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Abstract

The aim of this chapter is to study conformal anti-invariant submersions from almost
product Riemannian manifolds onto Riemannian manifolds as a generalization of anti-
invariant Riemannian submersion which was introduced by B. Sahin. We investigate the
integrability of the distributions which arise from the definition of the new submersions
and the geometry of foliations. Moreover, we find necessary and sufficient conditions for
this submersion to be totally geodesic and in order to guarantee the new submersion, we
mention some examples of such submersions.
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1. Introduction

Immersions and submersions, which are special tools in differential geometry, also play a

fundamental role in Riemannian geometry, especially when the involved manifolds carry an

additional structure (such as contact, Hermitian and product structure). In particular, Rie-

mannian submersions (which we always assume to have connected fibers) are fundamentally

important in several areas of Riemannian geometry. For instance, it is a classical and important

problem in Riemannian geometry to construct Riemannian manifolds with positive or non-

negative sectional curvature. Riemannian submersions between Riemannian manifolds are

important geometric structures. Riemannian submersions between Riemannian manifolds

were studied by O’Neill [1] and Gray [2]. In [3], the Riemannian submersions were considered

between almostHermitianmanifolds byWatsonunder the name of almostHermitian submersions.
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In this case, the Riemannian submersion is also an almost complex mapping and consequently the

vertical and horizontal distributions are invariant with respect to the almost complex structure of

the total manifold of the submersion. The study of anti-invariant Riemannian submersions from

almostHermitianmanifoldswas initiated by Şahin [4]. In this case, the fibers are anti-invariantwith

respect to the almost complex structure of the total manifold. This notion extended to different total

spaces see: [5–14].

On the other hand, as a generalization of Riemannian submersion, horizontally conformal

submersions are defined as follows [15]: Suppose that M; gM
� �

and B; gB
� �

are Riemannian

manifolds and π : M ! B is a smooth submersion, then π is called a horizontally conformal

submersion, if there is a positive function λ such that

λ
2gM X;Yð Þ ¼ gB π∗X;π∗Yð Þ

for every X,Y∈ Γ kerπ∗ð Þ⊥
� �

: It is obvious that every Riemannian submersion is a particular

horizontally conformal submersion with λ ¼ 1. We note that horizontally conformal submer-

sions are special horizontally conformal maps which were introduced independently by

Fuglede [16] and Ishihara [17]. We also note that a horizontally conformal submersion

π : M ! B is said to be horizontally homothetic if the gradient of its dilation λ is vertical, i.e.,

H gradλð Þ ¼ 0 (1)

at p∈M, where H is the projection on the horizontal space kerπ∗ð Þ⊥. For conformal submer-

sion, see: [15, 18, 19].

One can see that Riemannian submersions are very special maps comparing with conformal

submersions. Although conformal maps do not preserve distance between points contrary to

isometries, they preserve angles between vector fields. This property enables one to transfer

certain properties of a manifold to another manifold by deforming such properties.

Recently, we introduced conformal anti-invariant submersions [20] and conformal semi-

invariant submersions [21] from almost Hermitian manifolds, and gave examples and investi-

gated the geometry of such submersions (see also [22, 23]). We showed that the geometry of

such submersions is different from their counterpart anti-invariant Riemannian submersions

and semi-invariant Riemannian submersions. In the present paper, we define and study con-

formal anti-invariant submersions from almost product Riemannian manifolds, give examples

and investigate the geometry of the total space and the base space for the existence of such

submersions.

Our work is structured as follows: Section 2 is focused on basic facts for conformal submersions

and almost product Riemannian manifolds. The third section is concerned with definition of

conformal anti-invariant submersions, investigating the integrability conditions of the horizon-

tal distribution and the vertical distribution. In Section 4, we study the geometry of leaves of

the horizontal distribution and the vertical distribution. In Section 5, we find necessary and
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sufficient conditions for a conformal anti-invariant submersion to be totally geodesicness. The

last section, we give some examples of such submersions.

2. Preliminaries

In this section we recall several notions and results which will be needed throughout the

chapter.

Let M be a m-dimensional manifold with a tensor F of a type (1,1) such that

F2 ¼ I, F 6¼ Ið Þ:

Then, we say that M is an almost product manifold with almost product structure F. We put

P ¼
1

2
I þ Fð Þ, Q ¼

1

2
I � Fð Þ:

Then we get

PþQ ¼ I, P2 ¼ P, Q2 ¼ Q, PQ ¼ QP ¼ 0, F ¼ P�Q:

Thus P and Q define two complementary distributions P and Q. We easily see that the

eigenvalues of F are +1 or �1. If an almost product manifold M admits a Riemannian metric g

such that

g FX; FYð Þ ¼ g X;Yð Þ (2)

for any vector fields X and Y on M, then M is called an almost product Riemannian manifold,

denoted by M; g; Fð Þ: Denote the Levi-Civita connection on M with respect to g by ∇: Then, M

is called a locally product Riemannian manifold [24] if F is parallel with respect to ∇, i.e.,

∇XF ¼ 0, X∈ Γ TMð Þ: (3)

Conformal submersions belong to a wide class of conformal maps that we are going to recall

their definition, but we will not study such maps in this paper.

