complex system of mathematical equations which represents the physi-

cal process among various components which contribute to the climate of our globe. To run 

a GCM, the globe is divided into a number of grid boxes with horizontal resolution (latitude 

and longitude) and vertical resolution (height or pressure). The climatology is solved in each 

grid after providing the initial conditions to the main deriving climate variables like tem-

perature, wind speed, humidity, pressure, etc. The brief details about GCMs and RCMs are 

presented in the subsequent sections, for more details about GCMs, we refer to [1].

1.2. Global climate model

GCMs are the most modern and sophisticated tools available to provide basic information 

about climate globally. These models comprise complex mathematical equations which rep-

resent the physical process of atmosphere, ocean, cryosphere, and land surface. GCMs are run 

for the whole globe, and due to the complex system, it takes long time in simulations; how-

ever, super computers can be used to make their performances more efficient. According to 
[1], a GCM is “Numerical models, representing physical processes in the atmosphere, ocean, 

cryosphere and land surface, are the most advanced tools currently available for simulating 

the response of the global climate system to increasing greenhouse gas concentrations.” The 

process of simulating climate systems by using climate models is called dynamical modeling 

or dynamical downscaling. The nesting of dynamical modeling and simulation of climate 

systems is presented in Figure 1 using GCM and RCM, while a list of some popular GCMs is 

presented in Table 1 along with some basic information about each model.

1.3. Regional climate model

RCMs are also process-based climate models and comprise complex mathematical equations 

like GCMs; however, these models can be run for a particular location of interest. As GCMs 
can be run for the whole globe, therefore, the grid size is coarser, and the information in the 
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Figure 1. The chain of dynamical downscaling, global climate modeling, and then regional climate modeling to get 

climate information at higher resolution from coarser resolution.

S. No. Name Resolution (Degree*) Institute/Center

1 CanESM2 2.7906 × 2.8125 Canadian Centre for Climate Modeling and Analysis

2 CCSM4 1.250 × 0.942 National Center for Atmospheric Research

3 CESM1-CAM5 1.250 × 0.942 National Center for Atmospheric Research

4 CMCC-CMS 1.875 × 1.865 Centro Euro-Mediterraneo per I Cambiamenti Climatici

5 CNRM-CM5 1.406 × 1.401 Centre National de Recherches Meteorologiques

6 EC-EARTH 1.1215 × 1.125 Irish Centre for High-End Computing (ICHEC), European 

Consortium

7 GFDL-ESM2G 2.500 × 2.023 Geophysical Fluid Dynamics Laboratory

8 GFDL-ESM2M 2.500 × 2.023 Geophysical Fluid Dynamics Laboratory

9 INM-CM4 2.000 × 1.500 Institute for Numerical Mathematics

10 MIROC-ESM-CHEM 2.7906 × 2.8125 National Institute for Environmental Studies, The 
University of Tokyo

11 MPI-ESM-LR 1.875 × 1.865 Max Planck Institute for Meteorology (MPI-M)

12 MPI-ESM-MR 1.875 × 1.865 Max Planck Institute for Meteorology (MPI-M)

13 NorESM1-M 2.500 × 1.895 Norwegian Climate Centre

*1 degree is approximately equal to 111.32 km.

Table 1. Details about GCMs used in this study with their resolutions and other brief information.
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form of output of GCMs is at lower resolution. For impact assessment studies like impact of 

climate change on water resources, agriculture, urban planning, etc., we need information at 

higher resolution. Toward this end, we need to do regional climate modeling which provides 

climatic information at higher resolutions. Due to the rapid development in computational 

technology, the modern RCMs can be run with a resolution of 10 km or even higher resolution.

1.4. Evaluation of climate models

Evaluation of the process-based climate models is an important step in climate change assess-

ment and impact assessment studies. Different methods can be used for this purpose; however, 
we presented a combination of advanced statistical methods for model evaluation including 

classical and Bayesian approaches. Evaluation of process-based climate model will give guide 

lines about model or scenario selection to researchers in climate changes assessment and stud-

ies related to the impact assessment of climate change in different areas. This will help research-

ers to use specified and representative models rather than randomly selected model and to get 
realistic results. Statistical bias correction is important to reduce the gap between observed 
and model’s simulated data and considers initial step toward climate change assessment. Meta 
analysis is used for scenario analysis, which assigns higher weights on the basis of precision of 

a particular scenario. For model (GCM in our case), we used Bayesian model averaging (BMA) 

technique to choose a set GCMs performing better than others. On the basis of chosen GCMs, 
ensemble projections were calculated using BMA technique and further evaluated using Taylor 

diagram along with individual GCMs’ outputs. Further details are presented in methodology 
section about each method and examples with discussion in results and discussion section.

