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1. Introduction

Structural applications of composite materials are increasing in several engineering areas

where high stiffness and strength-to-weight ratios, long fatigue life, superior thermal proper-

ties, and corrosive resistance are most beneficial [1–4]. Common types include laminated

composites [5], functionally graded material (FGM) structures, and nanocomposites as well as

smart composite structures [6]. In fact composite structures are usually tailored, depending

upon the specific objectives, by choosing the individual constituent materials and their volume

fractions, fiber orientation angles, and laminas thickness and number, as well as the fabrication

procedure. To attain the best results, adequate optimization models have to be implemented to

find practical optimal solutions satisfying a given set of design constraints.

This introductory chapter provides a brief review on the optimum design of composite struc-

tures and the relevant optimization techniques that are capable of finding the needed optimal

solutions. Several problems can be addressed, including the structural design for maximum

stability, maximum natural frequencies, and minimum mass or maximum stiffness subject to

limits on strength, deflections, and side constraints. The relevant design variables include

geometrical dimensions and material properties as well. A numerical example is given at the

end of this chapter to demonstrate a real and practical application of the optimum composite

structures.

2. The optimal design problem

Several research papers and text books exist in the field of optimal design of composite

structures with a variety of valuable applications in civil, mechanical, ocean, and aerospace

engineering. An important stage has now been reached at which an investigation of such
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developments and their practical possibilities should be made and presented. Two distinct

review papers have been published covering the development of the optimum design of

composites over more than 40 years. The first paper by Sonmez [7] presented a comprehensive

survey for more than 1000 journal papers, conference papers, textbooks, and web links from

the year 1969 to 2009. Sonmez classified the papers according to the type of the composite

structure, loading conditions, optimization model, failure criteria, and the utilized search

algorithm. The second paper by Ganguli [8] covered a historical review from 1973 to 2013. It

provides the growth of the field by including more than 90 references dealing with a variety of

optimization methods utilized for tailoring composites to achieve certain design objectives.

Applications of several optimization techniques were presented, including feasible direction

methods, sequential quadratic programming, and stochastic optimization such as particle

swarm and ant colony algorithms. Ganguli classified the published work into five categories

named pioneering research for the work published in the 1970s, early research in the 1980s,

moving toward design in the 1990s, the new century in the 2010s, and the current research for

papers published after 2010.

In general, design optimization seeks the best values of design variables, Xnx1, to achieve,

within certain constraints, Gmx1(X) placed on the system behavior, allowable stresses, geome-

try, or other factors; its goal of optimality is defined by the a vector of objective functions,

Fkx1(X), for specified environmental conditions. Mathematically, design optimization may be

cast in the following standard form [9]:

Find the set of design variables Xnx1 that will

minimize F Xð Þ ¼
Xk

i¼1

wfiFi Xð Þ (1)

subject to Gj Xð Þ ≤ 0, j ¼ 1, 2,…I (2)

Gj Xð Þ ¼ 0, j ¼ I þ 1, I þ 2,…m (3)

where wfi is the weighting factors measuring the relative importance of Fi(x) with respect to

the overall design goal:

0 ≤wfi ≤ 1

Xk

i¼1

wfi ¼ 1
(4)

Figure 1 shows the overall structure of an optimization approach to design. Major objectives in

mechanical and structural engineering involve minimum fabrication cost, maximum product

reliability, maximum stiffness/weight ratio, minimum aerodynamic drag, maximum natural

frequencies, maximum critical shaft speeds, etc. Design variables describe configuration,

dimensions and sizes of elements, and material properties as well. In the design of structural

components, such as those of an automobile structure, the main design variables represent the

thickness of the covering skin panels and the spacing, size, and shape of the transverse and
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longitudinal stiffeners. The sizes of the constituent elements of the system are measured by

such properties as the cross-sectional dimensions, section areas, area moments of inertia,

torsional constants, plate’s thicknesses, etc. If the skin and/or stiffeners are made of layered

composites, the orientation of the fibers and their proportion can become additional variables.

If one optimizes for configuration, the design variables will include spatial coordinates. Also,

in dynamic problems, the location of nonstructural masses and their magnitudes can be

additional design variables.