Definition 2.1 ([15]) Let φ : Mm
; gð Þ ! Nn

; hð Þ be a smooth map between Riemannian manifolds, and

let x∈M. Then φ is called horizontally weakly conformal or semi conformal at x if either

(i) dφx ¼ 0, or

(ii) dφx maps horizontal space Hx ¼ ker dφx

� �� �⊥
conformally onto Tφ

∗
N, i.e., dφx is surjective and

there exists a number Λ xð Þ 6¼ 0 such that
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h dφxX; dφxY
� �

¼ Λ xð Þg X;Yð Þ X;Y∈Hxð Þ: (4)

Note that we can write the last equation more sufficiently as

φ∗hð Þx Hx�Hx
¼ Λ xð Þgx

�

�

�

�

Hx�Hx
:

A point x is of type (i) in Definition if and only if it is a critical point of φ; we shall call a point of

type (ii) a regular point. At a critical point, dφx has rank 0; at a regular point, dφx has rank n and

φ is submersion. The number Λ xð Þ is called the square dilation (of φ at x); it is necessarily non-

negative; its square root λ xð Þ ¼
ffiffiffiffiffiffiffiffiffiffi

Λ xð Þ
p

is called the dilation (of φ at x). The map φ is called

horizontally weakly conformal or semi conformal (on M) if it is horizontally weakly conformal at

every point of M. It is clear that if φ has no critical points, then we call it a (horizontally)

conformal submersion.

Next, we recall the following definition from [18]. Let π : M ! N be a submersion. A vector

field E on M is said to be projectable if there exists a vector field �E on N, such that dπ Exð Þ ¼

�Eπ xð Þ for all x∈M. In this case E and �E are called π� related. A horizontal vector field Y on

M; gð Þ is called basic, if it is projectable. It is well known fact, that is, �Z is a vector field on N,

then there exists a unique basic vector field Z on M, such that Z and �Z are π� related. The

vector field Z is called the horizontal lift of �Z.

The fundamental tensors of a submersion were introduced in [1]. They play a similar role to

that of the second fundamental form of an immersion. More precisely, O’Neill’s tensors T and

A defined for vector fields E,G on M by

AEG ¼ V∇
M1

HEHGþH∇
M1

HEVG (5)

TEG ¼ H∇
M1

VEVGþ V∇
M1

VEHG (6)

where V and H are the vertical and horizontal projections (see [25]). On the other hand, from

(5) and (6), we have

∇
M1

V W ¼ TVW þ ∇̂VW (7)

∇
M1

V X ¼ H∇
M1

V Xþ TVX (8)

∇
M1

X V ¼ AXV þ V∇
M1

X V (9)

∇
M1

X Y ¼ H∇
M1

X Y þ AXY (10)

for X,Y∈ Γ kerπ∗ð Þ⊥
� �

and V,W ∈Γ kerπ∗ð Þ, where ∇̂VW ¼ V∇
M1

V W . If X is basic, then

H∇
M1

V X ¼ AXV. It is easily seen that for x∈M, X∈Hx and Vx the linear operators TV ,

AX : TXM ! TXM are skew-symmetric, that is

Manifolds II - Theory and Applications28



g TVE;Gð Þ ¼ �g E;TVGð Þ and g AXE;Gð Þ ¼ �g E;AXGð Þ

for all E,G∈TxM. We also see that the restriction of T to the vertical distribution TjV�V is

exactly the second fundamental form of the fibers of π. Since TV is skew symmetric, we get π

which has totally geodesic fibers if and only if T � 0. For the special case when π is horizon-

tally conformal we have the following:

Proposition 2.1 ([18]) Let π : Mm
; gð Þ ! Nn

; hð Þ be a horizontally conformal submersion with dilation

∇ and X, Y be horizontal vectors, then

AXY ¼
1

2
V X;Y½ � � λ2g X;Yð Þgrad

V

1

λ2

� 	
 �

: (11)

We see that the skew-symmetric part of Aj kerπ∗ð Þ⊥� kerπ∗ð Þ⊥ measures the obstruction integrability

of the horizontal distribution kerπ∗ð Þ⊥.

Let M; gM
� �

and N; gN
� �

be Riemannian manifolds and suppose that π : M ! N is a smooth

map between them. The differential of π∗ of π can be viewed a section of the bundle

Hom TM;π�1TN
� �

! M, where π�1TN is the pullback bundle which has fibers π�1TN
� �

p
¼

Tπ pð ÞN, p∈M. Hom TM;π�1TN
� �

has a connection ∇ induced from the Levi-Civita connection

∇
M and the pullback connection. Then the second fundamental form of π is given by

∇π∗ : Γ TMð Þ � Γ TMð Þ ! Γ TNð Þ

defined by

∇π∗ð Þ X;Yð Þ ¼ ∇
π
Xπ∗ Yð Þ � π∗ ∇

M
X Y

� �

(12)

for X,Y∈Γ TMð Þ, where ∇π is the pullback connection. It is known that the second fundamen-

tal form is symmetric.

Lemma 2.1. [26] Let M; gM
� �

and N; gN
� �

be Riemannian manifolds and suppose that φ : M ! N is a

smooth map between them. Then we have

∇
φ
Xφ∗

Yð Þ � ∇
φ
Yφ∗

Xð Þ � φ
∗

X;Y½ �ð Þ ¼ 0 (13)

for X,Y∈Γ TMð Þ.

Finally, we recall the following lemma from [15].

Lemma 2.2. Suppose that π : M ! N is a horizontally conformal submersion. Then, for any horizontal

vector fields X, Y and vertical fields V,W we have.
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(i) ∇π∗ð Þ X;Yð Þ ¼ X lnλð Þπ∗Y þ Y lnλð Þπ∗X� gM X;Yð Þπ∗ grad lnλð Þ;

(ii) ∇π∗ð Þ V;Wð Þ ¼ �π∗ TVWð Þ;

(iii) ∇π∗ð Þ X;Vð Þ ¼ �π∗ ∇M
X V

� �

¼ �π∗ AXVð Þ.

3. Conformal anti-invariant submersions from almost product Riemannian

manifolds

In this section, we define conformal anti-invariant submersions from an almost product Rie-

mannian manifold onto a Riemannian manifold, investigating the geometry of distributions

kerπ∗ð Þ and kerπ∗ð Þ⊥ and obtain the integrability conditions for the distribution kerπ∗ð Þ⊥ for

such submersions.

