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Abstract

This research is based on the attitude sensing algorithm to design a portable intelligent
rescue system for autonomous underwater vehicles (AUVs). To lower the possibility of
losing the underwater vehicle and reduce the difficulty of rescuing, when an AUV intelligent
rescue system (AIRS) detects the fault of AUVs and they could not be reclaimed, AIRS can
pump carbon dioxide into the airbag immediately to make the vehicle resurface. AIRS
consists of attitude sensing module, double-trigger inflator mechanism, and activity recog-
nition algorithm. The sensing module is an eleven-DOF sensor that is made up of a six-axis
inertial sensor, a three-axis magnetometer, a barometer, and a thermometer. Furthermore,
the signal calibration and extended Kalman filter (SC-EKF) is proposed to be used subse-
quently to calibrate and fuse the data from the sensing module. Then, the attitude data are
classified with the principle of feature extraction (FE) and backpropagation network (BPN)
classifier. Finally, the designed double-trigger inflator can be triggered not only by electricity
but also by water damage when the waterproof cabin is severely broken. With the AIRS
technology, the safety of detecting and investigating the use AUVs can be increased since
there is no need to send divers to engage in the rescue mission under water.

Keywords: AUVs, sensing module, intelligent rescue system, extended kalman filter,
feature extracted, back propagation neural network

1. Introduction

Significant research is being conducted on the development of autonomy for underwater

robotic vehicles, which are widely employed in many fields of application such as oceano-

graphic, marine archeology [1], military organizations, and cable tracking and inspection [2].

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The advent of underwater robotic vehicles has significantly reduced the dangers in deep sea

exploration. Two kinds of robotic vehicles used in marine research are remotely operated

vehicles (ROVs) and autonomous underwater vehicles (AUVs). The main difference between

the two is that ROVs are connected to the ship by communication cables whereas AUVs

operate independently from the ship. AUVs operate without an umbilical; therefore, AUVs

are able to conduct a larger range of work area. In this research, AUV intelligent rescue system

(AIRS) can minimize the loss of losing or unpredictable catastrophic failure of AUVs caused by

emergency conditions.

In recent years, the micro-electro-mechanical system (MEMS) has almost become a vital technol-

ogy for modern society because of its small volume, low power consumption, low cost, and ease

of integration into systems or modification [3]. The MEMS technology creates entirely innovative

kinds of products, such as gyroscope sensor in camera-shake detection systems [4], multi-axis

inertial motion sensors for smartphone-based navigation [5], and rehabilitation systems based on

inertial measurement units (IMUs) [6]. Additionally, the integration of global positioning system

and inertial navigation system (GPS/INS) is usually employed to measure the position of AUVs

[7, 8]. Unfortunately, small errors in the measurement of initial data are double integrated into

larger errors progressively in attitude data, and such errors increase without bound. Error reduc-

tion calibration for initialization of INS is paramount for the systematic parameter, like scale factor,

bias, and misalignment of the axes. As the situation depicted above, a calibration method is

investigated and adopted in this research. There are many researches utilizing Kalman filter (KF)

[9], complementary filter (CF) [10], adaptive Kalman filter (AKF) [11], or extended Kalman filter

(EKF) [12] to fuse the gyroscope and accelerometer together, taking advantages of their individual

strength. In this research, we use EKF to filter IMU outputs with a balance of noise canceling and

adaptability simultaneously used in sensing attitude algorithm for AIRS.

The sensing algorithm with EKF for sensing the attitude of AUV, while employing the

backpropagation network (BPN) to classify motion data that are formed in the AUV. Before

classify the data, there is a problem. The problem is compounded by the fact that our system is

computationally complex due to values estimation of AUVand causes the high dimension that

is called “curse of dimensionality,”which donates the drastic rise of computational complexity

and the classification error. Therefore, the step of feature extraction (FE) is an important

procedure in data classification [26]. Further, we feed the data into eural network to distin-

guish every AUV motion in each operating period. The neural network consists of multiple

artificial neurons to receive inputs, and process them to obtain an output [13]. By repeating

amendments to the model weights, the neural network makes central processing unit (CPU)

more logical to calculate the nonlinear systems of AUV motion [14]. The neural network has

been widely used because of a number of advantages, including estimating which variables

are important in classification, detecting possible interactions between predictor variables, and

constructing the prediction model with a high accuracy rate. Furthermore, the neural network

has emerged as an important tool in classification which has been investigated in many

different important applications [15]. In this study, neural network classifier (NNC) is used in

the calculation of nonlinear systems AUV attitude data to detect a catastrophic failure of an