1.5. Objectives of this study

This study aims to present statistical methods including frequentist as well as Bayesian which 

can be used for the evaluation of process-based models with detailed examples and discus-

sion using the real world data.

2. Data and methodology

2.1. Data

Two types of data sets have been used in this research, observed and climate model’s simu-

lated data. Observational data were acquired from Pakistan Meteorological Department 

(PMD) on daily frequency for three climate variables including maximum, minimum tem-

perature, and precipitation for different locations of Pakistan. RCM’s simulated data were col-
lected from COordinated Regional climate Downscaling Experiment (CORDEX), Met. Office 
of the United Kingdom (UK), and Global Change Impact Studies Centre (GCISC), Pakistan. 
For evaluation purpose, we used data for the baseline time period, which is 1960–1990 for 
both observed and simulated data, but for calculating ensemble projections and their evalua-

tion, the baseline is considered as 1975–2005.
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2.2. Statistical bias correction

According to [2], all models are wrong but some of them are useful. Climate models pro-

vide useful information; however, there are various sources of uncertainties which have 
influence on the outputs of these models [3, 4]. To bridge the difference between observed 
and model’s simulated data, we need to utilize statistical methods. In order to carry out 
statistical bias correction, different statistical methods were developed starting from simple 
to most sophisticated ones. For detailed literature about statistical bias correction methods, 

we refer to [5, 6]. We present the methodology of latest developed methods by [7], which 

preserve trend and climate extremes in future climate model’s simulations called quantile 
delta mapping (QDM).

A four step methodology is required to implement the QDM method, starting from the cumu-

lative distribution function (CDF) of model projected series   Y  
m,f

   . We assume that f, h, m, and o 

stand for future, historical, model, and observed data, respectively. Further,  F  and  Y  represent 

CDF of the data and original data, respectively.

   F  
m,f

   (y (t) )  = P ( Y  
m,f

   (t)  ≤ y (t) ) ,  F  
m,f

   (t)  ∈  [0, 1]   (1)

To proceed to the second step, we need to find the relative change using the ratio of the 
inverse CDF of model predicted data applied to the CDF of model predicted data and the 

inverse CDF of historical observed data applied to model predicted data. Mathematically, this 

can be written by Eq. (2).

   ∆  
m
   (y (t) )  =   

  F  
m,f

     −1  ( F  
m,f

    (y (t) ) ) 
  _________________  

  F  
m,h

     −1  ( F  
m,f

   (y (t) ) ) 
   =   

y (t) 
 ____________  

  F  
m,h

     −1  ( F  
m,f

   (y (t) ) ) 
    (2)

The quantiles of model’s predicted data   F  
m,f

   (y (t) )   can now be bias corrected by implementing the 

inverse CDF estimated from historical observational data.

    Y ̂    
o,m

   (t)  =   F  
o,h

     −1  ( F  
m,f

   (y (t) ) )   (3)

Finally, the bias corrected future projections can be obtained by applying the relative changes 

to the historical bias corrected data presented in Eq. (4).

    Y ̂    
m,f

   (t)  =   Y ̂    
o,m

   (t)  .  ∆  
m
   (y (t) )   (4)

   Y ̂    
m,f

   (t)   is the future model’s bias corrected data which can be used now for further analysis. To 
preserve absolute changes in the data, Eqs. (2) and (4) can be applied additively rather than 
multiplicatively [7]. The multivariate counterpart of the method presented in [7] is available 

and can be found in [8]. One advantage of multivariate quantile mapping bias correction 

(presented in [8]) is that it preserves spatial dependence structures between climate vari-

ables when we are applying this method to more than one variable simultaneously. This is 
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especially important when we are dealing with impact assessment studies like hydrological 

modeling, agricultural production, etc. under the changing climate.

