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Abstract

Hypersaline environments are those with salt concentrations 9–10 times higher (30–35% 
of NaCl) than sea water (3.5% of NaCl). At high concentrations of soluble salts, cyto-
plasm—mainly of bacteria and archaea—is exposed to high ionic strength and achieves 
osmotic equilibrium by maintaining a cytoplasmic salt concentration similar to that of 
the surrounding media. Halophilic enzymes are extremozymes produced by halophilic 
microorganisms; they have similar characteristics to regular enzymes but different prop-
erties, mainly structural. Among these properties is a high requirement of salt for biologi-
cal functions. Furthermore, the discovery of enzymes capable of degrading biopolymers 
offer a new perspective in the treatment of residues from oil deposits, under typically 
high conditions of salt and temperature, while giving valuable information on heterotro-
phic processes in saline environments.

Keywords: halotolerants, halophiles, salt-in, synthesis intracellular compounds, 
extremonzymes

1. Introduction

Extreme environments involve a wide range of extreme conditions (pH, temperature, pressure, 

light intensity, oxygen, nutrient conditions, heavy metals, and salinity). Hypersaline environ-

ments are those with salt concentrations 9–10 times higher (30–35% of NaCl) than sea water 

(3.5% of NaCl). These sites are widely distributed around the world and can harbor microorgan-

isms from three different life domains (archaea, bacteria, and eukaryota); together, these micro-

organisms are known as halophiles, which survive or even thrive in saline environments [1].

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2. Classification of halophiles and halophile environments

Nowadays, several classifications of halophiles have been suggested; the classification pro-

posed by Ollivier et al. [2] considers those microorganisms capable of growing in salt con-

centrations ≥150 g L−1 (15% w/v, 2.5 M) as halophiles. Another classification considers the 
optimum growth salinity as follows: mild halophiles (1–6%, w/v NaCl), moderate halophiles 

(7–15%) and extreme halophiles (15–30%) [3]. On the other hand, Ventosa and Arahal [4] 

defines halophiles as organisms that have an optimal growth above 3% salt concentration; if 
the optimal growth occurs between 3 and 15% salt, they are regarded as moderate halophiles; 

and when it occurs above 15% and up to halite saturation (34%), they are regarded as extreme 

halophiles. In addition, DasSarma and DasSarma [5] described halophiles as those organ-

isms that thrive from sea salinity (~0.6 M) up to saturation salinity (>5 M NaCl). However, 

the most complete and widely used classification scheme was proposed by Kushner and 
Kamekura [6], in which halophilic microorganisms are separated into six groups based on 

their salt requirement and tolerance (Table 1): non-halophiles are those that have optimal 

growth in culture media containing less than 0.2 M NaCl; slight halophiles (marine bacteria) 

grow best in media with 0.2–0.5 M NaCl; moderate halophiles grow best with 0.5–2.5 M 

NaCl; borderline extreme halophile that growth best at 2.5–4.0 M; extreme halophiles show 

optimal growth in culture media containing NaCl concentration between 4 and 5.9 M; and 

finally halo-tolerant microorganisms, which are non-halophiles that can tolerate high salt 
concentrations but do not require salt to survive; any microorganism viable at 2.5 M of NaCl 

is considered extremely halotolerant. Archaea and bacteria are the most widely distributed 

organisms in hypersaline environments [7], especially in those in which salinities exceed 

1.5 M (about 10%). In recent years, halophilic organisms are mainly isolated from saline 

environments, such as salt lakes, marine solar salterns, saline soils, and marine sediments 
(see Table 1). However, halophile bacteria have also been isolated from some non-common 

places, for example, textile effluents, halophytes, mine tailings as well as processed foods 
(Table 1).

2.1. Hypersaline environments

Hypersaline environments are extreme habitats with limited microbial diversity as result 

of high salt concentrations and other environmental factors. Nowadays, most environmen-

tal studies have been carried out on aquatic habitats, such as saline lakes and solar salterns 
used for the production of salt for commercial purposes [8]. Nevertheless, halophilic bac-

teria can be found in other habitats including saline soils, salted foods and other products, 

hides, and deep-sea brine pools [7, 9–11]. Depending on whether they originated or not 

from seawater, hypersaline environments are classified as thalassohaline and athalassoha-

line, respectively.