AUV. Based on the multilayer feed-forward backpropagation algorithm as NNC, we proposed

an effective activity recognition method using 10-DOF sensor module.
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The concept of AIRS is inspired from the vehicle safety device: airbags have a flexible fabric

bag that can protect and restrict the occupant from being thrown away during a crash accident

[16, 17]. Wang and Dragcevic designed the airbags, which fire via a small pyrotechnic charge

to increase motorcyclists’ safety protections when riding a motorcycle [18, 19]. The airbags are

applied to not only fall-protection devices but also automatic inflatable life buoy by the

inflatable method of a gas cylinder [20–23]. We extended the airbag systems to load on the

AUV with CO2 cylinder to implement the AIRS. In this research, we developed a malformed

detection algorithm for AUV with both EKF and BPN, and the implementation of the airbag

system loaded on AUV is underway.

2. Intelligent rescue system

In this section, we introduce the hardware components of an AIRS and its working principles.

The hardware of AIRS contains the sensing module and a double-trigger inflator. The 11-DOF

sensing module combines the 9-DOF inertial sensor, barometric pressure sensor, and temper-

ature sensor to collect the motion data and the depth of the underwater vehicle. The inflator is

used with gas cylinders as the double trigger mechanism, which can be triggered not only by

electricity but also by water damage when the waterproof cabin is severely broken. Further-

more, we used the commercial software LabVIEW™ to analyze the relation between buoyancy

force and inflator device in water, to confirm the inflator specifications (Figure 1).

2.1. Sensing module

Master control module uses ATmega2560 with the Arduino program written to read motion

data of sensor. Ten-axis motion sensor combined with the accelerometer, gyroscope, magne-

tometer, and the barometer to acquire attitude angle data through the inter-integrated circuit

(I2C) is adopted. The communication module uses Bluetooth transmit data wirelessly to the

processing software. The block diagram of the 11-DOF sensing module is shown in Figure 2.

Figure 1. The structure of the intelligent rescue system.

Design and Estimation of an AUV Portable Intelligent Rescue System Based on Attitude Recognition Algorithm
http://dx.doi.org/10.5772/intechopen.79980

51



2.2. Inflator mechanism

In case of failure and sinking of AUVs underwater, we designed an airbag system to increase

the buoyancy and reduce the overall density of the AUVs. AIRS is installed on top of AUV, an

airbag inflated in a fault condition to force the AUVs to surface up. In this section, we are going

to introduce how to manufacture an inflator mechanism of the AIRS for the AUV, including

the specification analysis and the mechanism design.

2.2.1. Specification analysis

The AIRS mechanism is installed on top of the AUV and dives down into the ocean. One

should note that the hydrostatic pressure exerted by a liquid increases with increase in ocean

depth, which influences the specification of the cylinder. Not only that, the full displacement

and weight of the AUValso affect the size of the airbag and cylinder. These interrelated factors

cause the different performance of the airbag inflation time and rescue time. To analyze the

inflator specification more accurately and conveniently, we have engineered the specification

calculator for the inflator to ensure that the airbag can be inflated and can bring the AUV to

surface successfully. From the required buoyancy and the depth of the location, the calculator

analyzes the required gas cylinders and airbag volume.

From the result of the calculation illustrated in Figure 3(b), it takes 68.1 seconds to make nylon

airbags fill with CO2 and provides 42.1 N buoyancy for AUV. The design of added buoyancy

can bring 7.47 kgw of underwater vehicle to the surface (assume that the full load displace-

ment is fixed). With this technology, we can install the appropriate number of gas cylinders

and airbags in accordance with different displacements of AUV accurately and conveniently.

