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Chapter

Micromechanical Failure Analysis
of Unidirectional Composites
Zheng-Ming Huang

Abstract

Internal stresses in the fiber and matrix of a unidirectional (UD) composite
obtained by any micromechanics model are homogenized quantities. They must
be converted into true values before an effective specifically failure and strength
property of the composite can be predicted in terms of the fiber and matrix
properties only. As elastic property of a material does not depend on the magni-
tude of its stresses, the predictions of an elastic property of the composite based
on the homogenized and true stresses of the constituents are the same, concealing
the fact that the elastic property should be predicted based on the true stresses as
well. The conversion of all of the internal stress components has been shown in
this chapter. Predictability of a total number of 12 micromechanics models for the
stiffness and strength of a UD composite is assessed against the experimental data
of the 9 UD composites provided in three worldwide failure exercises (WWFEs).
Bridging Model exhibits overall the best accuracy in both the stiffness and the
strength predictions. Further, the smallest fiber volume in a RVE (representative
volume element) for an FE (finite element) approach plays a much more domi-
nant role than other issues such as a random fiber arrangement pattern to achieve
the highest simulation accuracy. Finally, consistency of a micromechanics model
in calculating the internal stresses of a composite is an issue that should be taken
into account. Only Bridging Model is consistent. A non-consistency implies that a
full three-dimensional (3D) model should be used to predict an effective property,
e.g., failure behavior of a composite even though it is only subjected to a uniaxial
load, and a 3D RVE geometry should be discretized if a numerical micromechanics
approach is applied.

Keywords: composites, micromechanics, stress concentration factors,
interface crack, failure analysis, strength prediction, consistency,
fiber arrangement arrays

1. Introduction

Fiber-reinforced composites have been used as a primary-load carrying struc-
tural material in many engineering areas especially in aerospace industry. Due to
their anisotropy, the mechanical properties of the composites are difficult or
expensive to understand through experiments. Establishment of mathematical
models to link the overall behaviors of the composites with their constituent
structures and properties is an objective of micromechanics. As any continuous
fiber-reinforced composite structure can be subdivided into a combination of a
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series of unit cells or RVEs [1], which can be considered as UD composites in
their local coordinate system, a micromechanics analysis of a UD composite is
fundamental.

So far, numerous micromechanical models have been developed to predict elas-
tic properties of the composites from those of the constituent fiber and matrix
materials [2–4]. On the other hand, very few of them have been applied to estimate
failure and strength behaviors of the composites only based on the original constit-
uent data measured independently with a reasonable accuracy [5]. This is attributed
to that the internal stresses in the fiber and matrix of a composite obtained by a
micromechanics theory are homogeneous quantities. They must be converted into
true values before an effective property of the composite is predicted in terms of the
original consituent properties. An elastic property (modulus, stiffness, etc.) of a
material does not depend on the magnitude of the stresses in it, as long as they do
not exceed the elastic limit of the material. Hence, the predictions of an elastic
property of the composite based on the homogenized and true stresses of the
constituents are the same, concealing the fact that the composite elastic property
should also be predcited based on the true stresses. The stress field of the fiber is
uniform [6, 7]. Its homogenized and true stresses are the same. A true stress of the
matrix is obtained by multiplying its homogeneous counterpart with a stress con-
centration factor (SCF) of the matrix in the composite. This is because a plate with a
hole generates a stress concentration if subjected to an in-plane tension. When the
hole is filled with a fiber of different proerties, a stress concentration occurs as well.

The most significant feature is that such an SCF cannot be defined, following a
classical approach, as a maximum point-wise stress divided by the overall applied
one. Otherwise, the resulting SCF would be infinite if there is an interface crack or
debonding on a fiber and matrix interface, since at the crack tip, a matrix stress is
singular. All of the SCFs of the matrix in a composite have been obtained [8–11] and
are summarized in this chapter.

Another objective of this chapter is to make a critical assessment for the
predicability of 12 well-known micromechanical models for the stiffness and mainly
failure and strength of a UD composite, based on the original fiber and matrix
properties and the fiber volume fraction. By “original,” it is meant that the proper-
ties are either measured independently using monolithic material, e.g., matrix
specimens or documented in a recognized material database. The previous compar-
isons, e.g., Refs. [12–14], were made essentially for the stiffness predictions by
different models. Seldom have been found for the strength predictions. The models
considered in this chapter are Eshelby’s method [6, 15], Bridging Model [16], Mori-
Tanaka method [17, 18], rule of mixture method [19], Chamis model [20], modified
rule of mixture method [19], Halpin-Tsai formulae [21], Hill-Hashin-Christensen-
Lo model [22], self-consistent method [15], generalized self-consistent method
[15, 23], double inclusion method [4], and finite element method (FEM) [24] with
different fiber arrangement patterns in a unit cell or RVE. The measured stiffness
and strength data of all of the nine independent UD composites adopted in three
WWFEs [25–27] are used as benchmark to judge the prediction accuracy of each
model. An accuracy ranking is made based on the overall correlation errors between
the models’ predictions and the experiments.

Numerical micromechanics such as FE approaches are popular in the current
literature. What kind of fiber arrangement pattern should be chosen in a RVE? By
definition, the RVE geometry, on which a homogenization is made, should be
infinitesimal. In reality, however, a finite volume for a RVE has to be used. Thus,
various choices exist. Many people [28–30] deemed that a random arrangement
pattern with quite a number of fibers, e.g., 30 [31], 40 [32], or even 120 [33], should
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be contained in the RVE. It is shown among the four different patterns considered
in this chapter the one with the smallest fiber volume results in the highest predic-
tion accuracy.

Finally, consistency in the internal stress calculation deserves an attention. Any
micromechanics model can result in two sets of formulae, i.e., two-dimensional
(2D) and three-dimensional (3D) formulae, for homogenized internal stresses in
the fiber and matrix of a composite. When the composite is subjected to a planar
load, either the 2D or the 3D formulae can be applied to calculate the internal
stresses. If the stress components in the fiber and matrix by the 2D and the 3D
formulae are exactly the same, the model is said to be consistent in the internal
stress calculation. It is shown in the chapter that among the 12 theories considered,
only Bridging Model is consistent. Thus, if any other models specifically the
numerical micromechanics method is applied to determine the internal stresses, its
full 3D formulae should be made in use, even though the composite is subjected to
only a uniaxial load.

In short, the topics addressed in this chapter are important to the
micromechanical analysis of an effective mechanical property of a composite. If one
would like to estimate its failure and strength behavior under an arbitrary load
condition only from its constituent information, the true stress theory as described
in this chapter is inevitable.

2. Fundamental for internal stresses

A composite is heterogenous by nature. Any stress and strain should be defined
upon averaged quantities with respect to its RVE of a volume V' through.

σi ¼

ð

V '

~σidV

0

@

1

A=V ' ¼ Vfσ
f
i þ Vmσ

m
i , (1)

εi ¼

ð

V '

~εidV

0

@

1

A=V ' ¼ Vf ε
f
i þ Vmε

m
i : (2)

It must be realized that by definition V' should be infinitesimal, and a resulting
stress or strain, with � on head, represents a point-wise quantity. If V' is finite, the
corresponding one is called a homogenized quantity. In Eqs. (1) and (2), V is a
volume fraction with Vf + Vm = 1. A super-/subscript f or m refers to the fiber or
matrix, whereas a quantity without any suffix is related to the composite.

Using a bridging equation, σmi
� �

¼ Aij

� �

σ
f
j

n o

, and the constitutive relationships,

ε
f
i

n o

¼ S
f
ij

h i

σ
f
j

n o

, εmi
� �

¼ Smij

h i

σmj

n o

, and {εi} = [Sij]{σj}, the internal stresses in the

fiber and matrix together with the compliance tensor of the composite are found to
be [16]

σ
f
i

n o

¼ Vf I½ � þ Vm Aij

� �� ��1
σj
� �

, (3)

σmi
� �

¼ Aij

� �

Vf I½ � þ Vm Aij

� �� ��1
σj
� �

: (4)

Sij
� �

¼ Vf S
f
ij

h i

þ Vm Smij

h i

Aij

� �

� 	

Vf I½ � þ Vm Aij

� �� ��1
: (5)
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S
f
ij

h i

and Smij

h i

are the compliance tensors of the fiber and matrix, respectively,

and [I] is a unit tensor. From Eq. (5), the bridging tensor is solved as

Aij

� �

¼ Vf Sij
� �

� Smij

h i� 	�1
S
f
ij

h i

� Sij
� �

� 	

=Vm: (6)

The prediction of elastic moduli is equivalent to the calculation of internal
stresses in the fiber and matrix of the same composite.

3. Highlight on micromechanics models

A different micromechanics model corresponds to a different bridging tensor.
Perhaps the most compact bridging tensor is given by Bridging Model [16], of
which the non-zero bridging tensor elements are expressed as follows:

a11 ¼ Em=E
f
11, (7.1)

a12 ¼ a13 ¼
νmE

f
11 � Emν

f
12

Em � E
f
11

a11 � a22ð Þ, (7.2)

a22 ¼ a33 ¼ a44 ¼ 0:3þ 0:7
Em

E
f
22

, (7.3)

a55 ¼ a66 ¼ 0:3þ 0:7
Gm

G
f
12

: (7.4)

E
f
11, E

f
22, and G

f
12 are longitudinal, transverse, and in-plane shear moduli of the

fiber, respectively. ν
f
12 is its longitudinal Poisson’s ratio. E

m and Gm are Young’s and
shear moduli of the matrix. Substituting the so-defined bridging tensor into Eqs. (3)
and (4) leads to

σ
f
11 ¼

σ011
Vf þ Vma11

�
Vma12 σ022 þ σ033

� �

Vf þ Vma11
� �

Vf þ Vma22
� � , (8.1)

σm11 ¼
a11σ

0
11

Vf þ Vma11
þ

V fa12 σ022 þ σ033
� �

V f þ Vma11
� �

Vf þ Vma22
� � , (8.2)

σ
f
ij ¼

σ0ij

Vf þ Vma22
, ij ¼ 22, 33, and 23, (8.3)

σmij ¼
a22σ

0
ij

Vf þ Vma22
, ij ¼ 22, 33, and 23, (8.4)

σ
f
ij ¼

σ0ij

V f þ Vma66
, ij ¼ 12 and 13, (8.5)

σmij ¼
a66σ

0
ij

Vf þ Vma66
, ij ¼ 12 and 13, (8.6)

{σ011, σ
0
22, σ

0
33, σ

0
23, σ

0
13, and σ012} are any arbitrary loads applied on the composite.
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The other analytical models are summarized in Appendix A. However, numeri-
cal micromechanics methods are even more widely applied in the current literature
[34–36]. Among, an FE approach is the most common. In this approach, the fiber
and matrix in a RVE geometry are discretized, respectively, into a number of
elements with prescribed boundary conditions. After the stresses (i.e., point-wise
quantities) in the fiber and matrix of the RVE under any load are obtained through
an FE package such as ABAQUS, they are homogenized as per Eq. (1) and the
bridging tensor is determined following a method of Ref. [37]. The specification of
the boundary conditions has become standard [36]. Thus, different solutions only
come from different RVE geometries used.