2.1.1. Thalassohaline environments

The thalassohaline environments are saline environments of marine origin, which contain the 

following ions: Cl−1, Na+, Mg2+, SO
4
2−, K+, Ca2+, Br−, HCO

3
−, and F− [4]. Some examples of thalas-

sohaline as explained as follows.

Kinetics of Enzymatic Synthesis4



Category Salt tolerance (M) Example Isolation site References

Non-halophile <0.2 Vibrio palustris EAdo9T and Vibrio 

spartinae SMJ221T

Salt-marsh plants [106]

Slight halophile 0.2–0.5 Paracoccus sp. GSM2 Textile mill effluent [107]

Bacillus sp. NY6 Saline wastewater [108]

Zunongwangia endophytica CPA58T Tissues of the halophyte 

Halimione portulacoides

[109]

Moderate 

halophile

0.5–2.5 Salinispora arenicola CNH-643T and 

Salinispora tropica CNB-440T

Marine sediments [110]

Salinispora pacifica CNR-114T Marine sediments [111]

Martelella endophytica YC6887T Root of Rosa rugosa [112]

Streptomyces halophyticola KLBMP 
1284T

Stems of Tamarix chinensis [113]

Labrenzia suaedae YC6927T Root of Sauceda maritime [114]

Kocuria arsenatis CM1E1T Prosopis laevigata [115]

Proteus sp. NA6 Textile effluent drain [116]

Candidatus Desulfonatronobulbus 

propionicus

Hypersaline soda lakes [117]

Novosphingobium pokkalii L3E4T Rhizosphere of saline-

tolerant pokkali rice
[118]

Marinobacter aquaticus M6-53T Marine saltern located in 

Huelva, Spain

[119]

Agrobacterium salinitolerans YIC 

5082T

Root nodules of Sesbania 

cannabina grown in a 

high-salt and alkaline 
environment

[120]

Salinicola tamaricis F01T Leaves of Tamarix chinensis [121]

Salinirubellus salinus ZS-35-S2T Marine solar saltern [122]

Borderline 

extreme 

halophile

2.5–4.0 Aliifodinibius halophilus 2W32T Marine solar saltern [123]

Desulfosalsimonas propionicica 

PropAT

Hypersaline sediment of 

the Great Salt Lake
[124]

Salinibacter iranicus CB7T and 

Salinibacter luteus DGOT

Aran-Bidgol salt lake, Iran [125]

Halanaerobium sehlinense 1SehelT Sediments of the 

hypersaline lake Sehline 
Sebkha

[126]

Sporohalobacter salinus CEJFT1BT Under the salt crust of 

El-Jerid hypersaline lake in 
southern Tunisia

[127]

Lentibacillus kimchii K9T Korean fermented food 
(kimchi)

[128]

Marinobacter salexigens HJR7T Marine sediment [129]

Gracilimonas halophila WDS2C40T Marine solar saltern [130]

Salinifilum proteinilyticum Miq-12T Wetland in Iran [131]

Natronospira proteinivora Bsker1T Marine solar saltern [132]
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2.1.1.1. Solar salterns

These sites have a similar composition to seawater and they are used for salt production by 

evaporation. They generally consist of several ponds interconnected to form the so-called 

multipond system. Seawater is pumped or allowed to flow into the first ponds, and as a con-

sequence of solar evaporation, the concentration of salts increases slightly and the water is 

moved to the next ponds, where it will concentrate further. Finally, in the last pond (called 

crystallizer), common salt is precipitated [4]. Many studies have focused on the isolation 

of bacteria harbored in hypersaline environments, identifying the following major groups: 

Bacteroidetes [12], Firmicutes [13–15], ϒ-Proteobacteria [13, 16–17], and ϒ-Proteobacteria 

being the most abundant.