2.2.2. Mechanism design

After the above analysis by the calculator, we found out the appropriate gas cylinder and

airbag, and designed the corresponding mechanism parts for the selected gas cylinder and

airbag. We are going to elaborate on the design concept of the inflator mechanism in the

following. Figure 4 illustrates a double-trigger inflator including a servomotor, horn, spring,

Figure 2. The block diagram of the sensing module.
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spring case, crowbar-striker, water-soluble PVA fiber, release button, and CO2 cylinder. The

designed double-trigger inflator can be triggered not only by electricity but also by water

damage when the waterproof cabin is severely broken.

After the above analysis by the calculator, we found out the appropriate gas cylinder and airbag,

and design the corresponding mechanism parts for the selected gas cylinder and airbag.

There are two operating mechanisms to trigger the inflator. To begin with the electricity trigger

mechanism as shown in Figure 4(b), we assume that the waterproof cabin is watertight; after

detecting the failure of AUVs, servo motor rotates for pushing the crowbar-striker, and the

crowbar-striker punches the release button, which needs 35 N normal force to release into the

airbag through the air tube. We chose MG995 for servomotor, which has product size

40.7 � 19.7 � 42.9 mm and weight 55 g; MG995 is sufficient to move the horn for the release

button with its maximum torque 127 N-cm.

Besides, if the AUV is severely impacted and causes cabin seepage, so that the power system is

damaged, the AUV cannot resurface by the thruster or the electricity-trigger inflator. Hence,

we designed the water-trigger inflator for this kind of case. When the cabin is broken, water

Figure 3. The result of calculation specification analysis. (a) The front panel of the specification calculator. (b) The growth

rate between the water depth and the airbag volume.

Figure 4. The design diagram of a double-trigger inflator. (a) before release. (b) release by servo motor. (c) release by spring.
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melts the water-soluble PVA fiber and releases the spring case as shown in Figure 4(c). Within

the spring case, the music wire is selected to spring; the true maximum load of spring is 27.985

N, which is not enough to press the release button. Thus, we extended the striker into a

crowbar-striker, and amplified the spring force by the lever principle to release the push

button. The final part is the airbag, which is made of nylon 6/6 and folded under a cover. The

airbag weighs 150 g and the value of tensile strength is 809.3 atm, which can withstand the

pressure caused by gas cylinders.

3. Sensor with activity recognition algorithm

The method and the procedure of data processing and activity recognition are described in

Section 3. The former includes the signal calibration and extended Kalman filter algorithm; the

latter is constructed of FE and BPN classifier.

3.1. Data processing of 11-DOF sensing module

The 10-DOF sensing module including the 9-DOF IMU (three accelerometers, three gyro-

scopes, three magnetometers), barometer, and thermometer integrated with a microcon-

troller (Arduino Mega2560). The six-axis inertial sensor (MPU6050), which is a complete

triple-axis gyroscope and triple-axis accelerometer inertial sensing system, is the most

suitable sensor for stabilization and attitude measurement. MPU6050 contains the digital

motion processor (DMP) which performs the motion processing algorithm itself. However,

the horizontal attitude (yaw) is not a possible measurement. We used a magnetometer

(HMC5883L) with fusion algorithm accordingly for eliminating the gyroscope offset to

recognize the AUV activity context more reliably. The barometer (BMP180) is used in

AIRS to detect the depth of the AUV and control the pressure of the airbag for supplying

the perfect buoyancy. In addition, BMP180 also includes a temperature sensor, which does

not only measure the underwater temperature but also thermal compensation for the

MPU6050. Although the development of the MEMS technology has made a great pro-

gress, the IMUs are still difficult to collect precise data in the presence of various errors.

Calibration is the process of comparing the measurement outputs with known reference

data and determining the coefficients that drive the output to agree with the reference

data over a range of output. We calibrated the sensor in terms of its thermal noise, bias,

and scale factor.

3.2. EKF strategy

A quaternion-based EKF is proposed in this section for determining the attitude of the

AUV from the outputs of IMU. Attitude estimation is a very important part of the AIRS.