In this chapter, four kinds of RVE geometries with the same boundary condi-
tions are chosen for the comparison. They are square fiber array [38] (Figure 1a),
hexagonal array [36] (Figure 1b), square-diagonal array [39] (Figure 1c), and
random array with 30 fibers involved [28, 31] (Figure 1d). Our solutions are the
same as those in Ref. [36] for Figure 1b, in Ref. [39] for Figure 1c, and in Ref. [31]
for Figure 1d, respectively.

4. Assessment on stiffness prediction

Hinton et al. organized three WWFEs to judge efficiency of the current theories
for composites [5]. A total number of nine independent material systems were used.
Mechanical properties of the fibers and matrices as well as fiber volume fractions
of the nine UD composites were provided [25–27] and cited in Table B.1 (see
Appendix B). Measured effective properties of the composites from the exercise
organizers [25–27], which are used as a benchmark to assess the predictability of the
12 models, are listed in Table B.2. Predictions for the five effective elastic moduli of

Figure 1.
Different RVEs for a UD composite used in FE approach: (a) square fiber array, (b) hexagonal fiber array,
(c) square-diagonal fiber array, and (d) random fiber array.

5

Micromechanical Failure Analysis of Unidirectional Composites
DOI: http://dx.doi.org/10.5772/intechopen.80807



each of the 9 composites by the 12 models are made and are summarized in
Table B.3. Relative error of each predicted result in comparison with the measured
counterpart (Table B.2) is calculated. The overall averaged errors by the 12 models
are indicated in Table 1, in which FE-square, FE-hexagonal, FE-square-diagonal,
and FE-random stand for the FEM solutions based on Figure 1a–d, respectively.

It is seen from the table that Bridging Model exhibits overall the highest accu-
racy in the stiffness prediction, with an overall correlation error of 10.48%. The
second smallest error, 13.06%, is achieved by the FE-square array. The FE approach
with a random fiber array of 30 fibers results in a correlation error of 17.57%, which
is 34.5% less accurate than the FE approach with the square fiber array. The other
two fiber arrangement patterns, the hexagonal and the square-diagonal fiber arrays,
make the correlation even poorer than the random fiber arrangement. Although the
four kinds of fiber arrangement patterns considered in this work may be limited,
compared to unlimited possibilities in fiber arrangements, the present study con-
firms that the minimum fiber volume in the RVE geometry for a composite is the
most dominant factor to influence the simulation accuracy, as long as suitable
boundary conditions have been equally specified. Table 1 also indicates that three
analytical micromechanics models, Bridging Model, double inclusion method, and
Chamis model, possess sufficient accuracy in modeling of composite stiffness.

The largest correlation error, 30.7%, is assumed by Eshelby’s method. In addition
to it, there are three other models attaining an averaged correlation error of more
than 20% in the stiffness prediction. They are the FE-square diagonal fiber array,
self-consistent method, and rule of mixture method.

5. SCFs of the matrix in a composite

5.1 Background

Let the E-glass/LY556 UD composite in Table B.1 be subjected to only a trans-
verse tension, σ022, which will fail from a matrix failure. The only non-zero internal

Model N Averaged

error*

Error

ratio

Rank Model N Averaged

error*

Error

ratio

Rank

Bridging model 45 10.38% 1.0 1 Halpin-Tsai

formulae

45 19.24% 1.85 9

FE-square 45 13.08% 1.26 2 Modified rule

of mixture

45 19.35% 1.86 10

Double inclusion

method

45 13.6% 1.31 3 Mori-Tanaka

method

45 19.59% 1.89 11

Chamis model 45 14.09% 1.36 4 FE-square

diagonal

45 21.48% 2.07 12

Hill-Hashin-C-L

model

33 17.22% 1.66 5 Self-consistent

method

45 21.82% 2.1 13

FE-random 45 17.57% 1.69 6 Rule of mixture

method

45 28.4% 2.74 14

Generalized self-

consistent

45 18.14% 1.75 7 Eshelby’s

method

45 30.72% 2.96 15

FE-hexagonal 45 19.05% 1.84 8

*= 1
N∑N

i¼1abs errorð Þi.

Table 1.
Overall averaged errors in prediction of the elastic moduli of the nine UD composites by different models.
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stresses of the matrix from Eqs. (8.2), (8.4), and (8.6) are σm11 ¼ 0:134σ022 and

σm22 ¼ 0:442σ022. Thus, the transverse tensile strength of the composite is σu, t22 =
Ym/0.422, where Ym is the in situ transverse tensile strength of the matrix in the
composite. Setting Ym = σmu, t = 80 MPa (Table B.2), where σmu, t is the original tensile

strength of the matrix, one obtains σu, t22 = 181 MPa, which is more than 5.2 times
greater than 35 MPa, the measured counterpart of the composite (Table B.2). A
similar conclusion can be drawn no matter which other composite is considered or
another micromechanics theory is employed. This implies that the homogenized
internal stresses evaluated through Eqs. (3) and (4) must be converted into “true”
values before a failure assessment can be made against the original strength data of
the constituents. As point-wise strains in the fiber are uniform [6], its homogenized
and true stresses are the same. However, those in the matrix are not. Each of its true
stresses is obtained by multiplying the homogenized counterpart with a factor,
which is agreed to call an SCF of the matrix in the composite.

5.2 Definition

The most significant feature, as aforementioned, is that such an SCF is no
longer obtainable from a classical approach. Thus, the new definition must be
made on an averaged stress. But with respect to which kind of geometry the
averaging should be performed? A classical SCF was obtained by a point-wise
(something like zero-dimensional) stress divided by an overall applied one, which
is in fact a 2D quantity averaged with respect to the boundary surface. By similar-
ity, a present SCF must be defined as a line-averaged (one-dimensional) stress of
the matrix divided by a volume-averaged (3D) one since three is the maximum
attainable dimension in the denominator. An SCF of the matrix subjected to a
transverse load is derived through [10]

K22 φð Þ ¼
1

R
!b

φ � R
!a

φ

























ð

R
!b

φ



















R
!a

φ













~σm22

σm22
� �

BM

d Rφ

!
j,








 (9)

in which ~σm
22 is a point-wise stress of the matrix determined on a concentric

cylinder assemblage (CCA) model along the loading direction; σm22
� �

BM
is given by

Bridging Model, i.e., by Eq. (8.4), φ is the inclined angle of the outward normal to a

failure surface under the given load, and R
!a

φ and R
!b

φ are the vectors of Rφ

!
at the

surfaces of the fiber and matrix cylinders within the RVE, respectively, where
b ¼ a=

ffiffiffiffiffiffi

Vf

p

.

5.3 Transverse SCFs

In such a load case, the explicit integration of Eq. (9) leads to [8–10]

K22 φð Þ ¼ 1þ
A

2

ffiffiffiffiffiffi

Vf

q

cos 2φþ
B

2 1�
ffiffiffiffiffiffi

V f

p

� 	 V2
f cos 4φþ 4Vf cos

2φ 1� 2 cos 2φð Þ
h

8

<

:

þ
ffiffiffiffiffiffi

Vf

q

2 cos 2φþ cos 4φð Þ
i

)

Vf þ a22Vm

� �

=a22,

(10.1)
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A ¼
2E

f
22E

m ν
f
12

� 	2
þ E

f
11 Em ν

f
23 � 1

� 	

� E
f
22 2 νmð Þ2 þ νm � 1
h in o

E
f
11 E

f
22 þ Em 1� ν

f
23

� 	

þ E
f
22ν

m
h i

� 2E
f
22E

m ν
f
12

� 	2 , (10.2)

B ¼
Em 1þ ν

f
23

� 	

� E
f
22 1þ νmð Þ

E
f
22 νm þ 4 νmð Þ2 � 3
h i

� Em 1þ ν
f
23

� 	 : (10.3)

Under a transverse tension, the failure surface of the composite is perpendicular
to the loading and hence φ = 0 (Figure 2a). When a transverse compression is
applied, the failure surface of the composite has an inclined angle with the loading
[31]. The inclined angle, φ = ϕ (Figure 2b), between the outward normal to the
failure surface and the loading, can be determined by virtue of Mohr’s theory as [9]

ϕ ¼
π

4
þ

1

2
arcsin

σmu, c � σmu, t

2σmu, c
: (11)

The transverse tensile, transverse compressive, and transverse shear SCFs of the
matrix in the composite are given as [9–11]

Kt
22 ¼ K22 0ð Þ, (12.1)

Kc
22 ¼ K22 ϕð Þ, (12.2)

K23 ¼ 2σmu, s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Kt
22K

c
22

σmu, tσ
m
u, c

s

, (12.3)

σmu, t, σ
m
u, c, and σmu, s are the original tensile, compressive, and shear strengths of the

matrix, respectively.