2.1.1.2. Soils

Saline soils are those with an electrical conductivity (EC) higher than 4 dS mL−1, approxi-

mately 40 mM NaCl [18]. Nowadays, salinized areas are increasing at rate of 10% annually for 

various reasons, including low precipitation, high surface evaporation, weathering of native 

Category Salt tolerance (M) Example Isolation site References

Extreme 

halophile

4–5.9 Salinibacter ruber M31T Saltern crystallizer ponds 

in Alicante and Mallorca, 

Spain

[12]

Limimonas halophila IA16T Mud of the hypersaline 

Lake Aran-Bidgol, Iran
[133]

Desulfonatronobacter acetoxydans 

APT3

Hypersaline soda lake [47]

Halo-tolerant A non-halophile 

that tolerant salt; 

if it is viable 2.5 M, 

in is considered 

extremely 

halotolerant

Brevibacterium salitolerans TRM 415T Sediment from a salt lake [134]

Kineococcus endophytica KLMMP 
1274T

Halophytic plant 

(Limonium sinense)

[135]

Anditalea andensis ANESC-ST Alkali-saline soil [136]

Brevibacterium jeotgali SJ5-8T Traditional Korean 
fermented seafood

[137]

Salimicrobium sp. LY19 Saline soil [138]

Brevibacterium metallicus NM3E2T Edge of mine tailings [139]

Bacillus subtilis BLK-1.5 Salt mines [76]

Halomonas nigrificans MB G8645T Acid curd cheese called 

Quargel

[140]

Table 1. Classification of bacteria based on their salinity tolerance according with criteria proposed by Kushner and 
Kamekura [6].
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rocks, irrigation with saline water, and poor cultural species practices [19]. Several studies on 

hypersaline soils mainly isolated moderate halophiles and non-halophilic bacteria affiliated 
with different genera of the following taxonomic groups: Firmicutes [20–22], actinobacteria 

[23, 24], and proteobacteria [25, 26].

2.1.1.3. Great Salt Lake

In 1957, a rock-filled railroad causeway was completed across the lake, dividing it into a 
northern and a southern basin. The northern arm presented high salinity (33%), while the 

southern arm separated by a semipermeable rock causeway contains a moderate concentra-

tion of salt (12%) [27]. A number of studies on the isolation of bacteria from the sediment from 

Great Salt Lake have been carried out [28, 29].

2.1.2. Athalassohaline environments

These are environments that do not have a marine origin and their ionic proportions are quite 

different from that of the dissolved salts in seawater [30]. They reflect the composition of the 
surrounding geology, topography, and climate conditions, often particularly influenced by 
the dissolution of mineral deposits [31].

2.1.2.1. Dead Sea

The Dead Sea, which is actually an inland lake, is famous for being so saline that people 
can float with ease on its surface. The site is composed mainly of divalent ions like Mg2+ 

[32]. The Dead Sea is a hypersaline lake with 34% salinity, and its name is due to the lack 
of any living macroscopic creatures. The lake consists of a deeper northern basin and 
a shallow southern basin, which has been recently dried up and used for commercial 

mineral production [33]. The water level is dependent on the balance between amount 

of freshwater inflow and evaporation [32]. The Jordan River is the main source of fresh-

water inflow, in addition to several water springs and the complex system of underwater 

springs, which has been recently discovered [34]. Metagenomic studies demonstrated the 

presence of Halobacterium-like sequences and Mg2+ transport-related proteins, suggest-

ing a potential adaptation to the high magnesium concentration by Dead Sea halophiles 

[35]. In addition, metagenomic sequence analysis and amino acid profiling also demon-

strated the presence of halophiles never previously isolated or sequenced in the Dead 

Sea [35, 36]. It was recently discovered that the Dead Sea harbors some bacteria with 

biotechnological properties, such as Bacillus persicus 24-DSM, which showed antimicro-

bial activity [33].

2.1.2.2. Soda lakes

Athalassohaline alkaline salt lakes (or soda lakes), rich in NaCl, NaHCO
3
, and Na

2
CO

3
, are 

usually formed by dissolution of rocks that are low in magnesium and calcium, which would 
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otherwise cause carbonate to precipitate [37, 38]. The most studied lakes are those in the East 
African Rift Valley, continental Russia, and the USA. In addition to being able to tolerate 

high pH values and elevated salinities, microbes inhabiting soda lakes have to cope with low 
availability of NH

4
+, caused by weak dissociation of ammonia at high pH. An accumulation 

of stressful but volatile NH
3
 may occur in enclosed alkaline-saline systems such as sea ice or 

locally in soda lakes [32]. Several studies about bacteria isolation from soda lakes from differ-

ent continents are available [39–47].