2.3. Meta analysis

Scenario’s or model’s assessment is an essential part of climate change analysis as it provides 
valuable information about a particular scenario or model. Meta analysis is a statistical method 

which can be used for this purpose; however, it is also a useful technique to produce a com-

bined estimate of projections from individual model outputs or different scenarios. It gives 
weight to each study on the basis of its precision and, consequently, provides confidence in 
future projections which have higher precision. Usually, researchers prefer models, scenarios, 

studies, laboratories’ outputs, etc., which have higher weights than those with lower weights. 
In order to accomplish the evaluation of models or scenarios using meta analysis, the three 

step methodology is explained briefly in the following subsections.

2.3.1. Selection of the model

There are two basic models to perform a meta analysis: the fixed effect model (FEM) and the 
random effect model (REM) [9]. The FEM assumes that all the studies included in the meta 

analysis come from a single identical population or share a common effect (mean or average), 
while a REM assumes that the effects of the studies included in the meta analysis form a 
random sample from a population following a specified distribution. The observed effects 
in the FEM and REM are mathematically presented in Eqs. (5) and (6), respectively. Suppose 
we have k studies, and let  θ  denote the (true) intervention effect in the population, which we 
would like to estimate. Further, let   θ  

k
    denote the kth study effect, and   ζ  

k
    the random effect in 

this study;  k = 1, 2, … , K. 

   θ  
k
   = θ +  ε  

k
  ,  ε  

k
  ~N (0,   ѵ  

k
     2 )   (5)

   θ  
k
   = θ +  ζ  

k
   +  ε  

k
  ,  ζ  

k
  ~N (0,  τ   2 )   (6)

Here,   ε  
k
    describes the variation within the kth study, and the random effects   ζ  

k
    reflect the 

variations between the considered studies. FEM is a special case of REM when the variations 

between studies are equal to zero:

   ζ  
1
   =  ζ  2   = … =  ζ  

K
   = 0,  (7)

then the random effect model reduces to the fixed effect model. Model selection is mainly 
based on the nature and objectives of the study [9–11]. This is an important step because the 

remaining two steps depend on model selected. Therefore, model selection must be made 

carefully. This chapter presented both models for explanation, and in results and discussion 

section, we present an example to make clear the differences between these two models.
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2.3.2. Weighting schemes for parameter estimation

Different weighting schemes are available for the estimation of the effect size in meta analysis; 
however, it depends on the nature of the study to choose one of them [9]. We proceed with the 

so-called inverse-variance weighting technique for quantifying the effect size in our analysis. 
For details about different weighting schemes, we refer to [10]. According to [9], all the avail-

able schemes are efficient because they assign higher weights to more precise studies. In case 
of a fixed-effect model, the weights are calculated by Eq. (8).

   ω  
k
   =   1 ___ 

  ѵ  
k
     2 
    (8)

where   𝝎  
k
    and    ѵ  

k
     2   are the weight and variance, respectively, of the kth study. In a random effect 

model, the weights are calculated by Eq. (9).

    
  ω  

k
     ∗  =   1 ___   ѵ  

k
     ∗   
  

  ѵ  
k
     ∗  =   ѵ  

k
     2  +  τ   2 

   (9)

where    ω  
k
     ∗   is the weight for kth study, and    ѵ  

k
     ∗   is the combined variance of within-study and 

between-studies (  τ   2  ). As we had already discussed, the weights for estimating the effect size 
depend on the model chosen in the model specification stage.

2.3.3. Estimation of parameters

The next step is to estimate the unknown parameters of the specified model by incorporating 
the weighted least squares method given by Eq. (10).

   
 θ  

c
   =   

 ∑ 
k=1

  K     W  
k
   .  θ  

k
  
 __________ 

 ∑ 
k=1

  K     W  
k
  
  

   
 W  

k
   =   1 ______ 

var ( θ  
k
  ) 
  
    (10)

The   (1 − α)  × 100%  confidence interval of the combined estimator is given by

   θ  
c
   ±  Z  

 (1−  α __ 2  ) 
   × SE ( θ  

c
  )   

where   θ  
c
    is the combined size effect,  SE ( θ  

c
  )   is the standard error, and   Z  

 (1−  
α

 
__

 2  ) 
    is the   (1 −   

α
 

__
 2  )  -quantile 

of the standard normal distribution.