If the initial data are double integrated into larger errors without bound, it brings on the

misclassification of ANN algorithm with wrong attitude values. For the sake of this error,

we used a series of measurements and observed over time for signal processing. The main
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advantage of the KF is its ability to provide the quality of the estimate, but the KF only

applies to linear and Gaussian models. The EKF conversely is a nonlinear version of the

KF which linearizes about an estimate of the current mean and covariance. In view of this,

we chose the EKF to filter IMU outputs with a balance of noise canceling and adaptability

simultaneously, used in sensing attitude algorithm for AIRS. We proposed the EKF fusing

with the accelerometer, gyroscope, and magnetometer integrated with sensor calibration

(SC). SCEKF results in an improvement of the orientation accuracy from IMU. A flow-

chart of structure performed by the proposed SCEKF is capsuled in Figure 5.

3.2.1. Prediction step

x̂k ¼ Φ Ts; ω̂k�1ð Þx
2ð Þ
k�1 þ ν̂k�1 (1)

P̂k ¼ Fk�1P
2ð Þ
k�1Fk�1

T þ Bk�1QBT
k�1 (2)

The first step of EKF predicts a current state and covariance matrix at time k. We estimated a

current state based on the previous states x̂k�1 ¼ âk�1ω̂k�1m̂k�1½ �T that are composed of the

gyroscope measurement ω̂k�1 and white noise ν̂k�1 ¼
a
ν̂ k�1

ω
ν̂ k�1

m
ν̂ k�1

� �T
and the priori

covariance matrix P̂k based on a previous covariance matrix P
2ð Þ
k�1, covariance Q and a state

noise coefficient matrix Bk�1.

Figure 5. Overview of the SCEKF structure.
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3.2.2. Jacobian computation

Fk�1 ¼
∂Φ

∂x
Ts, ω̂k�1

¼ Jf Ts; ω̂k�1ð Þ
�

�

� (3)

~yk ¼ zk � h x̂k; 0ð Þ, Hk ¼
∂h

∂x
x̂k

¼ Jh x̂kð Þ
�

� (4)

However, in view of the nonlinear process of state transition Fk�1 and observation Hk directly,

the EKF approach requires estimation by computing the Jacobian.

3.2.3. Gravity corrections

Sk ¼ HkP̂kHk
T þ Ra (5)

Kk ¼ P̂kHk
T HkP̂kHk

T þ Ra

� ��1
(6)

x
1ð Þ
k ¼ x̂k þ Kk ak �Hkx̂kð Þ (7)

P
1ð Þ
k ¼ I4�4 � KkHkð ÞP̂k (8)

where the innovation covariance matrix Sk is based on the a priori error covariance matrix P̂k

and the measurement covariance matrix of accelerometer Ra, whose main diagonal elements

are from the accelerometer values, and nonmain diagonal elements are all zero conversely. The

Kalman gain Kk is the error covariance matrix after gravity measurement is corrected.

3.2.4. Yaw corrections

Sk ¼ HkP
1ð Þ
k HT

k þ Rm (9)

Kk ¼ P
1ð Þ
k Hk

T HkP
1ð Þ
k Hk

T þ Rm

� ��1
(10)

x
2ð Þ
k ¼ x

1ð Þ
k þ Kk mk �Hkx

1ð Þ
k

� �

(11)

P
2ð Þ
k ¼ I4�4 � SkHkð ÞP

1ð Þ
k (12)

where the measurement covariance matrix of magnetometers Rm, which main diagonal ele-

ments are from the magnetometer values, non-main diagonal elements are all zero conversely.

P
2ð Þ
k is the error covariance matrix after yaw measurement is corrected.

3.3. Feature extraction (FE)

AUV motions are defined by the six degrees of freedom, including heave, surge, sway, pitch,

roll, and yaw, and they are coupling by the vehicle shape, trends, and current interaction.

Therefore, the attitude data of AUV is of high dimension and very complex. The value of FE is
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to reduce the dimension of the large measurement data and prevent program operation to run

out of memories. The characteristics of a data segment are to keep the most meaningful

features and remove the redundant data. Therefore, the FE methods have been applied for

activity detection from accelerometer data [24, 25]. İn order to extract features easily, the

continuous measurement data of sensors are divided into many overlapping segments of

which each is 20 seconds long, as illustrated in Figure 6. A sliding window technique cuts the

sensors’ data into 20 seconds (550 samples) in each short-term window with 50% overlapping.

As previous studies found that the effectiveness of FE on windows with 50% overlap is an

effective window size [24].