5.4 SCF under longitudinal shear

A longitudinal shear SCF of the matrix is given by [11]

Figure 2.
Schematic of a RVE used in defining SCF of matrix in a composite subjected to (a) a transverse tension and (b)
a transverse compression.
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K12 ¼ 1� Vf
G

f
12 �Gm

G
f
12 þGm

π
ffiffiffiffiffiffi

Vf

q 1

4Vf
�

4

128
�

2

512
Vf �

5

4096
Vf

2

" #

�
1

3

( )" #

Vf þ a66Vm

� �

a66
,

(13)

5.5 SCFs under equally biaxial transverse loads

Eq. (9) designates a general rule to determine any SCF of the matrix in the
composite. Under an equally biaxial transverse tension or compression (Figure 3), a
point-wise stress of the matrix in the x2-direction is obtained through a coordinate
transformation:

~σm
22 ¼ ~σm

ρρ σ022
� �

þ ~σm
ρρ σ033
� �

h i

cos 2φþ ~σm
φφ σ022
� �

þ ~σm
φφ σ033
� �

h i

sin 2φ

� ~σm
ρφ σ022
� �

þ ~σm
ρφ σ033
� �

h i

sin 2φ,
(14)

where [41]

~σm
ρρ σ022
� �

¼
σ022
2

1þ Aa2ρ�2 þ 1þ B 4a2ρ�2 � 3a4ρ�4
� �� �

cos 2φ
� �

, (15.1)

~σm
φφ σ022
� �

¼
σ022
2

1� Aa2ρ�2 � 1� 3Ba4ρ�4
� �

cos 2φ
� �

, (15.2)

Figure 3.
Any biaxially transverse loads can be separated into superposition of an equally biaxial load and a uniaxial
transverse tension either along x3-direction (a), if σ033 � σ022 > 0, or along x2-direction (b), if σ022 � σ033 > 0.
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~σm
ρφ σ022
� �

¼ �
σ022
2

1� B 2a2ρ�2 � 3a4ρ�4
� �� �

sin 2φ: (15.3)

The stresses ~σm
ρρ σ033
� �

, ~σm
φφ σ033
� �

, and ~σm
ρφ σ033
� �

are also given by Eqs. (15.1)–(15.3),

respectively, as long as the σ022 in them is replaced by σ033 and φ by φ = φ + π/2.
Substituting Eqs. (14) and (8.4) into Eq. (9), a biaxial transverse SCF of the matrix,

KBi
22 φð Þ, is derived as

KBi
22 φð Þ ¼

σ022

σm22
� �

BM

þ
A

ffiffiffiffiffiffi

V f

p

σ022 þ σ033
� �

2 σm22
� �

BM

cos 2φþ
B σ022 � σ033
� �

2 1�
ffiffiffiffiffiffi

Vf

p

� 	

σm22
� �

BM

V2
f cos 4φþ 4Vf cosφð Þ2 1� 2 cos 2φð Þ þ

ffiffiffiffiffiffi

V f

p

2 cosφþ cos 4φð Þ�
h

However, the failure surface orientation of a UD composite under an equally
biaxial transverse tension or compression is indeterminate. For this reason, we can
assume that the failure surface orientation under an equally biaxial transverse load
is the same as that under a uniaxial transverse load. In other words, we have
(σ022 ¼ σ033).

KBi, t
22 ¼ KBi, t

33 ¼
Vf þ 0:3Vm

� �

E
f
22 þ 0:7VmE

m

0:3E
f
22 þ 0:7Em

1þ A
ffiffiffiffiffiffi

Vf

q� 	

, if σ033>0, (16.1)

KBi, c
22 ¼ KBi, c

33 ¼
V f þ 0:3Vm

� �

E
f
22 þ 0:7VmE

m

0:3E
f
22 þ 0:7Em

1� A
ffiffiffiffiffiffi

Vf

q σmu, c � σmu, t

2σmu, c

 !

, if σ033 <0:

(16.2)

5.6 SCFs subjected to any biaxial transverse loads

When the matrix is subjected to any biaxial transverse loads, we can always
separate the loads into an equally biaxial transverse tension or compression plus a
uniaxial transverse tension (Figure 3). The SCFs of the matrix are then determined
accordingly.

5.7 Longitudinal normal SCF

No SCF exists in such a load case, since the resulting stresses in the matrix are
uniform [7, 41].

6. Assessment on strength prediction

6.1 True stresses of the matrix

Let σmi
� �

¼ σm11; σ
m
22; σ

m
33; σ

m
23; σ

m
13; σ

m
12

� �T
be the homogenized stresses of the

matrix in a UD composite calculated from a micromechanics model. The true

stresses of the matrix, σmi
� �

¼ σm11; σ
m
22; σ

m
33; σ

m
23; σ

m
13; σ

m
12

� �T
, are determined as

follows:
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σmi
� �

¼ σm11;K
Bi
33σ

m
33 þ Kt

22 σm22 � σm33
� �

;KBi
33σ

m
33;K23σ

m
23;K12σ

m
13;K12σ

m
12

� �T
,

if σm22 � σm33 6¼ 0 and σm22 � σm33
� �

≥0,
(17.1)

σmi
� �

¼ σm11;K
Bi
22σ

m
22;K

Bi
22σ

m
22 þ Kt

22 σm33 � σm22
� �

;K23σ
m
23;K12σ

m
13;K12σ

m
12

� �T
,

if σm22 � σm33 6¼ 0 and σm33 � σm22
� �

≥0,
(17.2)

σmi
� �

¼ σm11;K22σ
m
22;0;K23σ

m
23;K12σ

m
13;K12σ

m
12

� �T
, if σm33 ¼ 0, (18.1)

σmi
� �

¼ σm11;0;K33σ
m
33;K23σ

m
23;K12σ

m
13;K12σ

m
12

� �T
, if σm22 ¼ 0, (18.2)

KBi
22 ¼

Kt,Bi
22 , ifσm22>0

Kc,Bi
22 , ifσm22 <0

,

(

(19.1)

KBi
33 ¼

Kt,Bi
22 , ifσm33>0

Kc,Bi
22 , ifσm33 <0

,

(

(19.2)

K22 ¼
Kt

22, ifσ
m
22>0

Kc
22, ifσ

m
22 <0

,

�

(19.3)

K33 ¼
Kt

22, ifσ
m
33>0

Kc
22, ifσ

m
33 <0

:

(

(19.4)

6.2 Uniaxial strength formulae

Bridging tensor elements of a micromechanics model for each of the nine UD
composites can be calculated through Eq. (6), using the corresponding elastic mod-
uli given in Table B.3.

Under a uniaxial load, only the internal stress component of a constituent (fiber
or matrix) along the loading direction is dominant. The other stress components, if
any, are negligibly small. This can be realized from the explicit Eqs. (8.1)–(8.6).
Accordingly, a longitudinal failure of the composite is controlled mostly by a fiber
failure, whereas all of the other failures are resulted from matrix failures. We only
need to determine the following relationships:

σ
f
11 ¼ λ1σ

0
11, σ

m
22 ¼ λ2σ

0
22, σ

m
23 ¼ λ3σ

0
23, σ

m
12 ¼ λ4σ

0
12: (20)

where λis are dependent on the bridging tensor and σ011, σ
0
22, σ

0
23, and σ012 are

external loads applied individually to the composite once at a time. For each of the 9
composites, the λis calculated by the 12 models are summarized in Table B.4.

In terms of the data in Table B.4, the longitudinal tensile and compressive,
transverse tensile and compressive, transverse shear, and longitudinal shear
strengths of a UD composite are estimated through.

σu, t11 ¼ σ
f
u, t=λ1, σ

u, c
11 ¼ σfu, c=λ1, σ

u, t
22 ¼ σmu, t= Kt

22λ2
� �

, σu, c22 ¼ σmu, c= Kc
22λ2

� �

,

σu23 ¼ σmu, s= K23λ3ð Þ, and σu12 ¼ σmu, s= K12λ4ð Þ
(21)

where Kt
22, Kc

22, K12, and K23 are the transverse tensile, transverse com-
pressive, longitudinal shear, and transverse shear SCFs of the matrix in the
composite.
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6.3 Prediction assessment

Using the constituent data of Table B.1, all of the SCFs of the matrices in the
nine composites are calculated as per Eqs. (12), (13), and (16). They are listed in
Table 2. All of the SCFs only depend on the constituent properties and fiber volume
fraction of a composite, since a perfect interface bonding has been implicitly
assumed. Table 2 shows that the transverse tensile SCF of the matrix is generally
the biggest in a composite, whereas the transverse shear SCF is the second biggest or
even bigger than all of the remaining SCFs in some composite. Further, the trans-
verse tensile SCF can be greater than 3, implying that the classical SCF of a plate
with a hole is not the upper limit for that of the matrix when the hole is filled with a
fiber.

The predicted results are compared with the experimental measurements shown
in Table B.2, and the averaged relative correlation errors for all of the 12 models are
summarized in Table 3. It shows that Bridging Model is still overall the most
accurate, although the accuracy difference between Bridging Model and the other

E-glass

LY556

E-glass

MY750

AS4

3501–6

T300

BSL914C

IM7

8511–7

T300

PR319

AS

epoxy

S2-glass

epoxy

G400–800

5260

K12 1.52 1.491 1.424 1.43 1.475 1.51 1.449 1.5 1.483

K23 3.02 2.936 1.337 2.421 2.034 2.167 1.999 2.982 2.469

Kt
22 3.339 3.253 2.098 2.143 2.327 3.123 2.339 3.317 2.464

Kc
22 2.249 2.181 1.469 1.57 1.761 2.035 1.743 2.172 1.732

KBi, t
22

2.747 2.67 1.743 1.759 1.905 2.55 1.916 2.719 2.08

KBi, c
22

2.182 2.132 1.562 1.601 1.712 2.05 1.709 2.148 1.74

Table 2.
SCFs of the matrices in the nine composites.