2.4. Model (GCM) selection, ensemble projections, and their evaluation

In this part, Bayesian model averaging (BMA) is used for two purposes, that is, model selec-

tion and producing ensemble projections by using the outputs of selected GCMs and finally 
the evaluation of models’ outputs. Table 1 lists some popular GCMs with brief details about 
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their resolution, and the institutes where each model was developed. The outputs of these 

models are used in the subsequent sections of this chapter. However, before embarking on 

this journey, it is important to discuss briefly the concept of posterior probability which is at 
the core of the Bayesian approach. Bayesian model averaging is discussed afterwards.

2.4.1. Posterior probability

Bayes’ theorem states that the posterior probability of   j   th   model,  p ( M  
j
   | D)  , is calculated as the 

likelihood of observed data given    j   th   model,  p (D |  M  
j
  )  , multiplied by the prior probability of the    

j   th   model, and divided by the probability of having the current observation realization,  p (D)  . 

The posterior probability is thus calculated as follows:

  P ( M  
j
   | D)  =   

p (D |  M  
j
  )  . p ( M  

j
  ) 
  ____________ 

p (D) 
    (11)

In Eq. (11),  p (D)   is used as a normalizing constant given in Eq. (12), and hence the Bayes’ rule 
can be simply stated as in Eq. (13).

  p (D)  =  ∑ 
j=0

  
s

   p (D |  M  
j
  )  . p ( M  

j
  )   (12)

  p ( M  
j
   | D)  ∝ p (D |  M  

j
  )  . p ( M  

j
  )   (13)

The prior distribution of a model shows the probability allocated to a statistical model. In this 

study, we have   M  
j
   ;  j = 0, 1, 2, … , s =  2   k  -1 possible statistical models. The likelihood of observation 

represents the probability of getting the current model realization. The posterior probability 
of a model represents the probability of the model to realize the current model given observa-

tions. Different choices for the prior are available; however, the users can also implement their 
own customized priors for their analysis. In case of using a uniform prior distribution (i.e.,  

 p ( M  
j
  )  ∝ 1 /  2   k  ), assigning equal prior weight to all models then the posterior model probability 

can be expressed by Eq. (14).

   p ( M  
j
   | D)  ∝ p (D |  M  

j
  )   (14)

Eq. (14) shows that in this case the posterior probability of a model is only determined by 
the likelihood of observational data. Likelihood of a model reflects the ability to reproduce a 
given system of observed data. Different likelihood functions have been proposed to calculate 
the likelihood,  p (D |  M  

j
  ) ,  for example, see [13–15, 17]. A Gaussian likelihood proposed by [16] 

is used in this chapter.

2.4.2. GCM selection

The rapid developments in the computational technology make it practicable to run com-

plex process-based climate models for simulating complex climate systems of our planet; 
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however, the output from a single model still may have uncertainties [18]. There has been a 

number of GCMs developed to project the future global climate change and use their out-

put for impact assessment studies in different areas [1]. Due to different parameterization 
schemes of GCMs, internal atmospheric variability [19], and uncertainties in input data, dif-

ferent GCMs may produce quite different results. Therefore, it is important to consider more 
GCMs instead of relying on a single GCM. Regression models can be used to estimate the 

observed climate by using outputs from different GCMs as covariates. In a regression model 
context, the problem of uncertainty modeling has been raised by Raftery et al. [20]. In such 

models, covariate (GCM here) selection is a basic part to build a valid regression model, and 

the objective is then to find the “best” model for the response variable and a given set of pre-

dictors. The first problem to solve is which covariates should be included in the model and 
how important are they? Suppose we have a response variable  Y  and set of covariates,   X  

1
  , … ,  

X  
k
   , and E represents the expected value, then there are   2   k   different linear regression models 

expressing the relationship between the response variable and the potential predictors as 

follows:

    

 M  
0
   : EY =  β  

0
  ,  M  

1
   : EY =  β  

0
   +  β  

1
    X  

1
  , … ,  M  

k
   : EY =  β  

0
   +  β  

k
    X  
k
  

       