In this chapter, we adopted principal component analysis (PCA) as the feature selection

procedure to lower the dimension of the original features. Feature extraction is highly subjec-

tive in nature, it depends on applications. Here, we introduced the following features that are

beneficial to the classification of AUV failure detection, and used these features to discriminate

the type of AUV activity: (1) min, max; (2) mean; (3) interquartile range (IQR); (4) root mean

square (RMS); (5) standard deviation (STD); (6) root mean square error (RMSE); (7) signal

magnitude area (SMA); (8) signal vector magnitude (SVM); and (9) averaged acceleration

energy (AEE).

3.4. BPN classifier

Finally, this feature extraction by the PCA is fed into the short-term classifier and long-term

classifier sequentially, and then output the AUV conditions. In order to detect the AUV

condition accurately, reliably, stably, and robustly, we divided the recognition system into

three classifiers which are based on BPN. BPN is considered the workhorse of ANNs and is

the multilayer perceptron (MLP) based on a feed-forward algorithm. The hidden layers,

between input and output layers, use the error backpropagation (BP) algorithm to compute

the nonlinear relationship in supervised learning as shown in Figure 7. The main features of

BPN are as follows: high learning accuracy, fast response, and ability to process the nonlinear

problems.

In this chapter, a three-layer BPN is used for classifying AUV failure conditions. The topology

of the BPN classifier is shown in Figure 7 [26]. The input layer has R neurons, equal to the

dimension of the feature vectors I ¼ I
1ð Þ
1 ; I

1ð Þ
r ;…; I

1ð Þ
R

h iT

, where superscript 1 indicates the first

layer. The hidden layer has J neurons, and the output layer has P neurons, equal to the number

Figure 6. Attitude data with a long-term window, which consists of many overlapping short-term windows.
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of AUV conditions O ¼ O
3ð Þ
1 ; O 3ð Þ

p ;…;O
3ð Þ
P

h iT
, where superscript 3 indicates the third layer.

w
3ð Þ
pj and w

2ð Þ
jr denote the weight from the hidden to the output layer and from the input to the

hidden layer, respectively. b 3ð Þ and b 2ð Þ denote the bias in the third and second layers, respec-

tively. i nð Þ and o nð Þ are the input value and the activation of a neuron in the nth layer

n∈N : n ≤ 3f g. We take the interval between the hidden layer (second) and the output layer

(third) as an example. The function of the neurons in each step is defined as follows [27]:

In the BPN, the intermediate quantity net
3ð Þ
j is the weighted input to the neurons in the third

layer, and implements a nonlinear transformation from the output values of the second layer

to the output values of the third layer. σ is called the sigmoid function and is in general

nonlinear and differentiable. The functions of the pth neuron are given by:

o 3ð Þ
p ¼ σ net

3ð Þ
j

� �

¼ σ

X

J

j¼1

w
3ð Þ
pj o

2ð Þ
j þ b 3ð Þ

p

0

@

1

A (13)

The discrepancy E 3ð Þ between the desired output t
3ð Þ
p and the real output O 3ð Þ

p in the third layer

can motivate the BP learning algorithm as gradient descent on the sum-squared discrepancy. The

factor of 1=2 will simplify the exponent when differentiating later. The function is defined as:

E 3ð Þ ¼
1

2

X

p

t 3ð Þ
p �O 3ð Þ

p

� �2
(14)

Figure 7. The topology of the BPN classifier.
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Then, the weights are adjusted to find the partial derivative E with respect to a weight w
3ð Þ
pj :

Δw
3ð Þ
pj ∝ � η ∂E 3ð Þ=∂w

3ð Þ
pj

� �

. However, the discrepancy is not directly the function of weights.

Calculating the derivative of the discrepancy is done using the chain rule twice.