Halophilic microorganisms have several biotechnological applications, such as β-carotene 

production of fermented foods. In recent years, uses of halophilic microorganisms have sig-

nificantly increased. Many enzymes, stabilizers, and valuable compounds from halophiles 
may present advantages for the development of biotechnological production processes.

2.2. Biology and adaptation of halophilic bacteria

The first chemical stress encountered during the evolution of life on earth may have been 
salt stress. Thus, from the beginning, organisms must have evolved strategies and effective 
mechanisms for the stabilization of protoplasmic structures and ion regulation [48]. At high 

concentrations of soluble salts, cytoplasm—mainly of bacteria and archaea—is exposed to 

high ionic strength and achieves osmotic equilibrium by maintaining a cytoplasmic salt con-

centration similar to that of the surrounding media. This can affect microbes via two primary 
mechanisms: osmotic effect and specific ion effects. Soluble salts increase the osmotic poten-

tial (more negative) of the soil water, drawing water out of cells which may kill microbes and 
roots through plasmolysis [49, 50].

To thrive in the hypersaline environment, halophiles have two main adaptation mechanisms 

to prevent NaCl from diffusing into the cells. The first mechanism is accumulation of inorganic 
ions (mainly KCl) for balancing osmotic pressure. This mechanism is mainly utilized by aerobic 
and extremely halophilic archaea and some anaerobic halophilic bacteria [32, 49, 51]. In con-

trast, most halophilic bacteria accumulate water soluble organic compounds of low molecular 

weight, which are referred to as compatible solutes or osmolytes, to maintain low intracellular 

salt concentration [52–54].

2.2.1. Salt-in mechanisms

As mentioned above, microorganisms that grow optimally in the presence of extremely high 

salinities (up to 5 M NaCl), accumulate intracellular potassium and chloride ions in concen-

trations higher than the external NaCl concentration to maintain a turgor pressure. This so-

called “salt-in” strategy is observed in Halobacteriales (archaea) and Halanaerobiales (anaerobic 

halophilic bacteria) [55, 56]. The mechanism (“salt-in” to balance “salt-out”) requires far-

reaching adaptations of the entire intracellular machinery, as all enzymes and functions in the 

cytoplasm have to be functional in the presence of molar concentrations of KCl [57]. A char-

acteristic feature of halophilic proteins from microorganisms that accumulate KCl for osmotic 
balance is their highly acidic nature, with a great excess of acidic amino acids (glutamate and 

Kinetics of Enzymatic Synthesis8



aspartate) over basic amino acids (lysine and arginine). Such proteins are highly negatively 

charged compared to their non-halophilic equivalents. In addition, halophilic proteins gener-

ally have a low content of hydrophobic amino acids [58, 59].

2.2.2. Synthesis of intracellular compounds

As explained above, microorganisms have the ability to adapt to or tolerate stress caused 

by salinity by accumulating osmolytes, also known as compatible solutes. The compatible 
solute strategy is broadly known in domain archaea, bacteria, as well as eukarya. Organisms 
accumulate organic solutes by uptake from the environment or de novo synthesis of organic 

compounds, such as sugars and polyols, amino acids and their derivatives, and other compat-

ible solutes for protection against salinity stress [60–62].

Organic solutes act as stabilizers for biological structures and allow the cells to adapt not only 

to salts but also to heat, desiccation, cold, or even freezing conditions [63]. Many halophilic 

bacteria accumulate ectoine or hydroxyectoine as the predominant compatible solutes. Other 

intracellular compatible solutes include amino acids, glycine betaine and other compounds 

accumulated in small amounts [54].

Mei et al. [64] describe the physiology of a Natrinema sp. strain J7–2, an extremely halophilic 

archaea isolated from a salt mine in China, under salt stress conditions (15, 25, and 30% NaCl). 

This strain showed the highest growth rate at 25–30% of NaCl, while at 15% cells were more 

fragile. Furthermore, the glycerolipid and amino acidic metabolism showed a significant 
difference in cellular transcripts levels, perhaps playing a role in membrane production/
alteration or in accumulation of specific amino acids (glutamate family—Glu, Arg and Pro; 
aspartate family—Asp; and aromatic amino acids—Phe and Trp), especially Glu and Asp as 

carbon substrates and energy resources or compatible solutes.