 M  
k+1

   : EY =  β  
0
   +  β  

1
    X  

1
   +  β  2    X  2  , … ,  M  

k+l
   : EY =  β  

0
   +  β  

k−1
    X  
k−1

   +  β  
k
    X  
k
  ; l = k (k − 1)  / 2

        

 

 M  
k+l+1

   : EY =  β  
0
   +  β  

1
    X  

1
   +  β  2    X  2   +  β  3    X  3  , … ,  M  

k+l+m
   : EY =  β  

0
   +  β  

k−2    X  
k−2   +  β  

k−1
    X  
k−1

   +  β  
k
    X  
k
  

     m =   
k (k − 1)  (k − 2) 

 _________ 6      

 M  
 2   k−1 

   : EY =  β  
0
   +  β  

1
    X  

1
   +  β  2    X  2   + … + β  

k
    X  
k
  

  

 ,  (15)

The same procedures are used here for GCM selection, where GCM now stands for a model   

M  
j
   ; j = 1,…, m = 13; and a uniform prior was used as a prior probability distribution for GCMs 

( p (GCM)  ∝   
1
 

__
 m   ). The posterior inclusion probability (PIP) is the sum of posterior probabilities 

of each covariate (GCM) from all possible models included in BMA used as model selection 

criterion. The PIP has a range between zero and one, where a value close to one means that 

the GCM closely reproduces the observed data, while a value close to zero means that the 

corresponding GCM’s output does not agree at all with the observed data.

It has a strong and solid background in Bayesian statistics, and there is a rich body of litera-

ture on BMA and PIP. GCM selection was made along the following four steps:

1. Run BMA as presented in Eq. (15).

2. Calculate the posterior probability for each GCM included in all possible regression mod-

els in step 1.

3. Sum the posterior probabilities for each GCM from all possible models called PIP in step 2.

4. Decide about the models having higher PIPs.

As the criterion is probability; therefore, we prefer models with higher PIPs than those with 
lower PIPs. Similarly, this procedure can be used for model selection in other areas like 
hydrology, ecology, forestry, etc.
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2.4.3. Ensemble projections

Normally, it is assumed in standard regression modeling that a single model be the true model 

to examine the response variable given a set covariates, but other probable models could give 

different outcomes for the same problem at hand. The typical approach, which means condi-
tioning on a single model supposed to be true, nevertheless, it does not take account of model 

uncertainties. One way is to compute an arithmetic ensemble mean (AEM) as a prediction as 

this could provide better results than any of the single model’s output; however, this approach 
gives no information about the uncertainty that the predictions have [21]. BMA overcomes 

this issue by estimating the regression models using all possible combinations of covariates 

given in Eq. (15) and then builds a weighted average model from all possible models. Thus, it 
provides probabilistic projections where the weights are the posterior probabilities during the 

training period, and these are directly tied to the performance of the models [20, 22–24]. The 

predictive probability density function (PPDF) of BMA of a variable of interest is the weighted 

average of PDFs of individual forecasts where the weights are the posterior model probabili-

ties [20]. The performance of BMA is considered better in different areas such as ground water 
modeling, weather forecast, hydrological predictions, and model uncertainty analysis [25–31]. 

Suppose we have a set of k covariates (different GCMs’ outputs in this study), then there are   2   k   

statistical models    M  
0
  , … ,  M  

s
   . Then, the conditional forecast PDF of the variable of interest on the 

basis of training data D (observational data) is presented in Eq. (16).

  p (y | D)  =  ∑ 
j=0

  
s

   p (y |  M  
j
  , D)  . p ( M  

j
   | D)   (16)

where  p (y |  M  
j
  )   is the forecast PDF based on model   M  

j
   , and  p ( M  

j
   | D)   is the corresponding poste-

rior probability used as a weight; consequently, it reflects how well the model fits the data 
during the training time period. As the weights are posterior probabilities presented in Eq. 

(16), therefore   ∑ 
j=0

  s   p ( M  
j
   | D)  = 1.  The posterior mean and variance of PDF in Eq. (16) can be easily 

calculated and are given in Eqs. (17) and (18), respectively [24].