Definition 3.1. Let M1; g1; F
� �

be an almost product Riemannian manifold and M2; g2
� �

be a Rie-

mannian manifold. A horizontally conformal submersion π : M1 ! M2 with dilation λ is called

conformal anti-invariant submersion if the distribution kerπ∗ is anti-invariant with respect to F, i.e.,

F kerπ∗ð Þ ⊆ kerπ∗ð Þ⊥:

Let π : M1; g1; F
� �

! M2; g2
� �

is a conformal anti-invariant submersion from an almost prod-

uct Riemannian manifold M1; g1; F
� �

to a Riemannian manifold M2; g2
� �

: First of all, from

Definition 3.1, we have F kerπ∗ð Þ⊥ ∩ kerπ∗ 6¼ 0: We denote the complementary orthogonal distri-

bution to F kerπ∗ð Þ in kerπ∗ð Þ⊥ by μ: Then we have

kerπ∗ð Þ⊥ ¼ F kerπ∗ð Þ⊕μ: (14)

Proposition 3.1. Let M1; g1; F
� �

be an almost product Riemannian manifold and M2; g2
� �

be a

Riemannian manifold. Then μ is invariant with respect to F.

Proof. For Z∈ Γ μ
� �

and V ∈ Γ kerπ∗ð Þ, by using (2), we have g1 FZ; FVð Þ ¼ 0, which show that FZ

is orthogonal to Fkerπ∗. On the other hand, since FV and Z are orthogonal we get g1 FV;Zð Þ ¼

g1 V; FZð Þ ¼ 0 which shows that FZ is orthogonal to kerπ∗: This completes proof. □

For Z∈Γ kerπ∗ð Þ⊥
� �

, we have

FZ ¼ BZþ CZ, (15)

where BZ∈ Γ kerπ∗ð Þ and CZ∈Γ μ
� �

: On the other hand, since π∗ kerπ∗ð Þ⊥
� �

¼ TM2 and π is a

conformal submersion, using (15) we derive 1
λ2 g2 π∗FV;π∗CZð Þ ¼ 0 for any Z∈ Γ kerπ∗ð Þ⊥

� �

and V ∈Γ kerπ∗ð Þ, which implies that
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TM2 ¼ π∗ Fkerπ∗ð Þ⊕π∗ μ
� �

: (16)

Lemma 3.1. Let π be a conformal anti-invariant submersion from a locally product Riemannian

manifold M1; g1; F
� �

onto a Riemannian manifold M2; g2
� �

. Then we have

g1 CW ; FVð Þ ¼ 0 (17)

and

g1 ∇
M1

Z CW ; FV
� �

¼ �g1 CW ; FAZVð Þ (18)

for Z,W ∈Γ kerπ∗ð Þ⊥
� �

and V ∈ Γ kerπ∗ð Þ.

Proof. For W ∈ Γ kerπ∗ð Þ⊥
� �

and V ∈Γ kerπ∗ð Þ, using (2) we have

g1 CW ; FVð Þ ¼ g1 FW � BW ; FVð Þ ¼ g1 FW; FVð Þ

due to BW ∈Γ kerπ∗ð Þ and FV ∈ Γ kerπ∗ð Þ⊥
� �

: Hence g1 FW ; FVð Þ ¼ g1 W ;Vð Þ ¼ 0 which is (17).

Since M1 is a locally product Riemannian manifold, differentiating (3.4) with respect to Z, we

get

g1 ∇
M1

Z CW ; FV
� �

¼ g1 CW ; F∇M1

Z V
� �

for Z,W ∈Γ kerπ∗ð Þ⊥
� �

and V ∈ Γ kerπ∗ð Þ: Then using (9) we have

g1 ∇
M1

Z CW ; FV
� �

¼ �g1 CW ; FAZVð Þ � g1 CW ; FV∇M1

Z V
� �

:

Since FV∇M1

Z V ∈ Γ Fkerπ∗ð Þ, we obtain (18). □

We now study the integrability of the distribution kerπ∗ð Þ⊥ and then we investigate the geome-

try of the leaves of kerπ∗ and kerπ∗ð Þ⊥. We note that it is known that the distribution kerπ∗ is

integrable.

Theorem 3.1. Let π : M1; g1; F
� �

! M2; g2
� �

is a conformal anti-invariant submersion from an

almost product Riemannian manifold M1; g1; F
� �

to a Riemannian manifold M2; g2
� �

: Then the follow-

ing assertions are equivalent to each other;

(a) kerπ∗ð Þ⊥ is integrable,

bð Þ
1

λ2
g2 ∇

π
Wπ∗CZ� ∇

π
Zπ∗CW ;π∗FV

� �

¼ g1 AZBW � AWBZ� CW lnλð ÞZþ CZ lnλð ÞW ; FVð Þ

(19)
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for any Z,W ∈Γ kerπ∗ð Þ⊥
� �

and V ∈ Γ kerπ∗ð Þ.