Model N Averaged

error*

Error

ratio

Rank Model N Averaged

error*

Error

ratio

Rank

Bridging model 53 21.1% 1.0 1 Mori-Tanaka

method

53 30.2% 1.43 8

Double inclusion

(Digimat)

53 21.9% 1.04 2 Modified rule

of mixture

53 30.7% 1.45 10

FE-square 53 23.1% 1.09 3 FE-square

diagonal

53 31.9% 1.51 11

Chamis model 53 25.4% 1.20 4 FE-hexagonal 53 32% 1.52 12

FE-random 53 28.5% 1.30 5 Self-consistent

method

53 32.7% 1.54 13

Hill-Hashin-C-L

model

18 30.1% 1.43 6 Rule of mixture

method

53 44.5% 2.11 14

Halpin-Tsai

formulae

53 30.1% 1.43 6 Eshelby’s

method

53 45.1% 2.14 15

Generalized self-

consistent

53 30.2% 1.43 8

*= 1
N∑N

i¼1abs errorð Þi.

Table 3.
Overall averaged errors in prediction of the uniaxial strengths of the nine UD composites by different models.

12

Failure Analysis



top three models is insignificant. Compared Table 3with Table 1, the ranking order
of the top four theories for both the stiffness and strength predictions is essentially
the same, with only a minor difference in the ranking order from stiffness and
strength predictions by the FE-square and double inclusion method.

The largest correlation error in the strength prediction is still assumed by
Eshelby’s method, which is 45.1%. Another model gaining a correlation error of
more than 40% is rule of mixture method. All of the theories under consideration
for the strength predictions can be classified into three classes, according to their
accuracies attained. The first class exhibits the highest accuracy. It consists of four
methods, which are Bridging Model, double inclusion method, the FE-square, and
Chamis model, with a correlation error in between 21.1% and 25.4%. The second
class is moderate in accuracy performance. Most of the models, i.e., the FE-
random, Hill-Hashin-Christensen-Lo model, Halpin-Tsai formulae, generalized
self-consistent method, Mori-Tanaka method, modified rule of mixture method,
the FE-square diagonal, the FE-hexagonal and self-consistent method, are within
this class. Their correlation errors vary from 27.4% to 32.7%. The third class
possesses the lowest prediction accuracy, consisting of two models, i.e., rule of
mixture method and Eshelby’s method. Looking back at Table 1, the classification
of the three classes of the micromechanics models for the stiffness predictions is
also valid.

If no SCFs of the matrix are taken into account, i.e., if Kt
22 = Kc

22 = K12 = K23 � 1
are assumed in Eq. (21), the overall correlation error by a model from the first or the
second class is much greater. Consider, e.g., Bridging Model. Without the SCFs, the
correlation error between the predicted and measured transverse tensile, transverse
compressive, transverse shear, and longitudinal shear strengths of the 9 composites
is 115.3%, 5.22 times greater than that when the SCFs are taken into account. It is
noted that the longitudinal strength predictions have been excluded in this latter
comparison. Hence, the most critical factor to influence the overall strength pre-
diction is the SCFs of the matrix in the composite.

7. Additional comments

7.1 Consistency

Eqs. (1)–(6) are valid for both 2D and 3D stress states. Any micromechanics
model can result in two sets of internal stress formulae, i.e., 2D and 3D formulae,
respectively. Let the composite be subjected to a planar stress state {σ011, σ

0
22, σ

0
12}.

The resulting internal stresses in the fiber and matrix by the 2D formulae are

represented as {σ
f ,2D
11 , σ

f ,2D
22 , σ

f ,2D
33 , σ

f ,2D
23 , σ

f ,2D
13 , σ

f ,2D
12 } and {σm,2D

11 , σm,2D
22 , σm,2D

33 , σm,2D
23 ,

σ
m,2D
13 , σm,2D

12 }, where σ
f ,2D
33 = σ

f ,2D
23 = σ

f ,2D
13 = σ

m,2D
33 = σ

m,2D
23 = σ

m,2D
13 = 0. On the other

hand, using the 3D stress formulae and applying a load combination {σ011, σ
0
22, 0, 0,

0, σ012}, the internal stresses thus obtained are denoted as {σ
f ,3D
11 , σ

f ,3D
22 , σ

f ,3D
33 , σ

f ,3D
23 ,

σ
f ,3D
13 , σ

f ,3D
12 } and {σm,3D

11 , σm,3D
22 , σm,3D

33 , σm,3D
23 , σm,3D

13 , σm,3D
12 }. If σ

f ,2D
ij = σ

f ,3D
ij and σ

m,2D
ij

= σm,3D
ij for all i and j, the corresponding micromechanics model is said to be

consistent in the internal stress calculation.
A necessary and sufficient condition for a micromechanics model to be consis-

tent is that its bridging tensor is always in an upper triangular form. If, e.g., A326¼0,

we will get from Eqs. (3) and (4) that σ
f
33 ¼ B32σ

0
22 6¼ 0 and σm33 ¼ A32σ

f
22 þ A33σ

f
33 6¼

0, where [Bij] = (Vf[I] + Vm[Aij])
�1. The bridging tensor of Bridging Model, by
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definition, is always upper triangular, even when a constituent, e.g., matrix
undergoes a plastic deformation [16]. On the other hand, the bridging tensors of all
of the other models for the nine composites are not upper triangular. Hence, all of
the other models are not consistent. The non-consistency implies that the homoge-
nized internal stresses should be calculated using the full 3D stress formulae, even
though the composite is subjected to a uniaxial load. To apply an analytical model,
other than Bridging Model, the 3D compliance tensors of the fiber, matrix, and the
composite should be used in Eq. (6) to obtain the 3D bridging tensor. If a numerical
method is applied to predict a composite property, a 3D rather than 2D RVE
geometry should be discretized.

7.2 Accuracy estimation

It is known that the elasticity of UD composites is essentially matured. This
means that the accuracy in both experimental measurement and micromechanics
prediction for the elastic properties of a UD composite is likely not improvable
significantly, unless a revolutionary change in the processing technology for a
composite occurs. Considering the measurement deviations for the fiber, matrix,
and composite properties as well as for the fiber volume fraction and in light of
Table 1, it can draw a conclusion that an overall correlation error of 10% would be
the one attainable in the composite stiffness prediction if only the original constit-
uent information is available. As more than double of the constituent data together
with more other information are required in a strength prediction, a reasonable
correlation error in this latter case that can be expected should be more than 10%
and mostly up to 20%.

The individual correlation error for each of the uniaxial strengths of the nine UD
composites by Bridging Model is calculated and is shown in Table 4. Evidently, the
predictions by the current theory for the longitudinal tensile, longitudinal shear,
and transverse shear strengths of the composites are good enough, whereas those
for the other three strength properties are either bad or not very satisfactory.
Improvement in the prediction accuracy for the latter three uniaxial strengths is
expected.

7.3 Improvement in strength prediction

From Table 4, the largest correlation error comes from the prediction of a
transverse tensile strength. This is attributed to a crack occurred in between the
fiber and matrix interface. There must be some composites in which the fiber and
matrix interfaces were already debonded before an ultimate failure under a trans-
verse tensile load. Many researches in the literature have confirmed that an inter-
face debonding has the greatest influence on the transverse tensile strength of a
composite [42–44]. Therefore, a true stress component of the matrix corresponding
to a transverse tension must take an interface debonding into account [11].

The second largest error is in the prediction of a longitudinal compressive
strength. Only a strength failure has been considered in this work for a composite

Longitudinal

tensile

strength

Longitudinal

compressive

strength

Longitudinal

shear

strength

Transverse

tensile

strength

Transverse

compressive

strength

Transverse

shear

strength

Overall

11% 25.1% 13.1% 39.2% 23.2% 14.3% 21.1%

Table 4.
Averaged correlation errors of Bridging Model for the individul uniaxial strengths of the nine UD composites.
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subjected to a longitudinal compression. Existing evidences show that a longitudinal
compressive failure is frequently caused by a kink-band or microbuckling [45–47],
due to an initial fiber misalignment. A micromechanics approach for a kink-band
failure only using the original fiber and matrix properties together with the initial
fiber misalignment angle has been achieved very recently [48]. However, a fiber
misalignment angle is in most cases an in situ parameter and is difficult to be
accurately measured. A more suitable way is to retrieve it from a measured longi-
tudinal compressive strength parameter of the composite. On the other hand, this
parameter can also be used to adjust the fiber compressive strength to improve the
correlation accuracy.

The third correlation error, which is greater than 20%, occurs in the prediction
for the transverse compressive strengths of the composites. Most probably, this
error is attributed mainly to an inaccurate measurement/determination of a
matrix compressive strength. It is known that among the three uniaxial strength
parameters of a matrix especially a ductile polymer or metal matrix material, the
compressive strength is the most difficult to be measured. Sometimes, one even
cannot obtain a fracture load when a cylinder sample is compressively tested.
Further study is needed to determine a matrix compressive strength.

An interesting phenomenon behind Table 4 is that either longitudinal or trans-
verse shear strength can be sufficiently well predicted based on a perfect interface
bonding assumption. Undoubtedly, an interface debonding may occur when the
composite is subjected to a shear load. But the interface debonding has insignificant
effect on the shear as well as on any other kind of load carrying ability of a
composite except for the transverse tension, as seen in the subsequent section.

8. Failure prediction with a debonded interface

8.1 Transverse tensile SCF of the matrix after interface crack

All of the SCFs presented in the preceding section are based on an assumption
that the fiber and matrix interface has a perfect bonding up to a composite failure.
In other words, the point-wise displacements and the point-wise stresses of the
fiber and matrix on their common boundary are continuous. In most cases, an
interface debonding or crack can occur before an ultimate failure of the composite.
However, Table 4 suggests that only the transverse tensile load sustaining ability of
the composite is influenced heavily by the interface crack or debonding. The trans-
verse tensile SCF of the matrix after the interface crack (Figure 4) must be taken
into account in a failure prediction, in general. This SCF has been derived in Ref.
[11], which is summarized below.