The most common inorganic solutes used as osmolytes by salinity tolerant microbes are potas-

sium cations, while proline and glycine betaine are the main organic osmolytes [65]. However, 

the synthesis of these compounds requires high amounts of energy [50, 66]. Given these high 

energetic requirements, there are few reports of halophilic microorganisms that can produce 

compatible solutes to mitigate the stress by variable concentrations of salts. The capacity of 

two halophilic strains is noteworthy: Planococcus sp. VITP21 and Bacillus sp. VITP4, which 

are capable of de novo synthesis of two rarely occurring diamino acids, Nε-acetyl α-lysine and 

Nδ-acetyl ornithine, respectively; besides the well-known ectoine and proline [67] as simple 

diamino acidic molecules to tolerate salt stress.

2.3. Production of extremozymes

Halophilic enzymes are extremozymes produced by halophilic microorganisms; they have 

similar characteristics to regular enzymes but different properties, mainly structural. Among 
these properties is a high requirement of salt for biological functions. In recent years, different 
studies have focused on the detection of halophiles in saline environments in order to isolate 

and characterize new enzymatic activities. This resulted in several halophile hydrolases being 
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described, including amylases, lipases, and proteases. Furthermore, the discovery of enzymes 

capable of degrading biopolymers offer a new perspective in the treatment of residues from 
oil deposits, under typically high conditions of salt and temperature, while giving valuable 

information on heterotrophic processes in saline environments.

2.3.1. Extremozymes-producing halophiles

Nowadays, investigation on the production of extremozymes from different bacterial genus 
and halophilic archaea has intensified. This interest is due to their capacity to efficiently cata-

lyze a process and show optimal activities at different salt concentrations. Halophiles are the 
most probable source of extremozymes, since they are also capable of tolerating alkaline pH 
and high temperatures, as reported by several authors [68–79].

Most of the evaluation studies on the enzymatic capacities of halophiles begin with the isola-

tion of these microorganisms from environments considered extreme due to specific charac-

teristics such as high salt concentrations, high pH values, and extreme temperature conditions. 

Sánchez-Porro et al. [80] report the isolation of moderately halophile strains from water and 

salterns in different areas of southern Spain: Almería (Cabo de Gata), Cádiz (San Vicente and 
San Fernando), and Huelva (Isla Bacuta, Río Tinto and Isla Cristina). Isolates have been identi-
fied as members of the genera Salinivibrio, Bacillus, Salibacillus, Halomonas, Chromohalobacter, 

Salinicoccus, and Marinococcus and they showed amylase, protease, lipase, and DNase activities.

In 2007, Vidyasagar et al. [68] isolated the extreme halophile Chromohalobacter sp. from solar 

lanterns, and subsequently produced and partially purified a halo-thermophile protease 
extracellular enzyme. Chromohalobacter sp. required a 4 M concentration of NaCl for optimal 

growth and protease secretion, and no growth was observed under 1 M NaCl. The initial 

pH of the medium for growth and enzyme production was in the interval of 7.0–8.0, with an 

optimum value of 7.2. Halophile Salinivibrio sp. isolated from Bakhtegan Lake in southern 
Iran also produced an extracellular protease [81].

Rohban et al. [82] studied extremophiles in Howz Soltan, a hypersaline lake located in central 
Iran. The organisms successfully isolated produced a wide variety of extracellular enzymes, 

where 84.4% had lipase activity, 76.6% amylase, 43.2% protease, 41.1% inulinase, 39.8% xyla-

nase, 29.4% cellulase, 14.2% DNase, and 12.1% pectinase. Halophile strains were identified as 
members of the following genera: Salicola, Halovibrio, Halomonas, Oceanobacillus, Thalassobacillus, 

Halobacillus, Virgibacillus, Gracilibacillus, Salinicoccus, and Piscibacillus. Most of the lipase and 

DNase producers belonged to the Gracilibacillus and Halomonas genera, respectively, while 

most of the organisms capable of producing hydrolytic enzymes (amylase, protease, cellu-

lase, and inulinase) were part of Gram-positive genera, such as Gracilibacillus, Thalassobacillus, 

Virgibacillus, and Halobacillus.