3. Optimization techniques

The class of optimization problems described by Eqs. (1)–(3) may be thought of as a search in

an n-dimensional space for a point corresponding to the minimum value of the overall objec-

tive function and such that it lies within the region bounded by the subspaces representing the

constraint functions. Iterative techniques are usually used for solving such optimization prob-

lems in which a series of directed design changes (moves) are made between successive points

in the design space. Several optimization techniques are classified according to the way of

Figure 1. Design optimization process.
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selecting the search direction [9]. The most commonly used approaches are the random search,

conjugate directions, and conjugate gradients methods. Other algorithms for solving global

optimization problems may be classified into heuristic methods that find the global optimum

only with high probability and methods that guarantee to find a global optimum with some

accuracy. The simulated annealing technique and the genetic algorithms (GAs) belong to the

former type, where analogies to physics and biology to approach the global optimum are

utilized. The simulated annealing technique is an iterative search method based on the simu-

lation of thermal annealing of critically heated solids. Hasancebi et al. [10] applied it to find the

optimum design of fiber composite structures as an efficient method to solve multi-objective

optimization models. On the other hand, the GAs [11, 12] are based on the principles of natural

genetics and natural selection. GAs do not utilize any gradient information during the

searching process. Narayana Naik et al. [12] used GA and various failure mechanisms based

on different failure criteria to reach an optimal composite structure. Another robust algorithm

in solving complex problems of optimal structural design is named particle swarm optimiza-

tion algorithm (PSOA). This algorithm is based on the behavior of a colony of living things,

such as a swarm of insects like ants, bees, and wasps, a folk of birds, or a school of fish. Omkar

et al. [13] applied PSOA to achieve a specified strength with minimizing weight and total cost

of a composite structure under different failure criteria. To the author’s knowledge, GA has

been the most efficient stochastic method for obtaining the global optimum design of compos-

ite structures.

4. Application: buckling optimization of anisotropic cylindrical shells

Structural buckling failure due to high external hydrostatic pressure is a major consideration in

designing cylindrical shell-type structures. This section presents a direct approach for enhanc-

ing buckling stability limits of thin-walled long cylinders that are fabricated from multi-angle

fibrous laminated composite lay-ups. The mathematical formulation employs the classical

lamination theory for calculating the critical buckling pressure, where an analytical solution

that accounts for the effective axial and flexural stiffness separately as well as the inclusion of

the coupling stiffness terms is presented. The associated design optimization problem of

maximizing the critical buckling pressure has been formulated in a standard nonlinear math-

ematical programming problem with the design variables encompassing the fiber orientation

angles and the ply thicknesses as well. The physical and mechanical properties of the compos-

ite material are taken as preassigned parameters. The proposed model deals with dimension-

less quantities in order to be valid for thin shells having different thickness-to-radius ratios.

Results have been obtained for cases of filament wound cylinders fabricated from different

types of composite materials.

The basic analysis and analytical formulation presented in this chapter are based on the work

given by Maalawi [14], which provides good sensitivity to lamination parameters and allows

the search for the needed optimal stacking sequences in a reasonable computational time.

Referring to the structural model depicted in Figure 2, the significant strain components are
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the hoop strain (ε0ss) and the circumferential curvature (Kss) of the mid-surface. The reduced

form of the stress-strain relationships in matrix form is

Nss

Mss

� �

¼
A22 B22

B22 D22

� �

εoss

κss

� �

(5)

where Nss and Mss are the resultant distributed force and moment and (Aij, Bij, Dij) are the

extensional, coupling, and bending stiffness coefficients, respectively [1].

4.1. Analytical buckling model

The governing differential equations of anisotropic long cylinders subjected to external pres-

sure are cast in the following:

M0

ss þ R N0

ss � βNss

� �

¼ β pR2 (6.1)

M00

ss � R Nss þ βNss

� �

0
þ p wo þ v0o

� �

h i

¼ pR2 (6.2)

where uo, vo, and wo are the displacements of a generic point (x, s) on the shell middle surface

(z = 0) in x, s, and z directions, respectively. The prime denotes differentiation with respect to the

angular position φ and β ¼ vo � w0

o

� �

=R: For the case of thin cylinders with thickness-to-radius

ratio (h/R) ≤ 0.1, the critical buckling pressure can be determined using the mathematical expres-

sion [14]:

Figure 2. Laminated composite cylindrical shell under external pressure (u displacement in the axial direction x, v in the

tangential direction s, w in the radial direction z).
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pcr ¼ 3
D22

R3

� �

1� ψ2=α
� �

1þ αþ 2ψ

" #

(7.1)

ψ ¼
1

R

� 	

B22

A22

� 	

(7.2)

α ¼
1

R2

� 	

D22

A22

� 	

(7.3)

4.2. Definition of the baseline design

It is convenient first to normalize all variables and parameters with respect to a baseline design,

which has been selected to be a unidirectional orthotropic laminated cylinder with the fibers

parallel to the shell axis x. Optimized designs shall have the same material properties, mean

radius R, and total shell thickness h of the baseline design. Expressions for calculating the critical

buckling pressure (Pcro) of the baseline design are defined in Table 1, which depend upon the

type of composite material utilized and the shell thickness-to-radius ratio (h/R) as well.