K̂ t
22 ¼ K̂ t

22 ψð Þ ¼ Re e�2iψM beiψ
� �

a2=b� b
� �

� e�iψ N2 �N1
a2

b
e�iψ

 � ��

þ e�iψ 2þ e�2iψ
� �

N beiψ
� �

�N3

� �

�

V f þ 0:3Vm

� �

E
f
22 þ 0:7VmE

m

2 b� að Þ 0:3E
f
22 þ 0:7Em

� 	 , (22.1)

N zð Þ ¼ Fzþ
a2k

z
� z� aeiψ
� �0:5þiλ

z� ae�iψ
� �0:5�iλ

F � 0:5ð Þ �
D

a2z

� �

, (22.2)

N1 zð Þ ¼ Fzþ
a2k

z
þ
1

ξ
z� aeiψ
� �0:5þiλ

z� ae�iψ
� �0:5�iλ

F � 0:5ð Þ �
D

a2z

� �

, (22.3)
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N2 ¼ aFe�iψ þ akeiψ , N3 ¼ Faeiψ þ e�iψak, (22.4)

M zð Þ ¼ F �
a2k

z2
� F � 0:5ð ÞzþH þ

C

z
þ

D

z2

� �

χ zð Þ, (22.5)

F ¼
1� cosψ þ 2λ sinψð Þ exp 2λ π � ψð Þ½ � þ 1� kð Þ 1þ 4λ2

� �

sin2ψ
4
k � 2� 2 cosψ þ 2λ sinψð Þ exp 2λ π � ψð Þ½ �

, (22.6)

H ¼ a cosψ þ 2λ sinψð Þ 0:5� Fð Þ, (22.7)

C ¼ k� 1ð Þ cosψ � 2λ sinψð Þa2 exp 2λ ψ � πð Þ½ �, (22.8)

D ¼ 1� kð Þa3 exp 2λ ψ � πð Þ½ �, (22.9)

χ zð Þ ¼ z� aeiψ
� ��0:5þiλ

z� ae�iψ
� ��0:5�iλ

, (22.10)

k ¼
Gm 1þ κ2ð Þ

1þ ξð Þ Gm þ κ1G
f
23

� 	 , λ ¼ � lnξð Þ= 2πð Þ, ξ ¼ G
f
23 þ κ2G

m
� 	

= Gm þ κ1G
f
23

� 	

,

κ1 ¼ 3� 4vm, κ2 ¼
3� ν

f
23 � 4ν

f
12ν

f
21

1þ ν
f
23

,

(22.11)

b ¼ a
. ffiffiffiffiffiffi

Vf

q

: (22.12)

In the above, ψ is the half of the crack angle, which is determined from

Re G0 �
1

k
�

2 1� kð Þ

k exp iφð Þ
exp 2λ ψ � πð Þ½ �

 �

R eiφ
� �

� �

φ¼ψ�γ

¼ 0, (23.1)

R exp iφð Þð Þ ¼ exp i φð Þð Þ � eiψ
� �0:5þiλ

exp i φð Þð Þ � e�iψ
� �0:5�iλ

exp �i φð Þð Þ,

(23.2)

Figure 4.
(a) Schematic failure of a transverse tensile-loaded composite with an interface crack, (b) failure locus of a
composite after interface cracks [42].
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G0 ¼
1� cosψ þ 2λ sinψð Þ exp 2λ π � ψð Þ½ � þ 1� kð Þ 1þ 4λ2

� �

sin2ψ

2� k� k cosψ þ 2λ sinψð Þ exp 2λ π � ψð Þ½ �
, (23.3)

γ ¼

2λ J21 þ J22
� �

J21 þ J22 � 2J2J3
, if ξ < 1

�
2λ J21 þ J22
� �

J21 þ J22 � 2J2J3
, if ξ>1

,

8

>

>

>

<

>

>

>

:

(23.4)

J1 ¼ kG0 � 1� 2 1� kð Þξ exp 2λψð Þ cos ψð Þ, (23.5)

J2 ¼ 2 1� kð Þξ exp 2λψð Þ sin ψð Þ, (23.6)

J3 ¼ 2 1� kð Þξ exp 2λψð Þ J1 cos ψð Þ � J2 sin ψð Þ½ �=J2: (23.7)

If ξ = 1, no solution for ψ is obtainable from Eq. (23). The corresponding
interface crack is called a singular crack. But one can always adjust the fiber or the
matrix properties involved so that ξ 6¼ 1, since experimental deviations exist in
measurement of them.

8.2 Interface crack detection

Let a UD composite be subjected to a transverse tension, σ022, up to an ultimate
failure. The measured transverse tensile strength of the composite is Y. Suppose that
the fiber/matrix interface of the composite is initially bonded perfectly. When the
load is increased to a critical level, e.g., σ̂0

22, a stable crack with a central angle of 2ψ
occurs on the interface. Many reports have pointed out that an unstable propagation
from an initial interface crack to the last stable angle is short [42, 49, 50], with no
significant change in the applied load. Thus, we can safely assume that at a trans-
verse load level smaller than σ̂0

22 the interface is in perfect bonding.
From Eq. (8.4), the transverse stress in the matrix when the crack occurs reads

σ̂m
22 ¼

0:3E
f
22 þ 0:7Em

Vf þ 0:3Vm

� �

E
f
22 þ 0:7VmE

m
σ̂0
22: (24.1)

Further, the longitudinal stress of the matrix at the critical load level is obtained
from Eq. (8.2) as

σ̂m
11 ¼

Vfa12

V f þ Vma11
� �

Vf þ Vma22
� � σ̂0

22: (24.2)

No other stress in the matrix exists. Supposing that the transverse matrix stress

corresponding to the composite failure is denoted by σ
m
22, one has.

K̂ t
22 σ

m
22 � σ̂m

22

� �

þ Kt
22σ̂

m
22 ¼ σmu, t, (25.1)

where

σ
m
22 � σ̂m

22 ¼
0:3E

f
22 þ 0:7Em

Vf þ 0:3Vm

� �

E
f
22 þ 0:7VmE

m
Y � σ̂0

22

� �

: (25.2)

FromEqs. (24.1), (25.1), and (25.2), the critical transverse tensile load is found to be
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σ̂0
22

¼ K̂
t

22Y

K̂

t

22
� Kt

22 �
V f þ 0:3Vm

� �

E
f
22 þ 0:7VmE

m

0:3E
f
22 þ 0:7Em

� 	

K̂
t

22 � Kt
22

� 	 σmu, t: (26)

If it is equal to or greater than the transverse tensile strength, Y, the fiber and
matrix system is said to have a perfect interface bonding up to failure. Otherwise,
the system will undergo an earlier interface crack and a further interface modifica-
tion is preferred.

Under any arbitrary load condition, an interface crack occurs in the composite if
and only if

σ1m
� �

l
>0 (27.1)

and

σme
� �

l
≥σ̂m

e , (27.2)

where

σ̂m
e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ̂m
11

� �2
þ Kt

22σ̂
m
22

� �2
� Kt

22σ̂
m
11σ̂

m
22

q

(28)

is the critical Mises stress. σme
� �

l
and σ1m

� �

l
are the Mises and the first principal

stresses of the matrix obtained from the current load-step true stresses. For
instance, when a planar load is applied to the composite, the current Mises true
stress is given by

σme
� �

l
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σm11
� �2

l
þ σm22
� �2

l
� σm11
� �

l
σm22
� �

l
þ 3 σm12
� �2

l

q

, (29)

σm11
� �

l
¼ σm11
� �

l�1
þ dσm11, (30.1)

σm22
� �

l
¼ σm22
� �

l�1
þ K

eq
22dσ

m
22, (30.2)

σm12
� �

l
¼ σm12
� �

l�1
þ K12dσ

m
12, (30.3)

K
eq
22 ¼

Kt
22, if dσ

m
22>0 and σme

� �

l�1
< σ̂m

e

K̂
t

22, if dσm22>0 and σme
� �

l�1
≥σ̂m

e

Kc
22, if dσm22 <0

8

>

<

>

:

: (31)

The homogeneous stress increments, {dσm11, dσ
m
22, dσ

m
12}, are calculated from

Eqs. (8.2) and (8.4) in which {σ011, σ
0
22, σ

0
12} are replaced by {dσ011, dσ

0
22, dσ

0
12}.

Using the data of Tables B.1 and B.2, the transverse tensile SCFs of the nine UD
composites after the interface crack together with the crack (half) angles are

E-glass

LY556

E-glass

MY750

AS4

3501–6

T300

BSL914C

IM7

8551–7

T300

PR319

AS

epoxy

S2-glass

epoxy

G40–800

5260

K̂ t
22

7.69 7.22 4.95 5.04 5.41 6.97 5.43 7.34 5.68

ψ 71.8° 71.9° 73.9° 73.9° 73.4° 72° 73.3° 71.8° 72.8°

σ̂0
22 (MPa) 20.3 28.2 44.4 4.7 72.5 33.5 19 74.3 93.2

σ̂m
e (MPa) 28.6 39.8 53.9 5.76 90.6 46.3 24 105.1 119.4

Table 5.
Transverse tensile SCFs and other relevant parameter of the nine composites after interface debonding.
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calculated from Eqs. (22) and (23). The critical transverse and Mises stresses are
also obtained from Eqs. (26) and (28), respectively. They are summarized in
Table 5. It is seen that the half crack angles of the carbon and glass fiber matrix
interfaces under a transverse tension are close to 70°, consistent with the measured
result shown in Figure 4b. Comparing the resulting σ̂0

22 with the corresponding
measured transverse tensile strengths, one can see that four composites, i.e., AS4/
3501-6, IM7/8551-7, S2-Glass/Epoxy, and G40-800/5260 systems, have or nearly
have a perfect interface bonding up to failure. The remaining five composites will
undergo an interface debonding early before failure. There are two composite
systems, S2-Glass/Epoxy and G40-800/5260, having a more than enough interface
bonding strength, implying that more than enough efforts might have been paid.

