
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 7

Biological Signals of Sperm Membrane Resistance to
Cryoinjury in Boars

Julian Valencia and Francisco Javier Henao

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.80824

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 

Julian Valencia and Francisco Javier Henao

Additional information is available at the end of the chapter

Abstract

Despite the great progress achieved in the cryopreservation of boar semen, it has not 
been possible to effectively counteract the negative effects on fertility and prolificacy. The 
boar sperm membrane (SpM) has a particular composition of phospholipids, cholesterol, 
and proteins that make it highly sensitive to freezing. Just at the beginning and during 
the freezing protocol, the sperm are exposed to factors that destabilize the membrane 
and increase the sensitivity to cholesterol efflux and lipid peroxidation. This is a series of 
events similar to physiological capacitation; they are commonly called cryocapacitation. 
All the molecules reported as freezability marker and those considered potential mark-
ers are directly or indirectly related to the physiology of the SpM. The above gives rise 
to intensify studies tending to assess their importance as facilitators of the boar semen 
freezing.

Keywords: boars, reproduction, boar, semen freezability, biological signals

1. Introduction

The cryopreservation of boar semen is unquestionably an indispensable technology in the devel-
opment of actions for the conformation of germplasm banks and commercial genetic improve-

ment plans. Despite the great progress achieved in different topics related to this problem, it 
has not been possible to effectively counteract the damage caused by the freezing protocols to 
the sperm cell with the usual negative effects on fertility and prolificacy. The current extensive 
knowledge about the physiological, morphological, and molecular characteristics has been 
pointed out about many of the peculiarities of the (SpM) of the boar. Each day there is greater 
clarity about the lipid composition and its dynamics in the fluid mosaic and about the protein 
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fraction and its participation in crucial events that guarantee the integrity of the sperm and the 
complete fulfillment of its reproductive function. The present chapter is oriented to confront 
from the basic morphology and physiology of the cell and especially the membrane, the dam-

ages caused by the cryopreservation technique with the evidences registered around possible 
resistance phenomena characterized by abundance, and lack or absence of certain molecules 
from both the spermatozoa and the seminal plasma (SP). The aforementioned confrontation 
has focused on studies that classify boars according to the freezability of their semen, by virtue 
of the behavior of molecules, especially proteins, currently nominated as freezability markers.

2. Sperm membrane characteristics of boar

2.1. Lipids

The cell membrane is a highly fluid and dynamic lipid bilayer, composed mainly of phospho-

lipids, cholesterol, and proteins. Thanks to the amphipathic character of phospholipids and 
cholesterol, the cellular membrane functions as a barrier between intracellular and extracel-
lular environments [1]. The phospholipids have a hydrophilic head or polar group and two 
hydrophobic hydrocarbon acyl chains [2]. The polar group is constituted for a phosphate 
esterified with glycerol (short-chain alcohol) in phosphoglycerolipids (PG) or sphingosine 
(long-chain alcohol) in sphingomyelin (SM) [3, 4]. Likewise, cholesterol structure consists of 
a hydrophilic hydroxyl group linked to a hydrophobic steroid ring structure of cyclopen-

tanoperhydrophenantrene with a hydrocarbon tail [3]. In the phosphate group of the PG, 
a second alcohol or an amino alcohol can also be attached and different phospholipids are 
produced: phosphatidylinositol (PI) (alcohol inositol), phosphatidylserine (PS) (aminoal 
cohol serine), phosphatidylethanolamine (PE) (amino alcohol ethanolamine), and phosphati-
dylcholine (PC) (amino alcohol choline) [3, 5]. PG are in greater abundance than SM [2], and 

in boar SpM, PC and PE are found in greater quantities than PS and PI [6]. In boar SpM, the 
outer leaflet is mainly composed of PC and SM and the inner leaflet by PS and PE, possibly 
by the action of an aminophospholipid translocase [4, 7]. This translocase is ATP dependent 
and causes a rapid movement of PS and PE toward the inner leaflet of the membrane [7, 8].

In human, ram, rabbit, bull, and boar spermatozoa, the SpM has higher amount of long-
chain polyunsaturated fatty acids (PUFAs) with cis configuration than the membranes of the 
somatic cells [9–11]. In addition, differences have been found in the proportion of unsaturated 
to saturated [12].