Proof. ForW ∈Γ kerπ∗ð Þ⊥
� �

and V ∈ Γ kerπ∗ð Þ, we see from Definition 3.1, FV ∈ Γ kerπ∗ð Þ⊥
� �

and

FW ∈Γ kerπ∗ ⊕μ
� �

. Thus using (2) and (3), for Z∈Γ kerπ∗ð Þ⊥
� �

we obtain

g1 Z;W½ �;Vð Þ ¼ g1 ∇
M1

Z FW; FV
� �

� g1 ∇
M1

W FZ; FV
� �

:

Further, from (15) we get

g1 Z;W½ �;Vð Þ ¼ g1 ∇
M1

Z BW ; FV
� �

þ g1 ∇
M1

Z CW ; FV
� �

� g1 ∇
M1

W BZ; FV
� �

� g1 ∇
M1

W CZ; FV
� �

:

Using (9), (10) and if we take into account π is a conformal submersion, we arrive at

g1 Z;W½ �;Vð Þ ¼ g1 AZBW � AWBZ; FVð Þ þ
1

λ2
g2 π∗ ∇

M1

Z CW
� �

;π∗FV
� �

�
1

λ2
g2 π∗ ∇

M1

W CZ
� �

;π∗FV
� �

:

Thus, from (12) and Lemma 2.2 we derive

g1 Z;W½ �;Vð Þ ¼ g1 AZBW � AWBZ; FVð Þ � g1 Hgrad lnλ;Zð Þg1 CW ; FVð Þ

� g1 Hgrad lnλ; CWð Þg1 Z; FVð Þ þ g1 Z; CWð Þg1 Hgrad lnλ; FVð Þ

þ
1

λ2
g2 ∇

π
Zπ∗CW ;π∗FV

� �

þ g1 Hgrad lnλ;Wð Þg1 CZ; FVð Þ

þ g1 Hgrad lnλ; CZð Þg1 W ; FVð Þ � g1 W ; CZð Þg1 Hgrad lnλ; FVð Þ

�
1

λ2
g2 ∇

π
Wπ∗CZ;π∗FV

� �

:

Moreover, using (17), we obtain

g1 Z;W½ �;Vð Þ ¼g1 AZBW � AWBZ� CW lnλð ÞZþ CZ lnλð ÞW ; FVð Þ

�
1

λ2
g2 ∇

π
Wπ∗CZ� ∇

π
Zπ∗CW;π∗FV

� �

which proves að Þ⇔ bð Þ. □

From Theorem 3.1, we deduce the following characterization.

Theorem 3.2. Let π be a conformal anti-invariant submersion from a locally product Riemannian

manifold M1; g1; F
� �

onto a Riemannian manifold M2; g2
� �

. Then any two conditions below imply the

three;

i. kerπ∗ð Þ⊥ is integrable.

ii. λ is a constant on Γ μ
� �

:

iii. g2 ∇π
Wπ∗CZ� ∇π

Zπ∗CW;π∗FV
� �

¼ λ2g1 AZBW � AWBZ; FVð Þ
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for Z,W ∈Γ kerπ∗ð Þ⊥
� �

and V ∈Γ kerπ∗ð Þ.

Proof. From Theorem 3.1, we have

g1 Z;W½ �;Vð Þ ¼g1 AZBW � AWBZ� CW lnλð ÞZþ CZ lnλð ÞW ; FVð Þ

�
1

λ2
g2 ∇

π
Wπ∗CZ� ∇

π
Zπ∗CW ;π∗FV

� �

:

for Z,W ∈Γ kerπ∗ð Þ⊥
� �

and V ∈ Γ kerπ∗ð Þ. Now, if we have (i) and (iii), then we arrive at

�g1 Hgrad lnλ; CWð Þg1 Z; FVð Þ þ g1 Hgrad lnλ; CZð Þg1 W ; FVð Þ ¼ 0: (20)

Now, taking W ¼ FV in (20) for V ∈Γ kerπ∗ð Þ, using (17), we get

�g1 Hgrad lnλ; C FVð Þð Þg1 Z; FVð Þ þ g1 Hgrad lnλ; CZð Þg1 FV; FVð Þ ¼ 0:

Hence λ is a constant on Γ μ
� �

. Similarly, one can obtain the other assertions. □

We say that a conformal anti-invariant submersion is a conformal Lagrangian submersion if

F kerπ∗ð Þ ¼ kerπ∗ð Þ⊥: From Theorem 3.1, we have the following result.

Corollary 3.1. Let π be a conformal Lagrangian submersion from a locally product Riemannian

manifold M1; g1; F
� �

onto a Riemannian manifold M2; g2
� �

. Then the following assertions are equiva-

lent to each other:

i. kerπ∗ð Þ⊥ is integrable

ii. AZFW ¼ AWFZ

iii. ∇π∗ð Þ Z; FWð Þ ¼ ∇π∗ð Þ W ; FZð Þ

for Z,W ∈Γ kerπ∗ð Þ⊥
� �

.

Proof. For Z,W ∈Γ kerπ∗ð Þ⊥
� �

and V ∈ Γ kerπ∗ð Þ, we see from Definition 3.1, FV ∈ Γ kerπ∗ð Þ⊥
� �

and FW ∈ Γ kerπ∗ð Þ. From Theorem 3.1 we have

g1 Z;W½ �;Vð Þ ¼g1 AZBW � AWBZ� CW lnλð ÞZþ CZ lnλð ÞW ; FVð Þ

�
1

λ2
g2 ∇

π
Wπ∗CZ� ∇

π
Zπ∗CW ;π∗FV

� �

:

Since π is a conformal Lagrangian submersion, we derive

g1 Z;W½ �;Vð Þ ¼ g1 AZBW � AWBZ; FVð Þ

which shows ið Þ⇔ iið Þ: On the other hand, using Definition 3.1 and (9) we arrive at
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g1 AZBW ; FVð Þ � g1 AWBZ; FVð Þ ¼
1

λ
2
g2 π∗AZBW ;π∗FVð Þ �

1

λ
2
g2 π∗AWBZ;π∗FVð Þ

¼
1

λ
2
g2 π∗ ∇

M1

Z BW
� �

;π∗FV
� �

�
1

λ
2
g2 π∗ ∇

M1

W BZ
� �

;π∗FV
� �

:

Now, using (12) we obtain

1

λ
2

g2 π∗ ∇
M1

Z BW
� �

;π∗FV
� �

� g2 π∗ ∇
M1

W BZ
� �

;π∗FV
� �� 

¼
1

λ
2
g2 � ∇F∗ð Þ Z;BWð Þ þ ∇

π

Zπ∗BW ;π∗FV
� �

�
1

λ
2
g2 � ∇F∗ð Þ W ;BZð Þ þ ∇

π

Wπ∗BZ;π∗FV
� �

:

Since BZ, BW ∈Γ kerπ∗ð Þ, we derive

g1 AZBW ; FVð Þ � g1 AWBZ; FVð Þ ¼
1

λ
2
g2 ∇F∗ð Þ W ;BZð Þ � ∇F∗ð Þ Z;BWð Þ;π∗FVð Þ

which tells that iið Þ⇔ iiið Þ: □

4. Totally geodesic foliations

In this section, we shall investigate the geometry of leaves of kerπ∗ð Þ and kerπ∗ð Þ⊥. For the

geometry of leaves of the horizontal distribution kerπ∗ð Þ⊥, we have the following theorem.

Theorem 4.1. Let π : M1; g1; F
� �

! M2; g2
� �

is a conformal anti-invariant submersion from an

almost product Riemannian manifold M1; g1; F
� �

to a Riemannian manifold M2; g2
� �

: Then the following

assertions are equivalent to each other;

i. kerπ∗ð Þ⊥ defines a totally geodesic foliation on M1.

ii. �
1

λ
2
g2 ∇

π

Zπ∗CW;π∗FV
� �

¼ g1 AZBW � CW lnλð ÞZþ g1 Z; CWð Þ lnλ; FV
� �

for Z,W ∈Γ kerπ∗ð Þ⊥
� �

and V ∈ Γ kerπ∗ð Þ.

Proof. For Z,W ∈Γ kerπ∗ð Þ⊥
� �

and V ∈ Γ kerπ∗ð Þ, by using (3), (9), (10), (14) and (15) we have

g1 ∇
M1

Z W ;V
� �

¼ g1 AZBW ; FVð Þ þ g1 ∇
M1

Z CW ; FV
� �

:

Since π is a conformal submersion, using (12) and Lemma 2.2 we arrive at
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g1 ∇
M1

Z W;V
� �

¼ g1 AZBW; FVð Þ �
1

λ
2
g1 Hgrad lnλ;Zð Þg2 π∗CW ;π∗FVð Þ

�
1

λ
2
g1 Hgrad lnλ; CWð Þg2 π∗Z;π∗FVð Þ

þ
1

λ
2
g1 Z; CWð Þg2 π∗ Hgrad lnλð Þ;π∗FVð Þ

þ
1

λ
2
g2 ∇

π

Zπ∗CW ;π∗FV
� �

:

Moreover, using Definition 3.1 and (17) we obtain

g1 ∇
M1

Z W ;V
� �

¼ g1 AZBW � CW lnλð ÞZþ g1 Z; CWð Þ lnλ; FV
� �

þ
1

λ
2
g2 ∇

π

Zπ∗CW ;π∗FV
� �

which proves ið Þ⇔ iið Þ. □

From Theorem 4.1, we also deduce the following characterization.

Theorem 4.2. Let π be a conformal anti-invariant submersion from a locally product Riemannian

manifold M1; g1; F
� �

onto a Riemannian manifold M2; g2
� �

. Then any two conditions below imply the

three;

i. kerπ∗ð Þ⊥ defines a totally geodesic foliation on M1.

ii. π is horizontally homothetic submersion.

iii. g2 ∇
π

Zπ∗CW ;π∗FV
� �

¼ λ
2g1 AZFV;BWð Þ

for Z,W ∈Γ kerπ∗ð Þ⊥
� �

and V ∈ Γ kerπ∗ð Þ.

Proof. For Z,W ∈Γ kerπ∗ð Þ⊥
� �

and V ∈ Γ kerπ∗ð Þ, from Theorem 4.1, we have

g1 ∇
M1

Z W ;V
� �

¼ g1 AZBW � CW lnλð ÞZþ g1 Z; CWð Þ lnλ; FV
� �

þ
1

λ
2
g2 ∇

π

Zπ∗CW ;π∗FV
� �

:

Now, if we have (i) and (iii), then we obtain

�g1 Hgrad lnλ; CWð Þg1 Z; FVð Þ þ g1 Hgrad lnλ; FVð Þg1 Z; CWð Þ ¼ 0: (21)

Now, taking Z ¼ CWÞ in (4.1) and using (17), we get

g1 Hgrad lnλ; FVð ÞgM CW ; CWð Þ ¼ 0:

Thus, λ is a constant on Γ Fkerπ∗ð Þ. On the other hand, taking Z ¼ FV in (25) and using (17) we

derive
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g1 Hgrad lnλ; CWð Þg1 FV; FVð Þ ¼ 0:

From above equation, λ is a constant on Γ μ
� �

. Similarly, one can obtain the other assertions. □

For conformal Lagrangian submersion, we have the following result.

Corollary 4.1. Let π be a conformal Lagrangian submersion from a locally product Riemannian

manifold M1; g1; F
� �

onto a Riemannian manifold M2; g2
� �

. Then the following assertions are equiva-

lent to each other;

i. kerπ∗ð Þ⊥ defines a totally geodesic foliation on M1.

ii. AZBW ¼ 0

iii. ∇π∗ð Þ Z; FVð Þ ¼ 0

for Z,W ∈Γ kerπ∗ð Þ⊥
� �

and V ∈ Γ kerπ∗ð Þ.