8.3 Off-axial strength prediction

A composite strength is assumed if either a fiber or a matrix failure is attained. A
matrix failure is detected through, e.g., Tsai-Wu’s criterion (as isotropic materials
are a subset of anisotropic composites), whereas a fiber failure is assessed by the
generalized maximum normal stress failure criteria [16], through the following
expressions:

F1 σm11
� �2

l
þ σm22
� �2

l
� σm11
� �

l
σm22
� �

l

h i

þ F2 σm12
� �2

l
þ F3 σm11

� �

l
þ σm22
� �

l

h i

≥1, (32.1)

F1 ¼ 1= σmu, tσ
m
u, c

� �

, F2 ¼ 1= σmu, s
� �2

, F3 ¼ 1=σmu, t � 1=σmu, c: (32.2)

σ
f
eq, t

� 	

l
≥σ

f
u, t or σfeq, c

� 	

l
≥� σfu, c, (33.1)

σ
f
eq, t

� 	

l
¼

σ1f

� 	

l
, if σ3f

� 	

l
<0,

σ1f

� 	3

l
þ σ2f

� 	3

l

� �1
3

, if σ3f

� 	

l
¼ 0

,

8

>

>

<

>

>

:

(33.2)

σfeq, c

� 	

l
¼

σ3f

� 	

l
, if σ1f

� 	

l
>0,

σ3f

� 	

l
� σ1f

� 	

l
if σ1f

� 	

l
≤0

8

>

<

>

:

: (33.3)

σ1f

� 	

l
, σ2f

� 	

l
, and σ3f

� 	

l
(σ1f ≥ σ2f ≥ σ1f ) are the three principal stresses of the fiber

calculated from

σ
f
11

� 	

l
¼ σ

f
11

� 	

l�1
þ dσ

f
11, (34.1)

σ
f
22

� 	

l
¼ σ

f
22

� 	

l�1
þ dσ

f
22, (34.2)

σ
f
12

� 	

l
¼ σ

f
12

� 	

l�1
þ dσ

f
12: (34.3)

σ
f
u, t and σ

f
u, c are longitudinal tensile and compressive strengths of the fiber,

respectively.
Two UD composites, Kevlar-49/epoxy and E-glass/8804 epoxy systems, were

subjected to off-axial tensile load up to failure. Constituent properties and trans-
verse tensile strengths of the two composites as well as fiber volume fractions were
provided in Ref. [51, 52] and cited in Table 6. From them, the SCFs of the matrices
and the critical Mises stresses can be calculated and are also shown in the table. The
predicted off-axial strengths of the Kevlar-49/epoxy and E-glass/8804 composites
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E
f
11 (GPa) E

f
22 (GPa) G

f
12 (GPa) ν

f
12 ν

f
23 σ

f
u, t (GPa) Em (GPa) ν

m
σmu, t (MPa) σmu,c (MPa) σmu, s (MPa) Vf Kt

22 Kc
22 K̂ t

22
K12 σ̂m

e (MPa)

Kevlar-49/

epoxy

124.1 4.1 2.9 0.35 0.35 2.06 3.45 0.35 69 120 50 0.55 1.08 1.07 2.74 1.17 1.1

E-glass/

8804

71 71 28.2 0.26 0.26 1.5 3.1 0.29 70 86 39 0.51 2.97 2.02 5.6 1.38 59.6

Table 6.
Constituent properties and resulting matrix parameters of two UD composites [51, 52].
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are plotted in Figures 5 and 6, respectively. The SCFs in the Kevlar fiber system
with a perfect interface bonding are close to 1, because the transverse modulus of
the Kevlar fiber is comparable to that of the matrix. Nevertheless, the transverse
tensile SCF of the matrix in the Kevlar fiber system after the interface crack is still
significantly higher than that with the perfect interface bonding. Both of the critical
transverse loads of the composites, σ̂0

22 = 1.2 MPa for the Kevlar and σ̂0
22 = 42.4 MPa

for the glass composites, are smaller than the corresponding transverse tensile
strengths, 27.7 and 45.3 MPa, respectively, and the two composites will undergo an
interface crack. However, the Kevlar fiber system will crack much earlier than the
E-glass fiber system does when subjected to a transverse tensile load.

Given an off-axial tensile load increment, dσθ, where θ is the off-axial angle, the
stress increments {dσ011, dσ

0
22, dσ

0
12} are obtained through a coordinate transforma-

tion, and the interface cracking load, σ̂0
θ , can be determined through Eq. (27).

Consider the Kevlar fiber composite, for instance, and take θ = 30°. The homoge-
nized stresses of the matrix are obtained from Eqs. (8.2), (8.4), and (8.6) as
σm11 ¼ 0:115σθ, σm22 ¼ 0:234σθ, and σm12 ¼ �0:32σθ, whereas the true stresses before
the interface crack are σm11 = 0:115σθ, σm22 ¼ 0:253σθ, and σm12 ¼ �0:374σθ. Hence, the

interface cracking load σ̂0
300 = 1.11/0.684 = 1.623 MPa.

After the interface crack, only the transverse tensile stress increment of the
matrix will be amplified with a different SCF. The true stresses of the matrix in the
Kevlar fiber composite with θ = 30° and after the interface crack are given by σm11 =
0.115σθ, σ

m
22= 0.41 + 0.641(σθ � 1.623), and σm12 ¼ �0:374σθ. As the matrix failure

occurs first, the predicted ultimate off-axial tensile strength from Eq. (32) is σu, t
300=

80.5 MPa, very close to the measured one, 83.4 MPa [53].
The measured data for the Kevlar and the glass composites taken from Pindera

et al. [53] and Mayes et al. [52] are also shown on Figures 5 and 6, respectively. In
order to display the predicted results at most off-axial angles more clearly, the
predictions at angles smaller than 10° are not included in the figures. Three kinds of
predictions have been made. One is with a perfect interface bonding assumption,
another without any SCF of the matrix considered, and the third is incorporated
with an interface crack. As expected, the predictions without any SCF are far away
from the experiments at most off-axial angles, whereas those with the interface

Figure 5.
Comparison of different schemes’ predictions with experiments [53] for off-axial tensile strengths of a Kevlar-
49/epoxy UD composite.
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crack incorporated agree the best with the measured data. The perfect bonding
assumption for both of the composites results in the predictions lied in between the
other two kinds of predictions. Whereas the perfect bonding assumption up to a
composite failure for the E-glass fiber system is good enough (Figure 6), the same
assumption for the Kevlar fiber system generates significant prediction errors in
general (Figure 5). This is because the E-glass fiber system under consideration has
a critical transverse load (42.4 MPa) quite close to the transverse tensile strength,
45.3 MPa. On the other hand, the Kevlar fiber system can only sustain a transverse
tensile load up to 1.2 MPa before an interface crack, which is very small compared
to the transverse tensile strength, 27.7 MPa. This is consistent with a common
observation that a Kevlar fiber-reinforced polymer matrix composite generally
undergoes a much earlier interface debonding before an ultimate failure.

It is noticed that the three kinds of predictions arrive at the same longitudinal
strength for each composite, i.e., 1137 MPa for the Kevlar fiber and 852 MPa for the
E-glass fiber composites. Both of them correlate well with the experimental data,
i.e., 1142 MPa for the Kevlar composite [53] and 817.5 MPa for the glass composite
[52]. However, both of them have already undergone an interface crack (σ̂0

00 =

22.3 MPa for the Kevlar and 725.4 MPa for the glass composites) before the longi-
tudinal strength is attained. Both of the examples confirm that only a transverse
tensile load carrying capacity is influenced by an interface crack.

9. Conclusion

Micromechanical failure and strength prediction of a UD composite is system-
atically described in this chapter. The internal stresses in the fiber and matrix must
be calculated at first. Although various methods are available for this purpose, a
thorough compassion study has shown that Bridging Model is the most potential
owing to its simplicity with closed-form formulae, high accuracy, and the unique
feature of consistency in the internal stress calculation. These stresses are homoge-
nized quantities. They must be converted into true values before being used for a
failure assessment against the original strength data of the fiber and matrix. Other-
wise, a predicted strength of the composite may be far away from the experiment.
The difference in the overall prediction accuracies between use of the homogenized

Figure 6.
Comparison of different schemes’ predictions with experiments [53] for off-axial tensile strengths of an E-glass/
8804 UD composite.
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and the true stresses can be as large as more than five times. As the homogenized
and the true stresses in the fiber are the same, the true stress determination for the
matrix becomes essential. It has been demonstrated in the chapter that the true
stresses of the matrix under any load condition are obtained by multiplying its
homogenized counterparts with SCFs of the matrix in the composites. Such an SCF
cannot be determined following a classical way. Instead, it must be defined as a line-
averaged stress divided by a volume-averaged quantity. All of the SCFs subjected to
various kinds of loading and with a perfect interface bonding have been presented
in the chapter. It is known that an interface debonding only has a significant
influence on the transverse tensile load carrying ability, and the transverse tensile
SCF of the matrix after the interface debonding has also been obtained. The theory
is equally well applicable to the failure and strength prediction of any other contin-
uous fiber-reinforced composite, once it is subdivided into a combination of UD
composites.
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Appendix A. Formulae of micromechanics models

A.1 Eshelby’s method

The stiffness tensor of the composite by this method is given by [15]

Kij

� �

¼ Sij
� ��1

¼ Km
ij

h i

þ Vf K
f
ij

h i

� Km
ij

h i� 	

I½ � þ Lij

� �

Smij

h i

K
f
ij

h i

� Km
ij

h i� 	n o�1
, (A.1)

K
f
ij

h i

and Km
ij

h i

are the stiffness tensors of the fiber and matrix, respectively, and

[Lij] is the Eshelby’s tensor reading [16]

Lij

� �

¼

0 0 0 0 0 0

L2211 L2222 L2233 0 0 0

L3311 L3322 L3333 0 0 0

0 0 0 2L2323 0 0

0 0 0 0 2L1313 0

0 0 0 0 0 2L1212

2

6

6

6

6

6

6

6

6
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7

7

7

7

7

7

7

7

5

, (A.2)

L2211 ¼ L3311 ¼
νm

2 1� νmð Þ
, L2222 ¼ L3333 ¼

1

2 1� νmð Þ

3

4
þ

1� 2νmð Þ

2

� �

,

L1212 ¼ L1313 ¼ 1=4,

L2233 ¼ L3322 ¼
1

2 1� νmð Þ

1

4
�

1� 2νmð Þ

2

� �

, L2323 ¼
1

2 1� νmð Þ

1

4
þ

1� 2νmð Þ

2

� �

:

(A.3)

νm is Poisson’s ratio of the matrix.
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A.2 Mori-Tanaka method

Non-zero bridging tensor elements of Mori-Tanaka method are given below [54]:

A11 ¼
Em

E
f
11

1þ
νm νm � ν

f
12

� 	

1þ νmð Þ 1� νmð Þ

0

@

1

A, (A.4)

A12 ¼
Em

E
f
22

νm 1� ν
f
23

� 	

2 1þ νmð Þ 1� νmð Þ
�

Em

E
f
11

ν
f
12

1þ νmð Þ 1� νmð Þ
þ

νm

2 1� νmð Þ
¼ A13, (A.5)

A21 ¼
Em

E
f
11

νm � ν
f
12

2 1þ νmð Þ 1� νmð Þ
¼ A31, (A.6)

A22 ¼
Em

E
f
22

v
f
23 � 3

� 	

8 vm � 1ð Þ vm þ 1ð Þ
þ

Em

E
f
11

v
f
12v

m

2 vm � 1ð Þ vm þ 1ð Þ
þ

vm þ 1ð Þ 4vm � 5ð Þ

8 vm � 1ð Þ vm þ 1ð Þ
¼ A33, (A.7)

A32 ¼
Em

E
f
22

3v
f
23 � 1

� 	

8 vm � 1ð Þ vm þ 1ð Þ
þ

Em

E
f
11

v
f
12v

m

2 vm � 1ð Þ vm þ 1ð Þ
þ

vm þ 1ð Þ 1� 4vmð Þ

8 vm � 1ð Þ vm þ 1ð Þ
¼ A23, (A.8)

A44 ¼
Gm

G
f
23

1

4 1� vmð Þ
þ

3� 4vmð Þ

4 1� vmð Þ
, (A.9)

A55 ¼
Gm þ G

f
12

2G
f
12

¼ A66: (A.10)

G
f
23 is the fiber transverse shear modulus.

A.3 Rule of mixture model

By this model, five elastic moduli of the composite are obtained as [19]

E11 ¼ VfE
f
11 þ VmE

m, (A.11)

ν12 ¼ Vf ν
f
12 þ Vmν

m, (A.12)

E22 ¼
Em

1� Vf 1� Em=E
f
22

� 	 , (A.13)

G12 ¼ G13 ¼
Gm

1� Vf 1�Gm=G
f
12

� 	 , (A.14)

G23 ¼
Gm

1� Vf 1�Gm=G
f
23

� 	 : (A.15)

A.4 Chamis model

By simply replacing Vf in Eqs. (A.13)–(A.15) with
ffiffiffiffiffiffi

Vf

p

, respectively, one

obtains the Chamis model’s formulae [20].
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A.5 Modified rule of mixture model

Formulae for E11 and ν12 are the same as Eqs. (A.11) and (A.12). The modified
formulae for the other three moduli are [19]

E22 ¼
4η22G23

η22 þmG23
, m ¼ 1þ

4η22ν
2
12

E11
,
1

η22
¼

1

Vf þ ηkVm

Vf

Λ
f
22

þ
Vmηk

Λ
m

 !

, (A.16)

1

G12
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Vmη12
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 !
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, (A.17)

1

G23
¼

1

V f þ η23Vm

V f

G
f
23

þ
Vmη23

Gm

 !
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, (A.18)
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 !

, (A.19)

Λ
f
22 ¼ 0:5 K

f
22 þ K

f
23

� 	

,Λm ¼ 0:5 Km
22 þ Km

23

� �

:  (A.20)

K
f
ij and Km

ij are the stiffness elements of the fiber and matrix.

A.6 Halpin-Tsai formulae
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ΛL þmG23
, m ¼ 1þ
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2
12
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Λ
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η ¼
Λ
f
22=Λ

m � 1

Λ
f
22=Λ

m þ 1� 2νm
: (A.24)

It is noted that the formulae for E11 and ν12 are the same as Eqs. (A.11) and
(A.12), respectively [21].

A.7 Hill-Hashin-Christensen-Lo model

E11 ¼ VfE
f
11 þ VmE

m þ
4 ν
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E22 ¼
2

0:5=KT þ 0:5=G23 þ 2ν212=E11
, (A.27)
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A1 ¼ 3VfVm
2 Gf

Gm � 1

 !

Gf

Gm þ ηf

 !

þ
Gf

Gm ηm þ ηf ηm �
Gf

Gm ηm � ηf

 !

Vf
3

" #

Vf ηm
Gf

Gm � 1

 !

�
Gf

Gm ηm þ 1

 !" #

,

(A.31)
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(A.33)

ηf ¼ 3� 4ν
f
23, ηm ¼ 3� 4νm: (A.34)

Eq. (A.30) is applicable only to composites with an isotropic fiber reinforcement
[22].

A.8 Self-consistent model

The self-consistent formulae are represented as follows [15]:
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(A.35)
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(A.37)

where ~Aij�
h

is the bridging tensor correlating the homogenized stresses of the

composite with those of the fiber in a concentric cylinder assemblage (CCA)
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model, i.e., a two-phase CCA model, through σif g ¼ ~Aij� σ
f
j

n oh

, whose non-zero

elements are given by [54]
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~A55 ¼
~A66 ¼

G
f
12 þG12

2G
f
12

: (A.44)

The self-consistent model is implicit, and an iteration has to be carried out to
determine the five effective elastic moduli, E11, E22, G12, ν12, and ν23, of the composite.

A.9 Generalized self-consistent model

Basic equations of the generalized self-consistent model are the same as

Eqs. (A.35)–(A.37), except that the bridging tensor in Eq. (A.37), ~Aij

h i

, correlating

the stresses of the composite with those of the fiber is no longer obtained on a two-
phase CCA model but on a three-phase CCA one shown in Figure A.1. In the latter
case, however, generally non-explicit expressions exist for the bridging tensor ele-

ments ~Aij. Solution for the resulting linear algebraic equations is necessary [54].

As pointed out in Ref. [54], a three-phase CCA model (Figure A.1) can be
sufficiently well approximated with two step two-phase CCA ones. In the first step,
the fiber and matrix phase constitutes a UD composite, whose effective elastic

moduli, E
eq
11, E

eq
22, ν

eq
12, G

eq
12, and ν

eq
23, can be obtained from Eq. (6) in which the

bridging tensor [Aij] is defined by Eqs. (A.4)–(A.10). Then, this UD composite is
regarded as an equivalent fiber to embed into the composite. The resulting bridging

tensor A
eq
ij

h i

correlating the stresses of the composite with those of the equivalent

fiber is given by Eqs. (A.38)–(A.44), providing that E
f
11, E

f
22, ν

f
12, G

f
12, and ν

f
23

involved are replaced by E
eq
11, E

eq
22, ν

eq
12, G

eq
12, and ν

eq
23, respectively.
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From σif g ¼ A
eq
ij

h i

σ
eq
j

n o

and σ
f
i

n o

¼ Vf I½ � þ Vm Aij

� �� ��1
σ
eq
j

n o

, it is obtained that

~Aij�≈ A
eq
ij

h i

V f I½ � þ Vm Aij

� �� �

:
h

(A.45)

A.10 Double inclusion method (DIM)

This method [4] has been incorporated into a commercial software, Digimat
[40], for composites. As any prediction by this method is performed with Digimat,
the formulae of the method are omitted.

Appendix B. Mechanical property data tables

Figure A.1.
(a) Schematic for generalized self-consistent method. (b) A three-phase CCA model (b!∞) for the generalized
self-consistent method.

E-glass

LY556

E-glass

MY750

AS4

3501–6

T300

BSL914C

IM7

8511–7

T300

PR319

AS

epoxy

S2-glass

epoxy

G400–800

5260

E
f
11 (GPa)

80 74 225 230 276 230 231 87 290

E
f
22 (GPa)

80 74 15 15 19 15 15 87 19

ν
f
12

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

G
f
12 (GPa)

33.33 30.8 15 15 27 15 15 36.3 27

ν
f
23

0.2 0.2 0.07 0.07 0.36 0.07 0.07 0.2 0.357

σ
f
u, t (MPa) 2150 2150 3350 2500 5180 2500 3500 2850 5860

σ
f
u, c (MPa) 1450 1450 2500 2000 3200 2000 3000 2450 3200

Em (GPa) 3.35 3.35 4.2 4 4.08 0.95 3.2 3.2 3.45

ν
m 0.35 0.35 0.34 0.35 0.38 0.35 0.35 0.35 0.35

σmu, t (MPa) 80 80 69 75 99 70 85 73 70

σmu, c (MPa) 120 120 250 150 130 130 120 120 130

σmu, s (MPa) 54 54 50 70 57 41 50 52 57

Vf 0.62 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Table B1.
Mechanical properties of the fibers and matrices of the nine UD composites used in WWFEs [25–27].
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E-glass

LY556

E-glass

MY750

AS4

3501–6

T300

BSL914C

IM7

8511–7

T300

PR319

AS

epoxy

S2-glass

epoxy

G400–800

5260

E11 (GPa) 53.5 45.6 126 138 165 129 140 52 173

E22 (GPa) 17.7 16.2 11 11 8.4 5.6 10 19 10

ν12 0.278 0.278 0.28 0.28 0.34 0.318 0.3 0.3 0.33

G12 (GPa) 5.83 5.83 6.6 5.5 5.6 1.33 6 6.7 6.94

G23 (GPa) 6.32 5.79 3.93 3.93 2.8 1.86 3.35 6.7 3.56

σu, t11 (MPa) 1140 1280 1950 1500 2560 1378 1990 1700 2750

σ
u, c
11 (MPa) 570 800 1480 900 1590 950 1500 1150 1700

σ
u, t
22 (MPa) 35 40 48 27 73 40 38 63 75

σ
u, c
22 (MPa) 114 145 200 200 185 125 150 180 210

σu12 (MPa) 72 73 79 80 90 97 70 72 90

σu23 (MPa) 50 50 55 _ 57 45 50 40 57

Table B2.
Mechanical properties of the nine UD composites used in WWFEs [25–27].
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E-glass