The most abundant fatty acids in the phospholipids of the boar SpM are palmitic acid (16:0), 
stearic acid (18:0), oleic acid (18:1, n-9), and the PUFAs: docosapentaenoic acid (DPA; 22:5, 
n-6) and docosahexaenoic acid (DHA; 22:6, n-3) [10].

The sterols are the second most abundant class of lipids in the SpM, mainly cholesterol (24% 
from total lipids) and in a lesser proportion, desmosterol [6, 13–17]. The ratio of cholesterol to 
phospholipid is 0.26 compared with 0.45 in the bull, 0.3 in the rooster, and 0.36 in the stallion [6].  
In addition, cholesterol is distributed asymmetrically in the lipid bilayer, with greater amount 
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in the outer leaflet [15], by its affinity with PC and SM [18]. The cholesterol molecules are 
inserted between the phospholipids and interact with the fatty acids, and their rigid steroid 
structure provides stability and organization to the membrane [2, 19].

2.2. Fluidity and selective permeability of the boar SpM

The fluidity of the boar SpM depends on the temperature [20], the hydrocarbon acyl chains 

of the phospholipids [17, 21], the sterol content [19], and the charge of the polar groups of the 
phospholipids [22]. High amount of PUFAs with cis configuration in the boar SpM affects the 
degree of compaction of the phospholipids and increases the membrane fluidity [2, 9, 11, 22].

Depending on the temperature, the lipids of the membrane can be in liquid crystalline phase 
or in gel phase [22, 23]. The temperature, at which the lipids pass from one phase to another, is 
the phase transition temperature (Tm). Above Tm, the membrane is liquid, and the cholesterol 
limits the lateral diffusion of phospholipids and proteins, so that it maintains the membrane 
stability and moderates the fluidity. Below Tm, the membrane is in a gel phase, the cholesterol 
increasing the membrane fluidity [2, 25] and maintaining its stabilizing function [19, 23].

As the boar SpM is composed of different types of lipids (saturated fatty acids, PUFA, cho-

lesterol, desmosterol, and others) [9, 16], the phase transition occurs in a temperature range 
between 30 and 5°C [23], which leads to lipid phase separations and irreversible alterations, 

when it is exposed to low temperatures [15, 23, 24].

The property of selective permeability of the membrane is determined by the presence of protein 
ionic channels and specific protein transporters [2]. The boar SpM has a ratio of phospholipids 
to proteins of approx. 0.68 [14], and it has different membrane proteins involved in capacita-

tion, acrosome reaction, motility, and cell volume regulation, such as: HCO
3
−/Cl− exchanger [4], 

voltage-dependent anion channel 2 (VDAC2) [26, 27], calmodulin-sensitive Ca2+-ATPase [28], 

ATP-binding cassette transporters, class B scavenger receptor [19], K+ and Cl− channels [29] and 

aquaporins (AQP) [30].

2.3. Domains and microdomains in boar SpM

The boar spermatozoon has a morphology according to its physiology [31]. Each of its parts is 
highly differentiated by polarized membrane domains [32]. Protein structures separate these 
domains, the posterior ring separates the membrane head from the midpiece membrane, and 

the annular ring separates the midpiece membrane from the flagellum membrane [4]. The mem-

brane of the boar sperm head can be subdivided into four regions: apical, acrosomal, equatorial 
segment, and post-acrosomal [31, 33, 34]. These regions are highly heterogeneous [32], in which 

it is evidenced by a series of specific sperm glycolipids, called seminolipids, in the outer leaflet 
of lipid bilayer, in the apical region of recently ejaculated spermatozoa from the boar [35, 36].

The boar SpM in liquid crystalline phase is in lipid-disordered membrane phase, with high 
lateral diffusion of lipids and proteins due to low amount of cholesterol [19, 37]. The outer 
leaflet of somatic cells membrane has lipid-ordered microdomains known as lipid rafts that 
are rich in SM, glycosphingolipids, saturated phospholipids, and proteins, ordered by the 
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presence of high amount of cholesterol [2, 38, 39]; they function as platforms for molecular 
signaling, cell adhesion, and cell-to-cell interaction [38, 39]. Lipid rafts have been identified in 
both boar spermatozoa and sow oocytes [40], and are associated with maturation, capacita-

tion, acrosome reaction, and gamete interaction [37, 40, 41].