4.3. Optimization model

The search for the optimized lamination can be performed by coupling the analytical buckling

shell model to a standard nonlinear mathematical programming procedure. The resulting

optimization problem may be cast in the following standard form to

minimize — p̂cr (8.1)

subject to hL ≤ ĥk ≤ hU, (8.2)

θL ≤θk ≤θU k ¼ 1, 2,…:n (8.3)

X

n

k¼1

ĥk ¼ 1 (8.4)

where p̂cr ¼ pcr=pcro is the dimensionless critical buckling pressure, and (hL, hU) are the lower

and upper bounds imposed on the individual dimensionless ply thicknesses ĥk ¼ hk=h.

Material type Orthotropic mechanical properties* (GPa) Pcro � (h/R)3 (GPa)

E11 E22 G12 ν12

E-Glass/vinyl ester 41.06 6.73 2.5 0.299 1.708

Graphite/epoxy 130.0 7.0 6.0 0.28 1.757

S-Glass/epoxy 57.0 14.0 5.7 0.277 3.567

*E11 = longitudinal modulus, E22 = hoop modulus, ν12 = Poisson’s ratio for axial load, ν21 = ν12E22/E11.

Table 1. Material properties and critical buckling pressure of the baseline design (Pcro).
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According to the filament-winding manufacturing process, each ply is characterized by its

angle θk with respect to the cylinder axis x. The stacking sequence is denoted by [θ1/θ2/…/θn],

where the angles are given in degrees, starting from the outer surface of the shell. In addition,

in a real-world manufacturing process, the filament-winding angles θk must be chosen from a

limited range of allowable lower (θL) and upper (θU) values according to technology refer-

ences. It is important to mention here that the volume fractions of the constituent materials of

the composite structure is assumed to not significantly change during optimization, so that the

total structural mass remains constant at its reference value of the baseline design.

4.4. Optimal solutions

The functional behavior of the candidate objective function, as represented by maximization of

the dimensionless buckling pressure p̂cr, is thoroughly investigated in order to see how it is

changed with the optimization variables in the selected design space. The final optimum

designs recommended by the model will directly depend on the mathematical form and

behavior of the objective function.

4.4.1. Two-layer anisotropic long cylinder

The first case study to be considered herein is a long thin-walled cylindrical shell fabricated

from E-glass/vinyl ester composites with the lay-up composed of only two plies (n = 2) having

equal thicknesses ( ĥ1 ¼ ĥ2 ¼ 0:5) and different fiber orientation angles. Considering the case

of �63� angle ply, the present model gives p̂cr= 4.23, i.e., Pcr = 4.23 � 1.708 � (h/R)3 GPa,

depending on the shell thickness-to-radius ratio. The actual dimensional values of the critical

buckling pressure for the different thickness ratios are given in Table 2 for the cases of baseline

design [0�], helically wound [�63�], and [�90�] hoop layers. The unconstrained maximum

value of p̂cr = 6.1 occurs at the design points [θ1/θ2] = [�90, �90].

For a two-ply long cylinder fabricated from graphite/epoxy composites, Figure 3 shows the

developed level curves of the dimensionless buckling pressure, p̂cr (also named isomerits or

isobars) in the (θ1 � θ2) design space. As seen in the figure, the maximum value of p̂cr reaches a

value of 18.57 for a hoopwound construction.Table 3 presents the solutions for the [�45�] angle-

ply and the [90�] cross-ply constructions for different thickness-to-radius ratios. These solutions

Baseline [0�] Helically wound [�63�] Hoop plies [�90�]

p̂cr = 1.00 4.23 6.10

(h/R)

(1/15) 506.07 2140.69 3087.05

(1/20) 213.50 903.11 1302.35

(1/25) 109.31 462.39 666.80

(1/50) 13.66 57.80 83.35

[Pcr = p̂cr � 1.708 � 106 (h/R)3 KPa].