In 2011, Perez et al. [83] reported the isolation and purification of a lipase obtained from the 
Marinobacter lipolyticus SM19 halophile, isolated from a saline habitat in southern Spain. The 

properties of this enzyme are of great potential for the food industry. Li and Yu [84] isolated 

the halophile strain LY9, which has amylolytic properties, from soil samples obtained in 

Yuncheng, China. The strain LY9 was identified as a member of the halobacillus genus and it 
was discovered that the production of amylase secreted for this strain depended on the salinity 
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of the growth medium. The maximum production of amylase was observed in the presence 

of 10% KCl or 10% NaCl. Maltose was the main product from hydrolysis of soluble starch, 
pointing out to β-amylase activity.

In agreement with previous studies from 2003, 2007, and 2009, Shahbazi and Karbalaei-
Heidari [85] reported the capacity of Salinivibrio sp. to produce extracellular low molecular 

weight proteases, and Jayachandra et al. [86] reported the isolation and identification of extra-

cellular activity of hydrolytic enzymes from bacteria in the Salinicoccus sp. genus. Strain JAS4 

was isolated from the Arabal soil in the west coast of Karnataka, India. These bacteria showed 
great potential to produce extracellular enzymes such as amylase, protease, inulinase, and 

gelatinase. Also in 2012, Kumar et al. [70] isolated halophiles from different saline environ-

ments in India, by means of morphological, biochemical, and 16S rRNA analyses. The authors 

identified the genera Marinobacter, Virgibacillus, Halobacillus, Geomicrobium, Chromohalobacter, 

Oceanobacillus, Bacillus, Halomonas, and Staphylococcus as having hydrolase activities of indus-

trial relevance, pointing out the presence of amylases, lipases, and proteases. A new genus 

of marine bacteria is included among halophiles that are capable of producing extracellular 

hydrolytic enzymes, according to the research by Ardakani et al. [69], who isolated extracel-

lular hydrolytic enzymes from the water and sediments of the Persian Gulf, in that site the 

isolation of bacteria that produced enzymes belong to the Pseudoalteromonas genera, and the 

activities include amylase, protease, and lipase.

During 2013, studies were made on enzyme-producing halophilic archaea capable of syn-

thesizing two new alcohol-dehydrogenases, amylase and a thermostable halo-alkaliphile 
α-amylase; the producing organisms were identified as Haloferax volcanii, Natrialba aegyptiaca 

and Halorubrum xinjiangense, respectively. Hagaggi et al. [87] reported the isolation of the 

extremely halophilic archaea Natrialba aegyptiaca, from a salty soil near Aswan in Egypt. This 

organism is capable of producing an extracellular halophilic amylase that digests raw starch; 

therefore the enzyme may be used to efficiently process different vegetable sources. Moshfegh 
et al. [71] isolated a thermostable halo-alkaliphile α-amylase from an archaea located in the salty 

water of the Urmia Lake, which lies in northeast Iran. The producing organism was identified 
as Halorubrum xinjiangense, based on its morphological, biochemical, and molecular properties. 

Nigam et al. (2013) [72] tested the alkaline proteases produced by halophilic bacteria isolated 
from the Sambar Lake in Rajasthan for keratolytic activity. Moreno et al. [88] have shown that 

some microorganisms from hypersaline environments in Spain are able to produce hydro-

lytic enzymes; these have been related to the genera Salinivibrio, Halomonas, Chromohalobacter, 

Bacillus-Salibacillus, Salinicoccus, Marinococcus, Halorubrum, Haloarcula, Halobacterium, Salicola, 

Salinibacter, and Pseudomonas.