  E (y | D)  =  ∑ 
j=0

  
s

   E (y |  M  
j
  , D)  . p ( M  

j
   | D)  =  ∑ 

j=0
  

s

     μ  
j
   .  w  

j
     (17)

  Var (y | D)  =  ∑ 
j=0

  
s

      ( μ  
j
   −  ∑ 

i=0
  

s

     w  
i
   .  μ  

i
   )    

2
  +  ∑ 

j=0
  

s

     w  
j
   .   σ   2   

j
    (18)

  Predictive variance = Between Model Variance + Within Model Variance  (19)

In Eq. (18), the predictive variance has two parts, one is the between models variance, and the 
other one is the within model variance [20]. The variance    σ   2   

j
    is associated with the   j   th   model’s 

prediction. The between model variance indicates how the individual model mean predic-

tions deviate from the ensemble prediction, with all contributions to deviations weighted by 

posterior model weights [26]. The within model variance represents the individual model 

contributions weighted by the corresponding posterior model probability. Whether to 

consider only one of them or both depends on the objectives of the study. In the example 
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discussed in results and discussion section, we are not taking into account the second term 

as the objective is the ensemble assessment of climate change as suggested by [26]. As the 

prediction mean and variance of the forecasted PDF are available now, the prediction interval 

can be constructed using Eq. (20).

   μ  
pr

   ±  z  
 (1−  α __ 2  ) 

   .  √ 
_____

  Var  
pr

      (20)

Here,   μ  
pr

   ,   Var  
pr

  ,  and   z  
 (1−  

α
 

__
 2  ) 
    are ensemble mean, variance, and the   (1 −   

α
 

__
 2  )  -quantile of the standard 

normal distribution, respectively. The subscript pr with   μ  
pr

   ,   Var  
pr

    means that these statistics are 

about the predicted PDF.

2.4.4. Taylor diagram

Taylor diagrams are rather sophisticated diagrams for graphical evaluation of a system, pro-

cess or phenomenon. It was invented by [31] in 1996; however, it was published later in 2001 
to aid researchers in comparative assessment of the performance of different models. The 
diagram is used to quantify the degree of correspondence between observational and mod-

eled data sets in term of three statistics, standard deviation (SD), root mean square error 
(RMSE), and correlation coefficient (CC). We used the R software system to create the Taylor 
diagrams (a) for maximum temperature, (b) for minimum temperature, and (c) for precipita-

tion presented in Figure 6. The data on all these variables are taken from northern Pakistan.

The interpretation of Taylor diagrams is straight forward; however, sometimes it feels tricky 
and needs basic understanding of statistics. The model’s performance is considered better 
if the modeled and observed data have strong correlation, and the modeled data have low 

RMSE and have closer standard deviation to that of the observational data.

3. Results and discussion

This section provides analysis and results about the methodology presented in Section 2. Each 
section presented in methodology section is explained with examples and detailed discussion.

3.1. Statistical bias correction

Figure 2 presents the results about evaluation of statistical bias correction methods applied to 

temperature and rainfall data taken from Northern Pakistan. In Figure 2, observed represents 

observed data, Sim-baseline is model’s simulated data for the base line period (1960–1990), 
and Sim-BC stands for model’s simulated data after the application of statistical bias cor-

rection techniques. For comparison, we keep the time duration of both data sets (simulated 

and observed) same (1960–1990). It can be seen from Figure 2 that there are marked differ-

ences between observed and regional climate model’s simulated data for temperature and 
precipitation in Northern Pakistan. The left panel displays maximum temperature, while 

the right panel is about precipitation. In both parts, original simulated results deviated from 

observational data; however, after the application of statistical bias correction techniques, the 
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Figure 2. Comparison of observed, simulated, and bias corrected maximum temperature and precipitation for Northern 

Pakistan. In both parts, the red, black, and blue colors show observed, model simulated, and bias corrected data.

differences are reduced, and the pattern is followed in a better way, particularly for precipita-

tion, where we have quite a large difference between observed and simulated precipitation 
data. This example is about 30 years averaged data for each month; however, these techniques 
can be applied to data on other frequencies like daily, hourly, etc.