Δw
3ð Þ
pj ¼ �η

∂E 3ð Þ

∂o
3ð Þ
p

∂o
3ð Þ
p

∂net
3ð Þ
p

∂net
3ð Þ
p

∂w
3ð Þ
pj

(15)

Let us discuss each of partial derivatives in turn. In the last term of Eq. (15) is the derivative of

the net net
3ð Þ
p with respect to a weight w

3ð Þ
pj :

∂net
3ð Þ
p

∂w
3ð Þ
pj

¼
∂

∂w
3ð Þ
pj

XJ

j¼1

w
3ð Þ
pj o

2ð Þ
j þ b 3ð Þ

p

0

@

1

A ¼ o
2ð Þ
j (16)

Next, the derivative of the activation o
3ð Þ
p with respect to the net input net

3ð Þ
p :

∂o
3ð Þ
p

∂net
3ð Þ
p

¼
∂

∂net
3ð Þ
p

σ net 3ð Þ
p

� �

¼ σ net
3ð Þ
p

� �

1� σ net
3ð Þ
p

� �� �

¼ o
3ð Þ
p 1� o

3ð Þ
p

� �
(17)

Last, we consider the derivative of E with respect to the activation. Since the neuron is in the

output layer, then O 3ð Þ
p is equal to o

3ð Þ
p .

∂E

∂o
3ð Þ
p

¼
∂E

∂O 3ð Þ
p

¼

∂ 1=2 t
3ð Þ
p �O 3ð Þ

p

� �2
� �

∂O 3ð Þ
p

¼ � t 3ð Þ
p � o 3ð Þ

p

� �

(18)

Finally, we substitute these results Eqs. (15)–(17) back into original Eq. (17) to find the weight

change Δw
3ð Þ
pj rule,

Δw
3ð Þ
pj ¼ η t 3ð Þ

p � o 3ð Þ
p

� �

o 3ð Þ
p 1� o 3ð Þ

p

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

εp

o
3ð Þ
j ¼ ηεpo

3ð Þ
j (19)

We can find the weight change Δw
2ð Þ
jr in the same processes as above and it is defined as:

Δw
2ð Þ
jr ¼ η

XJ

j

εpw
3ð Þ
pj o

2ð Þ
j 1� o

2ð Þ
j

� �

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

εj

o 1ð Þ
r ¼ ηεjo

1ð Þ
r (20)
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The BPN algorithm approach to recognize and intelligently detect failures is based on changes

in weight values Δw
3ð Þ
pj Δw

2ð Þ
jr of the AUV feature parameters.

4. Experimental test and result

4.1. SCEKF

To validate the sensor calibration and fusion method proposed in this chapter, this section

covers the results obtained from the 10-DOF sensor module with operating system of Win-

dows 8.1, 2.20 GHz CPU, 8 GB memory, and experiments are performed with the Arduino

program described in Section 2.1. The system was fixed on an anti-vibration table to minimize

interference. The proposed SCEKF algorithm was used to estimate accelerometer and orienta-

tion with 27-Hz updating rate.

As the calculation process of sensor algorithm, we used the rotary platform with outputting the

quantitative and stable signal to observe the relative signal output. The first process is fixing IMU

at the center and along the rotation axis of the platform and fixing it by valves. After installation,

setting the required rate or angle of rotation as a reference data by the user interface, we meas-

ured the output corresponding to the reference data. The performance of the orientation before/

after SCEKF algorithm is presented in Figure 8(a–c), respectively; it produced reasonable output

values within the expected ranges. It is seen that each component of Euler orientation (i.e., roll,

pitch, and yaw) is within 0�1 degree after SCEKF processing in the static test.

4.2. AUVs’ attitude simulation and experiment

Figure 9 shows the whole system of the TrenchRoDer equipped with the proposed AIRS. The

whole equipment includes the TrenchRoDer, a camera, an AIRS, a Bluetooth box, and a

floating board. We put a camera in the waterproof bags and tied them to a fixed plate in order

to observe the situation when the airbag is inflated. The function of the floating board is to

protect the Bluetooth box from immersing into the water.

Figure 8. The calibration results from the static condition produced by the SCEKF processing. (a) Roll angle calibration.