The bacteria isolated from a saline lake in Iran produced lipases, these bacteria belonging to the 
genera Salicola, Halovibrio, Halomonas, Oceanobacillus, Thalassobacillus, Halobacillus, Virgibacillus, 

Gracilibacillus, Salinicoccus, and Piscibacillus. On the other hand, sediments of deep waters in 

China have been found to contain amylase-producing organisms from the genera Alcanivorax, 

Bacillus, Cobetia, Halomonas, Methylarcula, Micrococcus, Myroides, Paracoccus, Planococcus, 

Pseudomonas, Psychrobacter, Sporosarcina, Sufflavibacter, and Wangia. In a desert in Chile, enzymes 

with DNase activity were related to the genera Bacillus, Halobacillus, Pseudomonas, Halomonas, and 

Staphylococcus [89].
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A halo-alkaliphile, thermostable extracellular protease was reported by Selim et al. [74] pro-

duced by Natronolimnobius innermongolicus WN18 (HQ658997), an organism that belongs 

to the genus Natronolimnobius and was isolated from the sodium lake of An-Natrun, Egypt. 
Another halophile studied in the same year was the marine bacterium Zunongwangia profunda, 

due to its production of a new α-amylase resistant to low temperatures and tolerant to high 

concentrations of NaCl (4 M) [90].

Gupta et al. [75] reported a halo-alkaliphile isolated from a soil sample collected from the 
Sambhar Lake in Rajasthan, northern India, which produced an extracellular alkaline prote-

ase; the results of the analysis of gene 16S rRNA showed a 98% match with Halobiforma sp. 

Del Campo et al. [91] and Kumar and Khare [92] used fermentation in a solid medium to 

produce an esterase from halophilic archaea (Natronococcus sp. TC6, Halobacterium sp. NRC-1, 

and Haloarcula marismortui). These authors also optimized the production and nano-immobi-

lization of Marinobacter sp. for an efficient hydrolysis of starch.

The Kocuria is mentioned as an example of a genus capable of producing extracellular amy-

lases [77]. On the other hand, archaea Halobacterium sp. was isolated from samples of fer-

mented fish and was considered a strong source of halophilic protease [93]; the bacterium 

Bacillus licheniformis isolated from sea water and sediments in Alexandria Eastern Harbor, 

Egypt, together with Bacillus subtilis isolated from the salt mines in Karak, Pakistan, were 
found to be producers of extracellular amylases and proteases, respectively [76, 94].

Dumorné et al. [95] stated that that the halophiles Acinetobacter, Haloferax, Halobacterium, 

Halorhabdus, Marinococcus, Micrococcus, Natronococcus, Bacillus, Halobacillus, and Halothermothrix 

produce extremozymes such as xylanases, amylases, proteases, and lipases. Halophile bacte-

rium Idiomarina produces two extracellular proteases and was isolated in Badab-Sourt, Irán 

[79]. The same year, Hosseini et al. [96] described the isolation of bacteria capable of nitrite 

reduction that belonged to five different genera: Bacillus, Halobacillus, Idiomarina, Oceanobacillus, 

and Virgibacillus, in a paper regarding denitrifying halophile bacteria. Isolates capable of pro-

ducing nitrate reductase were found among the genera Halobacillus and Halomonas. Another 

study on soils was carried out by Bhatt et al. [78], who isolated halo-alkaliphile bacteria from 
the saline desert soil in Little Rann of Kutch, India. Phylogenetic analysis indicated that iso-

lates belong to phylum Firmicutes, which comprises lower G + C Gram-positive bacteria of 

different genera. Most of the halophilic isolates produced proteases (30% of isolates), followed 
by cellulases (24% isolates), CMCases (24% of isolates), and amylases (20% of isolates).

2.4. Physicochemical parameters and kinetic properties of extremozymes from 
halophilic microorganisms

Halophilic enzymes have specific mechanisms for solubility at high salt concentrations, such as 
a highly negative superficial charge given by carboxylic groups that depend on high salt con-

centrations to remain soluble. Halophilic archaea are known to secrete active proteases at high 
concentrations of NaCl (4 M), and to accumulate high concentrations of KCl in their cytoplasm 
in order to face osmotic stress, while maintaining the conformation of their proteins. The study 

made by Akolkar and Desai [97] suggests that proteases from haloarchaea may be active and 

stable in the presence of osmolytes different from NaCl/KCl at different degrees, as shown by 
the kinetics and thermodynamic analyses of casein hydrolysis produced by Halobacterium sp., in 

the presence of a compatible solute (sodium glutamate). In 2012, Zhang et al. [98] demonstrated 
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that NaCl may improve the thermal stability of enzymes, and the presence of NaCl or KCl 
increases enzymatic activity 10-fold, approximately; this agrees with other investigations that 