Table 2. Critical buckling pressure for E-glass/vinyl ester cylinder with different lay-ups.
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are also valid for lay-ups [03
�]s, [903

�]s, [452
�/�452

�]s, and [45�/�45�/45�/�45�]s. The case of a

helically wound lay-up construction [+θ/�θ] with unequal play thicknesses ĥ1 and ĥ2, such that

their sum is held fixed at a value of unity, has also been investigated. Computer solutions have

shown that no significant change in the resulting values of the critical buckling pressure can be

remarked in spite of the wide change in the ply thicknesses. This is a natural expected result

since the stiffness coefficients A22, B22, and D22 remain unchanged for such lay-up construction.

Figure 3. p̂cr-isomerits for a graphite/epoxy, two-layer cylinder in [θ1 /θ2] design space (ĥ1 ¼ ĥ2 ¼ 0:5).

Baseline [0�] Helically wound [�45�] Hoop plies [�90�]

p̂cr = 1.00 5.9 18.57

(h/R)

(1/15) 520.59 3071.50 9667.40

(1/50) 14.06 82.93 261.02

(1/120) 1.02 5.99 18.88

[Pcr = p̂cr � 1.757 � 106 (h/R)3 KPa].

Table 3. Critical buckling pressure, Pcr for graphite/epoxy cylinder with different lay-ups.

Optimum Composite Structures8



4.4.2. Three-layer anisotropic long cylinder

Results for a cylinder constructed from three, equal-thickness layers with stacking sequence

denoted by [θ1/θ2/θ1] are given in Table 4. The same behavior can be observed as before but

with slight change in the attained values. It was found that for the range �30� > θ1 > 30� the

critical buckling pressure is not much affected by variation in the ply angle θ2. A substantial

increase in the critical buckling pressure by changing the ply angles can be observed. Similar

solutions were obtained for the stacking sequences [0�2/90
�]s and [90�2/0

�]s.

4.4.3. Four-layer sandwiched anisotropic cylinder

The same graphite/epoxy cylinder is reconsidered here with changing the stacking sequence to

become �20� equal-thickness layers sandwiched in between outer and inner 90� hoop layers

with unequal thicknesses, i.e., ( ĥ2 ¼ ĥ3) and ( ĥ1 6¼ ĥ4), such that the thickness equality

constraint
P4

k¼1 ĥk¼1 is always satisfied. Figure 4 shows the developed p̂cr -isomerits in the

( ĥ1, ĥ2) design space. The contours inside the feasible domain, which is bounded by the three

lines ĥ1 ¼ 0 and ĥ2 ¼ 0 and ĥ1 þ 2 ĥ2 ¼ 1 (i.e., ĥ4 ¼ 0), are obliged to turn sharply to be

asymptotes to the line ĥ4 ¼ 0, in order not to violate the thickness equality constraint. This is

why they appear in the figure as zigzagged lines. At the design point ( ĥ1, ĥ2) = (0.25, 0.25), the

dimensionless buckling pressure p̂cr = 16.43 (see Figure 4 and Table 5). As a general observa-

tion, as the thickness of the hoop layers increases, a substantial increase in the critical buckling

pressure will be achieved, e.g., at ( ĥ1, ĥ2) = (0.33, 0.17), p̂cr= 17.92 representing a percentage

increase of (17.92 � 16.43)/16.43 = 9.1%.

Finally, the obtained results have indicated that the optimized laminations induce significant

increases, always exceeding several tens of percent, of the buckling pressures with respect to

the reference or baseline design. It is assumed that the volume fractions of the composite

material constituents do not significantly change during optimization, so that the total struc-

tural mass remains constant. It has been shown that the overall stability level of the laminated

composite shell structures under considerations can be substantially improved by finding the

optimal stacking sequence without violating any imposed side constraints. The stability limits

Baseline [0�3] [0�/90�/0�] [90�/0�/90�]

p̂cr = 1.00 1.651 17.92

(h/R)

(1/15) 520.59 859.57 9331.19

(1/50) 14.06 23.21 251.94

(1/120) 1.02 1.68 18.23

[Pcr = p̂cr � 1.757 � 106 (h/R)3 KPa].

Table 4. Critical buckling pressure, Pcr for graphite/epoxy cylinder [θ1/θ2/θ1].
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of the optimized shells have been substantially enhanced as compared with those of the

reference or baseline designs.
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(h/R) (1/15) (1/20) (1/25) (1/50)

Pcr 8553.0 3609.3 1847.5 231.0

[ p̂cr = 16.43, Pcro = 1.757 � 106 (h/R)3 KPa, Pcr = p̂cr � Pcro].

Table 5. Critical buckling pressure, Pcr (KPa), for graphite/epoxy cylinder [90/�20/90].

Figure 4. Design space for a sandwich lay-up graphite/epoxy cylinder [90/�20/90].
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