(b) Pitch angle calibration. (c) Yaw angle calibration.
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In order to construct a robust underwater vehicle fault attitude database, we simulated the

underwater vehicle motion model with different situations in the water environment, which

can provide the particular case of attitude data, such as if the AUVs suffered a crash or a disabled

propeller. Moreover, we built the fault simulator GUI interface for a more convenient operation,

in other words, the AIRS starts with the fault simulator GUI interface, after inputting the

required AUV’s dimensions, hydrodynamic coefficients, buoyancy center, and inertia coeffi-

cients. Next, the simulator calculates the different AUV motion data under different cases

through the Matlab™ program as shown in Figure 10. The above results from simulator will

combine with the experimental data as the database for the training and verification of BPN

classifier. Last but not least, the real AUV motion signal is set as the testing dataset to ensure the

establishment of the AIRS. The modular modeling equation of AUVs is selected from [28]. The

modeling method of Prestero’s which id without considering the sea conditions of emission can

help us to generate the dynamic models of AUVs quickly and conveniently. The dynamics model

and kinematics model of AUVs are established by analysis of the force working on AUVs

moving underwater, based on the theorem of the momentum of the rotation around the buoy-

ancy center and the theorem of the motion of mass center. The motion in 6-DOF of the AUVs is

determined. And then, the attitude data of AUVs at any instant are determined.

Since we simulated the AUV motion in the underwater environment without considering the

influence of currents and waves, we did the wave maker experiment in NCKU’s ship model

towing tank to observe the changes and effects on the AUV motion data for different wave

heights. By experimenting with simulation, we can be closer to the state of the real ocean

environment. The experiment of the AUVs affected by wave maker in NCKU’s ship model

towing tank is illustrated in Figure 11.

4.3. Classification results

In this chapter, we focused on 10 conditions of AUV, which are listed in Table 1.

There are two types of these AUV conditions. One of them is failure situation and the other

is functional condition and both include five motion status of the AUV. We carried out 20

Figure 9. The TrenchRoDer equipped with the proposed AIRS.
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Figure 10. The AUV’s fault simulator diagram.

Figure 11. The wave maker of the NCKU’s ship model towing tank.
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experiments for capturing data and verifying classifier. The data from 17 experiments were

adopted in the training program of the recognition scheme; the data obtained from the other

experiments were used for testing the recognition performance. Note that, since the sampling

frequency is 27.5 Hz, the total number of the short-term and long-term samplings for

each activity of each experiment is 550 and 2200, respectively, which means 20 seconds per

short-term window and 80 seconds per long-term window. The feature extraction of this chapter

was based on 50% overlapping windows using 550 samples of window sizes to avoid informa-

tion loss at the boundary of a single window. The dimension of a feature vector was 45

(an accelerometer� 3 axes� 9 features + a gyroscope� 3 axes� 6 features). Figure 12 illustrates

the first 2200 data of accelerations and Euler orientations collected from the first experiment. The

selected features of sensor’s data enabled effective recognition of the conditions and were

suggested for BPN training procedure. A computation program adopted the input features and

activated the feature classifier learning procedure with the BP algorithm, and outputted the

results to short-term classifier. Then, an AUV condition was distinguished by a long-term

classifier, of which the input is from the short-term classifier to raise the accuracy of failure

recognition. The number of neurons in each hidden layer is 4, 6, and 7 for the feature classifier,

short-term classifier, and long-term classifier, respectively, and the number of epochs is 700 for

each neural training. The BPN classifier was trained on the training data set and tested on the test

set which are from the experiment values. The classifier was created by neural network toolbox

of MATLABTM for practical implementation and for validating the proposed model.

After building up our prediction algorithm, we apply our chosen prediction algorithm on our

new test set which is from the real signal of AUV, in order to have an idea about the algorithm’s

performance on unseen data. The confusion matrix measured in the real AUV test is shown in

Table 2, which recorded the results from 20 times experiments on each condition of AUV. We

have implemented in two different ways under MATLABTM environment. In the first, we

conducted in our proposed classifier system with feature extraction and the results indicate that

the AUV failure detection on the average 97% of the time, and a successful functional condition

accuracy of 93% is achieved. Second, we chose a classifier in ANN learning algorithm without

feature extraction for comparing with the classifier that we proposed. The performance indicated

Number Activity description

1 Functional condition after horizontal sinking

2 Malfunction after horizontal sinking

3 Functional condition after vertical sinking

4 Malfunction after vertical sinking

5 Functional condition after ramped sinking

6 Malfunction after ramped sinking

7 Functional condition after turbulence

8 Malfunction after turbulence

9 Functional condition after collision

10 Malfunction after collision

Table 1. Activities performed in this experiment.
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Figure 12. The accelerations and Euler orientation of the first experiment.