3.2. Meta analysis

In Figure 3, climate change scenarios were analyzed, and the same procedures can be per-

formed for model selection depending on the researcher’s objective. In Figure 3, on the left 

side under the heading, studies 1, 2, 3, and 4 represent the A2, B2, RCP4.5, and RCP8.5 sce-

narios, respectively. The former two are chosen from the fourth assessment report (AR4), 
while the latter are the two scenarios stem from the fifth assessment report (AR5) of the 
Intergovernmental Panel on Climate Change (IPCC). In this study, scenario analysis was per-

formed for the mean difference between baseline and future time period. The subheadings 
total, mean, and SD under experimental and control stand for total number of observation 
included in a particular scenario, mean value of each scenario, and standard deviation of each 

scenario, respectively. Experimental and control stand for the baseline period and future time 

period, respectively. The thick black vertical line shows no difference between the mean val-
ues of experimental and control periods. The dotted vertical line shows the combined mean 
difference. Against study 1, there is outcome effect mean difference for scenario 1, similarly 
for other scenarios. The length of the line on each box shows the width of the confidence inter-

val, and the size of the box (square shape) shows the weight assigned to a particular study. 

As the weights are assigned on the basis of precision of a scenario (in our case), therefore, 

the scenarios receiving higher weights have less variance and consequently exhibit shorter 

confidence intervals. The bigger the square box the higher the weights assigned to a par-

ticular scenario. The two diamond shapes represent combined mean differences where the 
upper one is for FEM, while the lower one is for REM. The width of the diamond shows the 
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confidence interval under the selected model, and it is obvious that the width of the diamond 
for REM is larger than that of FEM. The reason for this difference is that REM also considered 
the variation between studies (Eq. (9)), while a FEM does not consider this variation (Eq. (8)). 
Bear in mind that two R packages “metafor” and “meta” have been used for this analysis. For 

details about these packages, we refer to [11, 12], respectively.

3.3. GCM selection and ensemble projection

3.3.1. GCM selection

Figure 4 presents the output of model selection results for 13 different GCMs where the cri-
terion of model selection is PIP. To our knowledge, this technique is used for the first time in 
atmospheric sciences for the purpose of GCMs selection. The model selection procedure was 

run multiple times (six times here) with small changes in sample size; however, no significant 
changes have been noted in the end results. In Figure 4, the results are presented only for 

maximum temperature; nevertheless, the same procedures can be used for other variables. 

Figure 3. Here, studies 1, 2, 3, and 4 represent A2, B2, RCP4.5, and RCP8.5 scenarios, respectively. Meta analysis was 
conducted for mean difference between experimental and control time periods.

Figure 4. GCM selection among competing models for maximum temperature using posterior inclusion probability 

(PIP). PIPs are given on the vertical axis, and models (GCMs) are indexed on the horizontal axis. Model 1-model 6 stand 
for different runs of BMA with different sample sizes.
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For maximum temperature, top five selected GCMs are canESM2, CESM-CAM5, EC-EARTH, 
GFDL-ESM2G, and INM-CM4 in ascending order. It was investigated that different variables 
(minimum temperature and precipitation in our case) have different lists of top GCM; how-

ever, they shared some models in the top list. The list of top five models has maximum PIPs 
and can be used for further analysis rather than to use all GCMs.

3.3.2. Ensemble projections

Figure 5 elaborates the results of BMAs’ outputs calculated from selected GCMs compared 
with observational data sets for three key climate variables, maximum temperature, mini-

mum temperature, and precipitation for the duration of 30 years (1975–2005) considered as 
baseline period here. As BMA is a regression-based approach, it estimates the mean value 

and underestimates variation. To cope with this issue, 90% prediction intervals were cal-

culated for each variable and plotted. In Figure 5, red, blue, and deep gray colors represent 

observational, BMAs’ outputs, and 90% prediction intervals for each variable. From the 
upper panel, it is difficult to get a clear conclusion as it is for 30-year data; however, from 
the bottom panel, clear information can be inferred. We can see from parts d (maximum 
temperature) and e (minimum temperature) that BMAs’ outputs follow the pattern nicely; 
however, it does not capture well the variability in both cases. The 90% prediction intervals 

cover almost all the variation for both variables. For precipitation, we calculated upper 90% 

prediction intervals, and it can be seen that it covers the observational values; however, quite 
a few values are still outside because precipitation is a more complex phenomenon than 

the temperature. Similarly, we can calculate ensemble projections from various models or 
climate change scenarios in hydrology, agriculture, ecology, etc. to address the uncertainty 

while relying on the single model’s output.