3. Physiological events in the SpM between ejaculation and 

fecundation

3.1. Characteristic events occurred during ejaculation

During boar ejaculation, mature spermatozoa from the epididymis tail are mixed with the 
secretions of the accessory sex glands [33, 42]; in this moment occur different events: first, 
the change of osmolarity from 331 mOsm/L in the epididymis tail to 300 mOsm/L of the SP 
[43–46] produces swelling of the sperm and the activation of a regulatory volume (RV) process 
(regulatory volume decrease (RVD) in this case) [46, 47]; second, the elimination of cytoplas-

mic droplet by increasing the levels of fructose [48] with possible participation of RVD [45, 49]; 

and third, the union of spermadhesins: AQN-1, AQN-2, AQN-3, AWN-1, AWN-2, DQH, PSP 
I, and PSP II (among other proteins) from the SP to the SpM, as decapacitating factors [50–52].

3.2. Regulation of cellular volume (CV)

The maintenance of CV and the adequate concentration of ions and molecules are vital for 
normal sperm physiology [53]. CV is determinate by the relationship between the intracel-

lular content and the osmolarity of the extracellular medium [54]. Drevius [55] states that 

spermatozoa behave like perfect osmometers. The sperm exposure to anisotonic conditions 
causes a cellular swelling or shrinkage, phenomena counteracted by the activation of a 
regulatory volume process [46]. This process can be RVD or regulatory volume increase 
(RVI) depending on the osmotic change [29, 46] which lead to influx or efflux of water and 
osmolytes and ions [56]. During the epididymal maturation, the sperm acquires the ability to 
regulate cell volume [56], in the case of the boar, the sperm undergo an osmotic change that 
goes from approximately 296 mOsm/L in the rete testis until reaching around 331 mOsm/L 
in the tail of the epididymis [43]. Then, at ejaculation, sperm are subjected to an osmotic 
gradient, from a hyperosmotic environment in the tail of the epididymis to the isoosmotic 

conditions of the PS (around 300 mOsm/L) [43, 44]. Because of this osmotic change, there is 
influx of water into the sperm to reestablish the osmotic equilibrium through the dilution of 
the intracellular osmotic content and cell swelling occurs [57]. Sperm swelling induced by 
hypoosmosis produces the opening of K+ ion channels, allowing the exit of intracellular K+ 

([K+]i) under a concentration gradient [29, 46, 56]. In parallel, Cl− ion channels are opened to 

promote the exit of Cl− intracellular ([Cl−]i) in order to achieve an electrical balance [29, 46]. 
The exit of the [K+]i and [Cl−]i reduces intracellular osmolarity, water loss, and reduction of 
cell volume [29, 53].

RVD’s pathways are mediated by the enzymes protein kinase C (PKC) and protein phosphatase 
1 (PP1), which change the balance of phosphorylation-dephosphorylation of threonine and ser-

ine residues [53, 58–60]. Using the boar spermatozoa as a model, Petrunkina [58] found that the 
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phosphorylation activity of PKC seems to be related with deactivation of RVD through closing 
and keeping closed the ion channels, especially Cl− ion channel, while the dephosphorylation 

activity of PP1 produces the opposite effect. These authors found that by activating phosphodi-
esterase that reduces cAMP levels, it results in inactivation of RVD, and by stimulating adenyl-
ate cyclase (AC) in order to increase cAMP levels, under hypoosmotic conditions, it is activated 
RVD (opening of ionic channels). However, in isosmotic conditions, high levels of cAMP increase 
the cell volume by premature activation of RVD-related channels, which consequently produces 
the entry of Cl− and Na+ under a concentration gradient, increasing intracellular osmolarity. This 
increase in cell volume under isoosmotic conditions also occurred with the inhibition of PKC.

3.3. Main events occurred between sperm deposition in the cervix and its arrival to 

the spermatic reservoir (SR)

Between the cervix and the SR, sperm must overcome barrier represented by the cervical 
mucus and the polymorphonuclear neutrophils and T cells; the presence of semen in the uter-

ine lumen causes endometrial inflammation and recruitment of polymorphonuclear neutro-

phils and T cells that attack the spermatozoa [61] and an adequate volume regulation have 
relation with migration capacity through the cervical mucus [62]. In the SR spermatozoa are 
protected from polymorphonuclear neutrophils, thanks to the bind of spermadhesin AQN-1 of 
the SpM with lysosome-associated membrane protein (LAMP) receptors 1 and 2 of the mem-

brane oviductal epithelium [42, 63–65]. There is an association of good sperm RV capacity with 
high farrowing rates in pigs [54]. Boar sperm with problems in RV capacity [41], as well as 

with morphological alterations or cytoplasmic drops, and epididymal sperm have a negative 

relationship with binding index to pig oviductal epithelium [66]. Likewise, spermatozoa with 
chromatin instability, which have a high relationship with the retention of cytoplasmic drop-

lets and with immatures, have low binding capacity to the oviduct epithelium [67]. A study 
developed by [68] showed that proteins from the plasma membrane of the oviduct epithelium 
suppress the activation of bicarbonate-linked motility selectively.