Proof. For Z,W ∈Γ kerπ∗ð Þ⊥
� �

and V ∈ Γ kerπ∗ð Þ, from Theorem 4.1, we have

g1 ∇
M1

Z W ;V
� �

¼ g1 AZBW � CW lnλð ÞZþ g1 Z; CWð Þ lnλ; FV
� �

þ
1

λ2
g2 ∇

π
Zπ∗CW ;π∗FV

� �

:

Since π is a conformal Lagrangian submersion, we derive

g1 ∇
M1

Z W ;V
� �

¼ g1 AZBW ; FVð Þ

which shows ið Þ⇔ iið Þ: On the other hand, using Definition 3.1 and (9) we arrive at

g1 AZBW; FVð Þ ¼
1

λ2
g2 π∗ AZBWð Þ;π∗FVð Þ ¼

1

λ2
g2 π∗ ∇

M1

Z BW
� �

;π∗FV
� �

:

Now, using (12) we obtain

1

λ2
g2 π∗ ∇

M1

Z BW
� �

;π∗FV
� �

¼
1

λ2
g2 � ∇π∗ð Þ Z;BWð Þ þ ∇

π
Zπ∗BW ;π∗FV

� �

¼ �
1

λ2
g2 ∇π∗ð Þ Z;BWð Þ;π∗FVð Þ

which tells that iið Þ⇔ iiið Þ: □

For the totally geodesicness of the foliations of the distribution kerπ∗.

Theorem 4.3. Let π : M1; g1; F
� �

! M2; g2
� �

is a conformal anti-invariant submersion from an

almost product Riemannian manifold M1; g1; F
� �

to a Riemannian manifold M2; g2
� �

: Then the follow-

ing assertions are equivalent to each other;
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i. kerπ∗ defines a totally geodesic foliation on M1.

ii. �
1

λ2
g2 ∇

π
FUπ∗FV;π∗FCZ

� �

¼ g1 TVFU;BZð Þ þ g1 U;Vð Þg1 Hgrad lnλ; FCZð Þ

for V,U∈Γ kerπ∗ð Þ and Z∈ Γ kerπ∗ð Þ⊥
� �

.

Proof. For Z∈Γ kerπ∗ð Þ⊥
� �

and V,U∈Γ kerπ∗ð Þ, by using (2), (3), (8) and (15) we get

g1 ∇
M1

V U;Z
� �

¼ g1 TVFU;BZð Þ þ g1 H∇
M1

V FU; CZ
� �

:

Since ∇M1 is torsion free and V; FU½ �∈ Γ kerπ∗ð Þ we obtain

g1 ∇
M1

V U;Z
� �

¼ g1 TVFU;BZð Þ þ g1 ∇
M1

FUV; CZ
� �

:

Using (3) and (10) we have

g1 ∇
M1

V U;Z
� �

¼ g1 TVFU;BZð Þ þ g1 ∇
M1

FUFV; FCZ
� �

here we have used that μ is invariant. Since π is a conformal submersion, using (12) and

Lemma 2.2 we obtain

g1 ∇
M1

V U;Z
� �

¼ g1 TVFU;BZð Þ þ
1

λ2
g1 Hgrad lnλ; FUð Þg2 π∗FV;π∗FCZð Þ

�
1

λ2
g1 Hgrad lnλ; FVð Þg2 π∗FU;π∗FCZð Þ

þg1 FU; FVð Þ
1

λ2
g2 π∗ Hgrad lnλð Þ;π∗FCZð Þ

þ
1

λ2
g2 ∇

π
FUπ∗FV;π∗FCZ

� �

:

Moreover, using Definition 3.1 and (17), we obtain

g1 ∇
M1

V U;Z
� �

¼ g1 TVFU;BZð Þ þ g1 U;Vð Þg1 Hgrad lnλ; FCZð Þ þ
1

λ2
g2 ∇

π
FUπ∗FV;π∗FCZ

� �

which proves ið Þ⇔ iið Þ. □

From Theorem 4.3, we deduce the following result.

Theorem 4.4. Letπ be a conformal anti-invariant submersion from a locally product Riemannianmanifold

M1; g1; F
� �

onto a Riemannian manifold M2; g2
� �

. Then any two conditions below imply the three;

i. kerπ∗ defines a totally geodesic foliation on M1

ii. λ is a constant on Γ μ
� �

iii. �
1

λ2
g2 ∇

π
FUπ∗FV;π∗FCZ

� �

¼ g1 TVFU;BZð Þ
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for V,U∈Γ kerπ∗ð Þ and Z∈ Γ kerπ∗ð Þ⊥
� �

.

Proof. For V,U∈Γ kerπ∗ð Þ and Z∈ Γ kerπ∗ð Þ⊥
� �

, from Theorem 4.3 we have

g1 ∇
M1

V U;Z
� �

¼ g1 TVFU;BZð Þ þ g1 U;Vð Þg1 Hgrad lnλ; FCZð Þ þ
1

λ2
g2 ∇

π
FUπ∗FV;π∗FCZ

� �

:

Now, if we have (i) and (iii), then we obtain

g1 U;Vð Þg1 Hgrad lnλ; FCZð Þ ¼ 0:

From above equation, λ is a constant on Γ μ
� �

. Similarly, one can obtain the other assertions.□

If π is a conformal Lagrangian submersion, then (16) implies that TM2 ¼ π∗ Fkerπ∗ð Þ. Hence we

have the following corollary:

Corollary 4.2. Let π be a conformal Lagrangian submersion from a locally product Riemannian

manifold M1; g1; F
� �

onto a Riemannian manifold M2; g2
� �

. Then the following assertions are equiva-

lent to each other;

i. kerπ∗ defines a totally geodesic foliation on M1.

ii. TVFU ¼ 0

for V,U∈Γ kerπ∗ð Þ and Z∈ Γ kerπ∗ð Þ⊥
� �

.