Figure 5. The upper panel demonstrates the evaluation of BMAs’ outputs from selected GCMs for a period of 30 years 
(1975–2005) (a) maximum temperature, (b) minimum temperature, and (c) precipitation. Red, blue, and deep gray colors 
represent observed, BMA, and 90% prediction interval for each variable. The bottom panel demonstrates the same as in 
the upper panel for just 1 year.
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3.4. Taylor diagram

The green lines inside the graph (Figure 6) show RMSE between observed and modeled 
data sets, while the blue lines show standard deviation of each data set. The straight lines 

inside the graph show the correlation coefficient between modeled and observational data 
sets. The dots on the horizontal lines represent observed data in each part of Figure 6. Look 

at part (a) of Figure 6 which is about maximum temperature and the purpose is to assess 

which model’s simulated data is best as compared to other models. We calculated ensemble 
projections by using the outputs from all selected GCMs by using BMA and plotted them in 
each part of Figure 6. We can see that the BMA performance is superior to the performance 

of individual model’s output. The output of BMA has higher correlation with observed data 
than that of individual GCM’s outputs. The BMA’s result also has less standard deviation 
than individual model outputs and smaller RMSE than the individual GCMs’ outputs. The 
other parts of Figure 6 can be interpreted similarly. In the same way, other models can be 

evaluated with other variables mentioned in the above example and can help in model’s 
selection in different areas.

Figure 6. Taylor diagrams for evaluation of model and observational data for (a) maximum temperature, (b) minimum 

temperature, and (c) precipitation. Thirteen different GCMs’ outputs and BMA’s outputs are evaluated in this study for 
the Northern part of Pakistan.

Statistical Methodology for Evaluating Process-Based Climate Models
http://dx.doi.org/10.5772/intechopen.80984

57



4. Summary and conclusion

This study aims to present statistical methodology for evaluating process-based climate 

models. Different techniques have been presented for this purpose including statistical bias 
correction, meta analysis, model selection, ensemble projections, and Taylor diagram. The 

application of statistical bias correction bridged regional climate model’s simulated and 
observational data. The performance of bias correction technique is better for temperature 
than precipitation; however, bias-corrected precipitation follows the observed precipita-

tion’s pattern nicely. Meta analysis can be used for different purposes like model selection, 
scenario analysis, etc. In this study, meta analysis is used for scenario analysis by consider-

ing four different scenarios two each from fourth assessment report (AR4) and fifth assess-

ment report (AR5) of the IPCC. Meta analysis shows higher confidence in RCP projections 
and assigned higher weights on the basis of their precision. GCM’s selection is of course 
important part in climate change assessment as there are many GCMs available. BMA is 

used for this purpose, and the results show that different variables have different ranks for 
different GCMs; however, they shared some GCMs in the list of best models. On the basis 
of selected GCM, ensemble projections were calculated using BMA technique. The results 

of GCMs and BMA’s outputs were then evaluated by using Taylor diagram. Evaluation 
statistics used in Taylor diagram are root mean square error, correlation coefficient, and 
standard deviation of each data set. The evaluation confirms that ensemble projections are 
better than individual GCMs’ outputs; nevertheless, we need to conduct this type of studies 
at different locations and then can make recommendations on the basis of their results.

Glossary

AEM arithmetic ensemble mean

BMA Bayesian model averaging

CC coefficient of correlation

CORDEX COordinated Regional climate Downscaling Experiment

FEM fixed effect model

GCISC Global Change Impact Studies Centre

GCM global circulation/climate model

IPCC Intergovernmental Panel on Climate Change

PDF probability density function

PIP posterior inclusion probability

PMD Pakistan Meteorological Department

PPDF predictive probability density function

RCM regional climate model
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REM random effect model

RMSE root mean square error

SD standard deviation

UK the United Kingdom
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