3.4. Relationship between boar sperm capacitation and CV regulation

During sperm capacitation there are changes in membrane permeability and ion entry and exit 
[69], and sperm undergoes osmotic changes in the sow’s reproductive tract [29, 47, 62]; thus, it 
is necessary to establish a molecular model of capacitation that involves the cellular RV.

At the beginning of the capacitation, most of the decapacitation factors are removed (50–75% 
of the spermadhesins AQN-1, AQN-2, and AQN-3 and 90% of the spermadhesin AWN) [50]. 
The SpM is destabilized and the cholesterol becomes more accessible to the lipid-binding 
components of the sow’s reproductive tract [42] or to the fatty acid-free bovine serum albumin 
(FAF-BSA) in the in vitro capacitation systems [13, 33].

In the oviduct sperm suffer a hypoosmotic shock and are exposed to high concentrations of 
bicarbonate and calcium [70, 71]. This osmotic change produces sperm swelling, and RVD 
is activated, with the subsequent exit of [K+]i and [Cl−]i and activation of the Cl−/HCO

3
− 

exchanger, involved in both RVD [46, 53] and sperm capacitation [72, 73]. The output of [K+]

i and [Cl−]i in RVD, generates water loss and cell volume reduction [29, 53]. These changes in 
cell volume have been evidenced in in vitro capacitation [74].
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The activation of Cl−/HCO
3
− exchanger during the RVD allows the entry of HCO

3
− into the 

spermatozoa [4, 75] that activates the AC and increases the levels of cAMP [60, 70, 76]. The 
HCO

3
− in consortium with the FAF-BSA effect the efflux of cholesterol from the SpM,  

the FAF-BSA functioning as an external acceptor of this lipid [75, 77]. Much of this cholesterol 
presents a lateral translocation from the equatorial region to the apical region of the sperm 
head by the activation of the cAMP-dependent PKA [19, 75]. Activation of PKA produces 
a partial scrambling of PS and PE toward the outer leaflet of the lipid bilayer, in the apical 
region of sperm head [75]. Parallel, there is a lateral translocation of seminolipids from the 
apical region to the equatorial region of the sperm head [35, 36]. High levels of cAMP activate 
the premature opening of Cl− and K+ channels, with reduction of [Cl−]i [58]. This event leads to 
the entrance of Cl− to the cell and increase of the CV by the entrance of water [58]. The output 
of [K+]i and the increase of [Cl−]i produce a hyperpolarization of the membrane causing the 
opening of voltage-dependent Ca2+ channels [69]. Both Cl−and HCO

3
− were determinants for 

sperm capacitation, and reduction of Cl− concentration even in the presence of HCO
3
− sus-

pended the capacitation process [73]. The exchanger channel Cl−/HCO
3
− works in association 

with the cystic fibrosis transmembrane conductance regulator (CFTR), which recycles Cl− to 

allow the entry of HCO
3̄
 [73], and the inhibition of CFTR blocks completely the membrane 

hyperpolarization during sperm capacitation [74].

The entrance of Ca2+ activates the tyrosine phosphorylation of proteins [70] necessary for motil-

ity hyperactivation and lipid rafts aggregation in the apical region of sperm head, in the pres-

ence of FAF-BSA, and HCO
3
− is also activated [37, 75]. Aggregation of lipid rafts is determinant 

for the binding to the ZP and the acrosomal reaction [13, 40]. These function as molecular 
signaling platforms where different proteins such as fertilin beta, sp32 precursor, spermadhe-

sin AQN-3, preproacrosin, caveolin-1, and flotillin-1 are involved in the binding to the ZP [37].