Proof. From Theorem 4.3 we have

g1 ∇
M1

V U;Z
� �

¼ g1 TVFU;BZð Þ þ g1 U;Vð Þg1 Hgrad lnλ; FCZð Þ þ
1

λ2
g2 ∇

π
FUπ∗FV;π∗FCZ

� �

:

for V,U∈ Γ kerπ∗ð Þ and Z∈Γ kerπ∗ð Þ⊥
� �

. Since π is a conformal Lagrangian submersion, we get

g1 ∇
M1

V U;Z
� �

¼ g1 TVFU;BZð Þ

which shows ið Þ⇔ iið Þ: □

5. Totally geodesicness of the conformal anti-invariant submersion

In this section, we shall examine the totally geodesicness of a conformal anti-invariant submer-

sion. We give a necessary and sufficient condition for a conformal anti-invariant submersion to

be totally geodesic map. Recall that a smooth map π between two Riemannian manifolds is

called totally geodesic if ∇π∗ ¼ 0 [15].
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Theorem 5.1. Let π : M1; g1; F
� �

! M2; g2
� �

is a conformal anti-invariant submersion from an

almost product Riemannian manifold M1; g1; F
� �

to a Riemannian manifold M2; g2
� �

: π is totally

geodesic map if and only if.

(a) π is a horizontally homothetic map,

(b) TUFV ¼ 0 and H∇
M1

U FV ∈ Γ Fkerπ∗ð Þ,

(c) AZFV ¼ 0 and H∇
M1

Z FV ∈ Γ Fkerπð Þ

for Z,W,Z∈ Γ kerπ∗ð Þ⊥
� �

and U, V ∈Γ kerπ∗ð Þ.

Proof. (a) For any Z,W ∈ Γ μ
� �

, from Lemma 2.2 we derive

∇π∗ð Þ Z;Wð Þ ¼ Z lnλð Þπ∗W þW lnλð Þπ∗Z� g1 Z;Wð Þπ∗ grad lnλð Þ:

It is obvious that if π is a horizontally homothetic map, it follows that ∇π∗ð Þ Z;Wð Þ ¼ 0:

Conversely, if ∇π∗ð Þ Z;Wð Þ ¼ 0, taking W ¼ FZ in above equation, we get

Z lnλð Þπ∗FZþ FZ lnλð Þπ∗Z� g1 Z; FZð Þπ∗ grad lnλð Þ ¼ 0: (22)

Taking inner product in (31) with π∗FZ, we obtain

g1 grad lnλ;Zð Þλ2g1 FZ; FZð Þ þ g1 grad lnλ; FZð Þλ2g1 Z; FZð Þ � g1 Z; FZð Þλ2g1 grad lnλ; FZð Þ ¼ 0:

(23)

From (32), λ is a constant on Γ μ
� �

: On the other hand, for U,V ∈ Γ kerπ∗ð Þ, from Lemma 2.2 we

have

∇π∗ð Þ FU; FVð Þ ¼ FU lnλð Þπ∗FV þ FV lnλð Þπ∗FU � g1 FU; FVð Þπ∗ grad lnλð Þ:

Again if π is a horizontally homothetic map, then ∇π∗ð Þ FU; FVð Þ ¼ 0: Conversely, if

∇π∗ð Þ FU; FVð Þ ¼ 0, putting U instead of V in above equation, we derive

2FU lnλð Þπ∗FU � g1 FU; FUð Þπ∗ grad lnλð Þ ¼ 0: (24)

Taking inner product in (33) with π∗FU and since π is a conformal submersion, we have

g1 FU; FUð Þλ2g1 grad lnλ; FUð Þ ¼ 0:

From above equation, λ is a constant on Γ Fkerπ∗ð Þ: Thus λ is a constant on Γ kerπ∗ð Þ⊥
� �

:

(b) For any U,V ∈Γ kerπ∗ð Þ, using (3) and (12) we have
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∇π∗ð Þ U;Vð Þ ¼ ∇
π

Uπ∗V � π∗ ∇
M1

U V
� �

¼ �π∗ F∇M1

U FV
� �

:

Then from (7) and (8) we arrive at

∇π∗ð Þ U;Vð Þ ¼ �π∗ FTUFV þ CH∇
M1

U FV
� �

:

From above equation, ∇π∗ð Þ U;Vð Þ ¼ 0 if and only if

π∗ FTUFV þ CH∇
M1

U FV
� �

¼ 0 (25)

Since π is non-singular, this implies TUFV ¼ 0 and H∇
M1

U FV ∈ Γ Fkerπ∗ð Þ:

(c) For Z∈ Γ μ
� �

and V ∈Γ kerπ∗ð Þ, from (3) and (12) we get

∇π∗ð Þ Z;Vð Þ ¼ ∇
π

Zπ∗V � π∗ ∇
M1

Z V
� �

¼ �π∗ F∇M1

Z FV
� �

:

Using (9) and (10) we have

∇π∗ð Þ Z;Vð Þ ¼ π∗ FAZFV þ CH∇
M1

Z FV
� �

:

Thus ∇π∗ð Þ Z;Vð Þ ¼ 0 if and only if

π∗ FAZFV þ CH∇
M1

Z FV
� �

¼ 0:

Then, since π is a linear isomorphism between kerπ∗ð Þ⊥ and TM2, ∇π∗ð Þ Z;Vð Þ ¼ 0 if and only if

AZFV ¼ 0 and H∇
M1

Z FV ∈Γ Fkerπ∗ð Þ: Thus proof is complete. □

Here we present another result on conformal anti-invariant submersion to be totally geodesic.