20 times of testing experiments

Classified

Type

1 2 3 4 5 6 7 8 9 10 Recognition

rate (%)

Detection accuracy

(%)

1 14/13 0/0 1/2 0/0 5/6 0/0 0/0 0/0 0/0 0/1 70/65 Malfunction 97/92

2 1/2 16/14 0/0 0/0 0/0 1/2 0/0 0/1 2/3 2/4 80/70 Functional

condition

93/88

3 1/1 0/0 15/13 0/0 0/1 0/0 0/0 0/0 1/1 0/0 75/65

4 0/0 0/0 0/0 18/16 0/0 2/2 0/1 0/0 0/0 0/0 90/80

5 4/3 0/0 2/4 0/1 15/13 0/0 0/0 0/0 0/1 0/0 75/65

6 0/1 1/1 0/0 2/3 0/0 16/15 0/0 3/4 0/0 0/0 80/75

7 0/0 0/0 0/0 0/0 0/0 0/0 17/15 1/2 0/0 0/0 85/75
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that the ANN classifier without feature extraction performs poorer than our proposed classifier.

From the confusion matrix, we can know that the malfunction and functional conditions are not

easy to be confused. However, the motions within functional condition may be misclassified

between each other, because these activities contain similar amplitude peaks and waveforms at

the AUV.

5. Conclusions and future works

The main objective of this work was to develop an intelligent AUV rescue system (AIRS)

for detecting failure to minimize loss of an autonomous underwater vehicle (AUV). We com-

bined three main ideas to construct the AIRS, including sensors algorithm, classifier conducting,

and airbag system. Complex data acquisition was done by the 10-DOF sensor module with

sensor calibration and extended Kalman filter (SCEKF), where Euler orientation fused with

gravity and magnetic field are state variables, can benefit to get the precise attitude from the

AUV. After SCEKF processed, we extracted the features of these signals from the 10-DOF sensor

module and selected these features by principal component analysis (PCA) method. The results

were incorporated with feature classifier, short-term classifier, and long-term classifier in order to

recognize 10 types of AUV conditions. According to the experimental test in Section 3, we have

shown that the 20 experimental data sets are categorized into “malfunction” or “functional

condition” categories. The outcomes of the proposed classification with features extracted,

whose failure detection accuracy is 97%, were more accurate than those of the ANN without

features extracted. These results confirmed that the technology of the AIRS was feasible and that

the proposedmethods were accurate. Furthermore, we designed an inflatable mechanism, which

fills CO2 in the airbags to generate buoyancy for AUV during failure detection.

The attitude estimation and classification applied in the underwater environment are a new

field. Considering future work, we will try to extend more condition types of AUV for

classifying more complex situations and accomplish the airbag system for setting on the

AUV. We can have the ability to construct a variety of different models for the AUV’s fault

simulation, such as underwater turbulence or underwater creatures’ interference. Providing

a more comprehensive AIRS, to not have to do the experiment in the real underwater

environment, also can improve the performance and convenience of installation to the AIRS.

20 times of testing experiments

Classified

Type

1 2 3 4 5 6 7 8 9 10 Recognition

rate (%)

Detection accuracy

(%)

8 0/0 0/0 0/0 0/0 0/0 1/1 3/4 16/13 0/0 0/0 80/65

9 0/0 1/2 2/1 0/0 0/2 0/0 0/0 0/0 16/14 1/2 80/70

10 0/0 2/3 0/0 0/0 0/0 0/0 0/0 0/0 1/1 17/14 85/70

* Proposed classifier with feature extraction in BP algorithm/ANN classifier without feature extraction.

Table 2. Confusion matrix for all the testing experiments.
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With this technology, we can install the appropriate number of gas cylinders and airbags in

accordance with the different displacements of AUV to avoid the loss of AUV; this can even

be used in rescuing vessels to reduce shipwreck in the future, thereby minimizing loss of life

and property. This study will have outstanding contributions for the next generation of

underwater vehicles. We are looking forward to the application of the SIRS being used

widely in the future.
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