4. Cryoinjury in boar SpM

The SpM is the main cellular structure where cryopreservation causes damage; therefore, this 
must have a special focus [13]. Just at the beginning and during the freezing protocol, the 
sperm are exposed to mechanical forces such as centrifugation and dilution that favor the 
depletion of decapacitated factors [78] and the formation of reactive oxygen species (ROS) [79]. 
The detachment of decapacitated factors destabilizes the membrane and increases the sensitiv-

ity to cholesterol efflux [13, 42], and ROS formation produces lipid peroxidation of the highly 
sensitive membrane by the high proportion of PUFAs and DNA fragmentation [80]. In this 
respect, there is evidence of cholesterol and PUFA exit from the membrane during freezing, 
causing loss of membrane integrity and greater peroxidation [10, 16, 17]. During the freezing, 
it has been observed that protamine 1 and histone 1 suffer determinant structural changes [24].

The cold induces changes in the lipids and proteins of the membrane that determine its function-

ing [23]. As the temperature goes from 30 to 5°C [23], restriction of the lateral movement of the 

phospholipids increases, and the membrane passes from a liquid crystalline phase to a gel phase 
[15, 24]. Because the boar SpM contains a high variety of lipids (PUFAs, saturated fatty acids, 
cholesterol, and others) with different Tm [9, 16], some lipids tend to jellified earlier than others 
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[23, 24]. Lipids that are jellified earlier (usually saturated fatty acids) exclude lipids that still main-

tain a liquid phase [23]. The different groups of fatty acids (saturated and unsaturated), in their 
different phases (liquid and gel), form order-disorder transitions phases, and the packaging of 

phospholipids especially in the edges between liquid phase and gel phase is disturbed, forming 
lipid phase separations [18]. It is worth noting that in human sperm cells that have high amount 
of cholesterol in the membrane, there is a minimum of lipid phase separation, while these separa-

tions occur in an exaggerated manner in the boar SpM that has low amount of cholesterol [23].

The formation of order-disorder transition phases excludes membrane proteins from the phos-

pholipid groups in gel phase toward phospholipid groups that maintain in the liquid phase 
[18], resulting in loss of membrane-selective permeability by irreversible proteins clustering, 
disruption of lipid-protein interactions, and translocation or loss of function of ion channels [18, 

24, 81]. As a consequence of loss of selective permeability occur: (i) exit of enzymes and cations 
such as K+ [15, 18]; (ii) alteration of the water transport and the entry of cryoprotectants such 
as glycerol [13]; and (iii) influx of Ca2+ and HCO

3
− from the extracellular environment [15, 82].

This series of events similar to physiological capacitation, commonly called cryocapacitation, 
triggering biochemical pathways that result in protein phosphorylation and hypermotility 
[82, 83]. The main differences between capacitation and cryocapacitation are: (i) cholesterol 
efflux and the reorganization of membrane lipids during freezing lead to irreversible protein 
aggregation with loss of function [18]; (ii) the loss of selective permeability of the membrane 

generates the entry and exit of ions in an uncontrolled manner with differences in the concen-

tration of determining ions [23]; (iii) there are differences in the patterns of phosphorylated 
proteins [83]; (iv) as the separation of lipid phase is not a reversible process, this possibly affects 
the aggregation of lipid rafts in the apical region of the spermatic head and therefore the bind-

ing to the ZP and the acrosome reaction [13, 18].

5. Biological signals of SpM resistance to cryoinjury in boars

All the molecules reported as freezability marker and those considered potential markers 
are directly or indirectly related to the physiology of the SpM. For this reason, the following 
synthesis is plotted according to the location of the molecule in both the extracellular (SP) and 
intracellular medium (spermatozoa).

5.1. Boar freezability markers

5.1.1. Freezability markers in seminal plasma

Fibronectin 1 is one of the most abundant proteins in the boar SP [52]. This protein possi-
bly interacts with integrins, CD44, and albumin, which suggests its binding to the sperm 
and a protective action by reducing the effects of oxidative stress [85]. Integrins are proteins 
expressed in the membrane that connect the extracellular matrix with the interior of the cell 
and fibronectins, among other proteins, are their ligands [85]. Currently, fibronectin 1 is the 
only protein recognized as freezability marker [84, 85].
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5.1.2. Freezability markers in spermatozoa

Heat shock protein 90 alpha A1 (HSP90AA1) has been identified in the spermatozoa flagellum, 
where it activates the phosphorylation of flagellar proteins in tyrosine residues [86, 87]. In 
addition, this protein is associated with thermal stress protection [86] and sperm capacitation 

[88] and is considered a freezability marker in boar [89].