Theorem 5.2 Let π be a conformal anti-invariant submersion from a locally product Riemannian

manifold M1; g1; F
� �

onto a Riemannian manifold M2; g2
� �

. If π is a totally geodesic map then

∇
π

Zπ∗W2 ¼ π∗ F AZFW1 þ V∇
M1

Z BW2 þ AZCW2

� �

þ C H∇
M1

Z FW1 þ AZBW2 þH∇
M1

Z CW2

� �� �

for anyZ∈Γ kerπ∗ð Þ⊥
� �

andW ¼ W1 þW2 ∈Γ TMð Þ, whereW1 ∈Γ kerπ∗ð Þ andW2 ∈Γ kerπ∗ð Þ⊥
� �

.
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Proof. Using (3) and (12) we have

∇π∗ð Þ Z;Wð Þ ¼ ∇
π

Zπ∗W � π∗ F∇M1

Z FW
� �

for any Z∈Γ kerπ∗ð Þ⊥
� �

and W ∈ Γ TM1ð Þ. Then from (9), (10) and (15) we get

∇π∗ð Þ Z;Wð Þ ¼ ∇
π

Zπ∗W2 � π∗ FAZFW1 þ BH∇
M1

Z FW1 þ CH∇
M1

Z FW1 þ BAZBW2

�

þCAZBW2 þ FV∇M1

Z BW2 þ FAZCW2 þ BH∇
M1

Z CW2 þ CH∇
M1

Z CW2Þ

for anyW ¼ W1 þW2 ∈Γ TMð Þ, whereW1 ∈ Γ kerπ∗ð Þ andW2 ∈Γ kerπ∗ð Þ⊥
� �

. Thus taking into

account the vertical parts, we find

∇π∗ð Þ Z;Wð Þ ¼ ∇
π

Zπ∗W2 � π∗ F AZFW1 þ V∇
M1

Z BW2 þ AZCW2

� ��

þC H∇
M1

Z FW1 þ AZBW2 þH∇
M1

Z CW2

� �

Þ

which gives our assertion. □

6. Examples

In this section, we now give some examples for conformal anti-invariant submersions from

almost product Riemannian manifolds.

Example 6.1. Every anti-invariant Riemannian submersion is a conformal anti-invariant submersion

with λ ¼ I, where I is the identity function [7].

We say that a conformal anti-invariant submersion is proper if λ 6¼ I. We now present an

example of a proper conformal anti-invariant submersion. Note that given an Euclidean space

R
4 with coordinates x1;…; x4ð Þ, we can canonically choose an almost product structure F on R4

as follows:

F a1
∂

∂x1
þ a2

∂

∂x2
þ a3

∂

∂x3
þ a4

∂

∂x4

� 	

¼ a3
∂

∂x1
þ a4

∂

∂x2
þ a1

∂

∂x3
þ a2

∂

∂x4
,

a1,…, a4 ∈R: (26)

Example 6.2. Let π be a submersion defined by

π : R
4

x1 ;x2;x3;x4ð Þ
! R

2

cos x1sinh x2; sin x1cosh x2ð Þ:
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Then it follows that

kerπ∗ ¼ span V1 ¼ ∂x3; V2 ¼ ∂x4f g

and

kerπ∗ð Þ⊥ ¼ span X1 ¼ ∂x1; X2 ¼ ∂x2f g:

Hence, we have FV1 ¼ X1 and FV2 ¼ X2 imply that F kerπ∗ð Þ ¼ kerπ∗ð Þ⊥: Also by direct computa-

tions, we get

π∗X1 ¼ � sin x1sinh x2∂y1 þ cos x1cosh x2∂y2,

π∗X2 ¼ cos x1cosh x2∂y1 þ sin x1sinh x2∂y2:

Hence, we have

g2 π∗X1;π∗X1ð Þ ¼ sin 2x1sinh
2x2 þ cos 2x1cosh

2x2
� �

g1 X1;X1ð Þ,

g2 π∗X2;π∗X2ð Þ ¼ sin 2x1sinh
2x2 þ cos 2x1cosh

2x2
� �

g1 X2;X2ð Þ,

where g1 and g2 denote the standard metrics (inner products) of R4 and R
2. Thus π is a

conformal anti-invariant submersion with λ
2 ¼ sin 2x1sinh

2x2 þ cos 2x1cosh
2x2

� �

:

Example 6.3. Let π be a submersion defined by

π : R
4

x1;x2 ;x3;x4ð Þ
! R

2

ex3 sin x4
ffiffi

2
p

;

ex3 cos x4
ffiffi

2
p

� �

:

Then it follows that

kerπ∗ ¼ span V1 ¼ ∂x1; V2 ¼ ∂x2f g

and

kerπ∗ð Þ⊥ ¼ span W1 ¼ ∂x3; W2 ¼ ∂x4f g:

Hence we have FV1 ¼ W1 and FV2 ¼ W2 imply that F kerπ∗ð Þ ¼ kerπ∗ð Þ⊥: Also by direct computa-

tions, we get

π∗W1 ¼
ex3 sin x4

ffiffiffi

2
p ∂y1 þ

ex3 cos x4
ffiffiffi

2
p ∂y2,

π∗W2 ¼
ex3 cos x4

ffiffiffi

2
p ∂y1 �

ex3 sin x4
ffiffiffi

2
p ∂y2:

Manifolds II - Theory and Applications42



Hence, we have

g2 π∗W1;π∗W1ð Þ ¼ ex3
ffiffi

2
p

� �2
g1 W1;W1ð Þ,

g2 π∗W2;π∗W2ð Þ ¼ ex3
ffiffi

2
p

� �2
g1 W2;W2ð Þ,

where g1 and g2 denote the standard metrics (inner products) of R4 and R
2. Thus π is a

conformal anti-invariant submersion with λ ¼ ex3
ffiffi

2
p

� �

.
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