demonstrate that enzyme activity depends on the concentration of NaCl or KCl, as well as on 
the substrate, pH, and presence of ions. Moshfegh et al. [71] demonstrated that the concentra-

tion of NaCl 4 M or KCl 4.5 M determines the maximum activity of halo-alkaliphile α-amylase 

produced by archaea Halorubrum xinjiangense, besides improving its thermal stability. In a 

similar manner, Selim et al. [74] showed that the protease activity of Natronolimnobius innermon-

golicus depends on high concentrations of salt to remain active and stable. Proteases purified 
by Faghihi et al. [79] increased their activity in the presence of metallic ions such as Mn2+ and 

Cu2+, while decreasing activity when exposed to Hg2+ and Fe2+. Both proteases were strongly 

inhibited by SDS, while DDT, EDTA, and 2-mercaptoethanol may stimulate their activity.

The affinity of an enzyme to hydrolyze a substrate is determined by the Michaelis constant 
(K

m
), which is the concentration of substrate at which the reaction velocity is half the maximum 

velocity (V
max

). V
max

 is the maximum velocity when the system is saturated with substrate. The 

value of Km is a measure of the enzyme-substrate affinity, and at the moment there are very 
few determinations made on extremozymes from halophilic organisms. Table 2 shows the 

values of kinetic constants for extremozymes currently available.

Nowadays, recombinant DNA techniques and genetic engineering are used to obtain custom-

ized extremozymes to be used for specific purposes, greatly improving their catalytic ability, as 
demonstrated by Kui et al. [99] with the expression of genes from extremozyme β-1,4-xylanase, 

which was cloned from Nesterenkonia xinjiangensis and expressed in Escherichia coli. This enzyme 

was thermostable, retaining more than 80% of the initial activity after incubation at 60°C for 1 h, 

and more than 40% activity at 90°C for 15 min. In the same way, Qin et al. [90] cloned a novel gene 

that codifies a new α-amylase, which is active at low temperatures and tolerant to salt (AmyZ), 

from the marine bacterium Zunongwangia profunda, this protein was also expressed in Escherichia 

coli. It was observed that AmyZ is one of the few α-amylases that tolerate both low temperatures 

and high salinity, which makes it a potential candidate for research in basic and applied biology.

2.5. Halophile extremozyme applications

As mentioned above, halophiles are good sources of several extremozymes, and among them 

hydrolases have been the most studied, mainly amylases, proteases, lipases, xylanases, cel-

lulases, and DNases. Some extremozymes from halophiles exhibit extraordinary biochemical 

properties, which show the potential for industrial applications. It has been demonstrated that 

extremozymes derived from halophiles are able to function under harsh conditions and remain 

Microorganism Extremonzyme km (mg/mL) V
max

Reference

Nesterenkonia xinjiangensis Xilanasa 16.08 45.66 μmol/min-mg [99]

Bacillus sp. Celulasa 3.18 [98]

Halorubrum xinjiangense α-amilasa 3.8 12.4 U/mg [71]

Aspergillus gracilis α-amilasa 6.33 8.36 U/mg [87]

Kocuria sp. Amilasa 3.0 90.09 U/ml [77]

Table 2. Kinetics parameters of extreme-enzymes produced by halophiles microorganims.
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stable and active with different properties than conventional enzymes, offering opportunities 
in several applications such as environmental bioremediation, food processing, and residual 

water treatment. Recent research points out the application of halophilic extremozymes in 

the production of biofuels. Since several halophiles are also alkaliphiles, their enzymes are of 
interest for the textile and detergent industries, and some have been explored as raw materials 

in the production of commercial enzymes, particularly proteases and amylases [5, 100–105].

3. Conclusions

Halophile microorganisms have the ability to adapt to or tolerate stress caused by salinity by 

accumulating osmolytes. Halophilic microorganisms have several biotechnological applica-

tions, in recent years, uses of halophilic microorganisms have significantly increased. Many 
enzymes, stabilizers, and valuable compounds from halophiles may present advantages for the 

development of biotechnological production processes. Halophiles are the most probable source 

of extremozymes, since them also capable of tolerating alkaline pH and high temperatures.
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