Both acrosin binding protein (ACRBP) and acrosin have been proven as predictors of freezability 

in boar semen [90, 91]. Acrosin is a proteinase present in the acrosomal domain of sperm, 
related with the binding and proteolysis of ZP [92, 93]. This enzyme is stored in the acro-

some of epididymal and ejaculated spermatozoa in its inactive zymogen or proacrosin [92]. 
Proacrosin is converted into its mature form, the acrosin [93], during the capacitation, and 
there is an increase in acrosin activity [94]. In this respect, ACRBP is tyrosine phosphorylated 
during boar sperm capacitation [95] and intervenes in the conversion of proacrosin [96].

In the capacitation there is a lateral translocation of proacrosin and acrosin, involved in the pen-

etration of the ZP, toward the apical region of the sperm head [94]. This event may coincide with 
the redistribution of the proteins flotillin-1 and caveolin-1 and the aggregation of lipid rafts in 
apical region necessary for recognition with ZP and the subsequent acrosomal reaction [37], a 

phenomenon that may not occur due to alterations in the distribution of lipids in the freezing [13].

High levels of triosephosphate isomerase (TPI) in refrigerated boar semen correspond with 

poor freezability [90]. In human semen higher amount of this enzyme in asthenozoospermic 
samples has been found than in cases of normospermia [97]. In the case of frozen-thawed boar 
semen, TPI promotes premature capacitation of sperm reducing the freezability [90].

Recently, a relationship of VDAC2 protein with capacitation in boar spermatozoa has been 

tested [98]. This association seems to be due to its role in the transport of Ca2+ to the mitochon-

dria, which is a determining factor in the capacitation process [99]. In addition, this protein 
mediates the transport of ions as Ca2+, HCO

3
̄, Cl−, and Na+ [100] determinants in the processes 

of capacitation [70, 75] and cell volume regulation in the face of osmotic stress [101]. The 
condition of freezability marker of this protein [26] can be explained by the occurrence of 
phenomena similar to capacitation and osmotic stress during freezing [87].

AQP3 and AQP7 belong to one family of hydrophobic integral proteins of the cell membrane 

that participate in the transport of water and glycerol [102], essential in the cryopreservation 

of cells [24]. These proteins are associated with cell volume regulation [45], which is a funda-

mental process to counteract the osmotic stress caused by freezing [101]. Indeed, AQP 3 and 
AQP 7 have been previously validated as freezability markers [30].

5.2. Potential boar freezability markers

There is abundant evidence on the leading role of a large group of proteins located both in SP 
(spermadhesins, Niemann-pick disease type C2 protein (NPC2), lipocalin-type prostaglandin 
D synthase (L-PGDS); heat shock protein 90 alpha A1 (HSP90AA1); paraoxonase type 1(PON-1),  
extracellular superoxide dismutase (EC-SOD); and spermatozoon (Cl− /HCO

3
− exchanger, 
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Cl− channel, K+ channel, AQP, Ca2+-ATPase, ATP-binding cassette transporters, and scavenger 
receptors), in crucial events of the sperm physiology. This gives rise to intensify studies tend-

ing to assess their importance as freezability markers.

5.2.1. Potential boar freezability markers in seminal plasma

Due to the multifunctionality of the spermadhesins conferred by their capacity to unite differ-

ent ligands (heparin, phospholipids, cholesterol, protease inhibitors, and carbohydrates), they 

participate in several physiological events associated with premature capacitation [51, 103, 104] 

and with reduction of concentrations of intracellular calcium, sperm survival, motility, and 
integrity of the mitochondrial membrane [103, 105]. For all the above, it is feasible to think 
about the possibility of incorporating in the future some of these proteins to the group of freez-

ability markers located in the SP.

The importance of the NPC2 protein lies in the great affinity of its isoform 19 kDa for the SpM 
cholesterol [106]. NPC2 is very important in capacitation because it maintains the proportion 
of cholesterol in the SpM [107] and because it has heparin binding capacity [108]. It is known 
that during freezing, cholesterol efflux from the membrane leads to cryocapacitation or pre-

mature capacitation [10, 16, 17, 109] and that the concentration of 19 kDa protein is higher in 

semen of high freezability boars and it reduces in 3 h after the ejaculation [110]. These proper-

ties and findings suggest a better preventative mechanism against capacitation and serve as 
a basis to evaluate this protein as a new marker of boar freezability [110].

L-PGDS has high affinity with retinoic acid and retinol [111], two molecules that affect plasma 
membrane permeability by interacting with phospholipids [112]. Then, L-PGDS could be 
related to capacitation (acrosome reaction and hypermotility) [113]. L-PGDS is present in 
the acrosomal membrane in ejaculated spermatozoa and disappears with acrosome reaction  
[114], and it increases the union in vitro of spermatozoa with the ZP [115], after capacitation [4].  
For its affinity for DHA [116] can play an important role in membrane structure and function 
[117]. This protein is a potential marker of boar freezability because its concentration varies in 
the seminal plasma of semen with both high and low freezability [110].

HSP90AA1 is a protein considered an intracellular molecular marker for boar semen freezabil-
ity; it is found in lower quantities in low freezability than in higher freezability spermatozoa 
[89]. The concentration of this protein increased in seminal plasma of low freezability boars 
up to 3 h after ejaculation [110], possibly, because of the alteration the plasma membrane 
integrity during the cooling [118].

The presence in boar semen of the antioxidant enzyme PON-1 has been reported [119]. The 
PON-1 influences motility and the SpM integrity because it binds to membrane cholesterol 
and prevents its oxidation [80]. It is possible that high PON-1 concentration found in the SP 
of the sperm-peak portion is related with better antioxidant capacities, greater cryotolerance, 
and lower ROS generation than the post sperm-rich fraction [80]. The above added to the 
differences detected among boars [120], possibly of genetic origin [121], allows to assume that 
PON-1 has a potential value as a molecular marker of boar semen freezability. For the case 
of the EC-SOD, it is known that it is in the boar seminal plasma playing an important role as 

Biological Signals of Sperm Membrane Resistance to Cryoinjury in Boars
http://dx.doi.org/10.5772/intechopen.80824

117



an antioxidant enzyme in spermatozoa [122]; however, there is a lack of more determinant 

studies on this protein, which allows establishing its value as a freezability marker.

5.2.2. Potential freezability markers in spermatozoa

The Cl− /HCO
3
− exchanger is part of the solute carrier family 26, number 3 (SLC26A39) [73]. This 

exchanger has been related to the regulation of CV [46, 53] and has been postulated as one of 
the possible mediators of the entry of HCO

3
− into spermatozoa and intracellular alkalization 

during sperm capacitation [37, 75]. The role for HCO
3
− in cholesterol efflux, in the scrambling 

of phospholipids [75] and the aggregation of lipid rafts during capacitation is clear [37, 75]. 
Taking into account that in the cryocapacitation membrane reorganization occurs [24, 81], and 

the need for an adequate regulation of the sperm volume is to counteract the osmotic stress 
[101], the Cl− /HCO

3
− exchanger is a molecule that can be tested as a freezability marker.

Individual Cl− and K+ channels are the main regulators of the volume of the sperm cell under 
hypoosmotic conditions [29]. In view of the fact that freezing affects the functionality of the 
channels by aggregation or translocation and that the spermatozoon suffers a hypoosmotic 
shock during thawing with consequences on seminal quality [18, 24, 81], the Cl− channel and 

the K+ channel have great importance as possible markers of freezability.

Considering that AQP 3 and AQP 7 have already been tested as freezability markers [98] and 

that there is an extensive family of AQP involved in the transport of water and glycerol [123], 

aquaporins continue to have great potential as predictors of freezability in boars. This can be 
supported, also, in the results obtained in bull sperm where differences among individuals 
have been found on the basis of volume regulation and glycerol permeability [123].

Ca2+-ATPase is an intracellular Ca2+ extractor protein located in the head of the sperm that helps 

regulate the concentrations of this ion [28]. In the boar sperm, when inhibiting this protein, 
there is reduction of head-to-head agglutination, capacitation characteristic [124]. In knowl-
edge of the entry of Ca2+ into the spermatic cell due to loss of selective permeability and mem-

brane lipid phase separations [18, 24, 81], to test whether Ca2+-ATPase levels allow to reduce the 
cryocapacitation and the differences between individuals in freezing is of relevant importance.

There is little information about cholesterol transporters such as ATP-binding cassette transport-
ers and scavenger receptors, as well as about the dynamics of reverse cholesterol transport in 
boar sperm [19]. The low amount of cholesterol in the boar SpM [14, 15] and the efflux of this 
molecule in the freezing process [16, 17], with the consequences of lipid phase separation in 
the membrane of this specie [23], can be key events in the study of freezability.
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