LY556

E-glass

MY750

AS4

3501–6

T300

BSL914C

IM7

8511–7

T300

PR319

AS

epoxy

S2-glass

epoxy

G400–800

5260

By Eshelby’s method

E11 (GPa) 50.81 45.68 136.61 139.51 167.07 138.36 139.81 53.42 175.31

E22 (GPa) 7.15 7.01 7.30 7.08 7.73 1.98 5.91 6.76 6.52

ν12 0.28 0.28 0.27 0.27 0.29 0.28 0.27 0.28 0.28

G12 (GPa) 2.67 2.61 3.09 2.94 3.07 0.76 2.40 2.52 2.68

G23 (GPa) 2.42 2.37 2.60 2.49 2.50 0.67 2.05 2.28 2.19

By Bridging Model

E11 (GPa) 50.9 45.7 136.7 139.6 167.2 138.4 139.9 53.5 175.4

E22 (GPa) 18.1 16.8 9.7 9.6 11.2 4.41 8.7 16.9 10.2

ν12 0.257 0.26 0.256 0.26 0.272 0.26 0.26 0.26 0.26

G12 (GPa) 6.28 5.84 5.54 5.35 6.46 1.82 4.64 5.81 5.8

G23 (GPa) 6.24 5.8 3.76 3.66 3.76 1.55 3.29 5.77 3.51

By Mori-Tanaka’s method

E11 (GPa) 50.9 45.76 136.7 139.6 167.3 138.4 139.9 53.5 175.4

E22 (GPa) 11.7 11.02 8.757 8.573 9.665 3.02 7.481 10.78 8.473

ν12 0.249 0.252 0.26 0.257 0.267 0.252 0.256 0.252 0.254

G12 (GPa) 4.60 4.32 4.53 4.35 4.92 1.30 3.67 4.23 4.36

G23 (GPa) 4.06 3.83 3.32 3.21 3.23 1.06 2.77 3.72 2.92

By rule of mixture method

E11 (GPa) 50.87 45.74 136.7 139.6 167.2 138.38 139.88 53.5 175.4

E22 (GPa) 8.252 7.84 7.394 7.14 7.715 2.169 6.061 7.5817 6.779

ν12 0.257 0.26 0.256 0.26 0.272 0.26 0.26 0.26 0.26
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E-glass

LY556

E-glass

MY750

AS4

3501–6

T300

BSL914C

IM7

8511–7

T300

PR319

AS

epoxy

S2-glass

epoxy

G400–800

5260

G12 (GPa) 3.08 2.92 3.39 3.23 3.42 0.85 2.65 2.82 2.99

G23 (GPa) 3.08 2.92 2.93 2.81 2.81 0.82 2.36 2.82 2.51

By Chamis method

E11 (GPa) 50.87 45.74 136.7 139.6 167.2 138.38 139.88 53.5 175.4

E22 (GPa) 13.64 12.86 9.496 9.26 10.415 3.461 8.192 12.604 9.425

ν12 0.257 0.26 0.256 0.26 0.272 0.272 0.26 0.26 0.26

G12 (GPa) 5.13 4.83 5.12 4.91 5.52 1.45 4.14 4.73 4.88

G23 (GPa) 5.13 4.83 3.93 3.81 3.80 1.33 3.33 4.73 3.49

By modified rule of mixture method

E11 (GPa) 50.87 45.74 136.7 139.6 167.2 138.38 139.88 53.5 175.4

E22 (GPa) 11.61 10.93 8.65 8.46 9.53 2.98 7.37 10.71 8.35

ν12 0.257 0.26 0.256 0.26 0.272 0.272 0.26 0.26 0.26

G12 (GPa) 4.60 4.32 4.54 4.35 4.92 1.29 3.67 4.23 4.35

G23 (GPa) 4.06 3.82 3.32 3.21 3.23 1.06 2.77 3.73 2.91

By Halpin-Tsai formulae

E11 (GPa) 50.87 45.74 136.7 139.6 167.2 138.38 139.88 53.5 175.4

E22 (GPa) 11.69 11.0 8.76 8.57 9.66 3.02 7.48 10.77 8.47

ν12 0.257 0.26 0.256 0.26 0.272 0.272 0.26 0.26 0.26

G12 (GPa) 4.60 4.32 4.54 4.35 4.92 1.29 3.67 4.23 4.35

G23 (GPa) 4.06 3.82 3.32 3.21 3.23 1.06 2.77 3.73 2.91

By Hill-Hashin-Christensen-Lo method

E11 (GPa) 50.9 45.8 136.7 139.6 167.3 138.4 139.9 53.5 175.4
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E-glass

LY556

E-glass

MY750

AS4

3501–6

T300

BSL914C

IM7

8511–7

T300

PR319

AS

epoxy

S2-glass

epoxy

G400–800

5260

E22 (GPa) 12.9 12.0 — — — — — 11.85 —

ν12 0.249 0.252 0.253 0.257 0.267 0.252 0.256 0.25 0.25

G12 (GPa) 4.6 4.32 4.54 4.35 4.92 1.29 3.67 4.23 4.35

G23 (GPa) 4.65 4.33 — — — — — 4.25 —

By self-consistent method

E11 (GPa) 50.94 45.81 136.72 139.65 167.31 138.40 139.92 53.55 175.43

E22 (GPa) 18.91 16.80 9.14 8.99 10.37 4.19 8.06 17.39 9.33

ν12 0.231 0.235 0.250 0.254 0.262 0.238 0.251 0.233 0.247

G12 (GPa) 11.34 9.80 6.37 6.25 9.36 4.18 5.82 10.94 8.98

G23 (GPa) 6.96 6.15 3.53 3.43 3.52 1.55 3.06 6.36 3.25

By generalized self-consistent method

E11 (GPa) 50.9 45.8 136.7 139.6 167.3 138.4 139.9 53.5 175.4

E22 (GPa) 12.87 12.03 8.93 8.77 10.1 3.27 7.72 11.8 8.85

ν12 0.249 0.252 0.253 0.257 0.27 0.25 0.256 0.25 0.254

G12 (GPa) 4.6 4.32 4.54 4.3 4.9 1.2 3.6 4.2 4.35

G23 (GPa) 4.65 4.33 3.42 3.32 3.42 1.19 2.9 4.25 3.09

By double-inclusion method (Digimat [40])

E11 (GPa) 50.9 47.2 141.1 144.2 172.8 143 144.5 55.2 181.2

E22 (GPa) 16.2 15.9 9.35 9.2 10.5 4.11 8.26 16.1 9.48

ν12 0.234 0.234 0.248 0.252 0.257 0.238 0.249 0.234 0.244

G12 (GPa) 6.73 6.585 5.8 5.63 7.12 2.13 5 6.65 6.46

32 F
a
ilu

re
A
n
a
lysis



E-glass

LY556

E-glass

MY750

AS4

3501–6

T300

BSL914C

IM7

8511–7

T300

PR319

AS

epoxy

S2-glass

epoxy

G400–800

5260

G23 (GPa) 5.78 5.67 3.64 3.54 3.55 1.51 3.16 5.7 3.28

By FE-square fiber array

E11 (GPa) 50.9 45.8 136.7 139.6 167.3 138.4 139.9 53.5 175.4

E22 (GPa) 16.26 14.9 9.54 9.42 10.88 3.98 8.45 14.86 9.63

ν12 0.246 0.25 0.252 0.256 0.266 0.25 0.255 0.249 0.252

G12 (GPa) 4.96 4.58 4.68 4.5 5.15 1.38 3.82 4.5 4.57

G23 (GPa) 6.49 5.89 3.79 3.71 3.79 1.58 3.32 5.89 3.47

By FE-hexagonal fiber array

E11 (GPa) 50.89 45.77 136.70 139.56 167.26 138.38 139.90 53.50 175.37

E22 (GPa) 12.60 11.72 8.89 8.72 9.89 3.19 7.66 11.51 8.68

ν12 0.249 0.251 0.253 0.255 0.267 0.259 0.256 0.251 0.252

G12 (GPa) 4.62 4.32 4.54 4.35 4.91 1.30 3.67 4.22 4.35

G23 (GPa) 3.03 4.18 3.40 3.29 3.32 1.14 2.86 4.07 3.01

By FE-square diagonal fiber array

E11 (GPa) 50.89 45.77 136.71 139.56 167.30 138.42 139.88 53.51 175.43

E22 (GPa) 10.40 9.85 8.30 8.09 9.03 2.71 7.12 9.60 7.92

ν12 0.248 0.250 0.251 0.255 0.264 0.251 0.260 0.250 0.255

G12(GPa) 4.87 4.56 4.68 4.50 5.16 1.38 3.82 4.48 4.58

G23 (GPa) 2.59 3.25 3.06 2.94 2.95 0.90 2.50 3.15 2.65

By FE-random fiber array

E11 (GPa) 50.90 45.77 136.71 139.37 167.27 138.37 139.90 53.51 175.41

E22 (GPa) 13.76 12.79 8.92 8.76 9.97 3.43 7.73 12.77 8.84
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E-glass

LY556

E-glass

MY750

AS4

3501–6

T300

BSL914C

IM7

8511–7

T300

PR319

AS

epoxy

S2-glass

epoxy

G400–800

5260

ν12 0.241 0.245 0.248 0.255 0.263 0.241 0.252 0.243 0.250

G12 (GPa) 4.58 4.29 4.42 4.33 4.69 1.29 3.60 4.21 4.29

G23 (GPa) 5.08 4.74 3.48 3.53 3.43 1.28 2.97 4.69 3.12

Table B3.
Predicted elastic moduli of the nine UD composites by different models.
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E-glass

LY556

E-glass

MY750

AS4

3501–6

T300

BSL914C

IM7

8511–7

T300

PR319

AS

epoxy

S2-glass

epoxy

G400–800

5260

Eshelby’s method

λ1 1.577 1.623 1.648 1.650 1.654 1.663 1.653 1.631 1.655

λ2 1.370 1.322 1.204 1.205 1.247 1.308 1.234 1.324 1.270

λ3 1.301 1.257 1.220 1.218 1.201 1.255 1.228 1.259 1.225

λ4 1.169 1.131 1.123 1.124 1.130 1.133 1.126 1.132 1.130

Bridging Model

λ1 1.573 1.618 1.646 1.648 1.650 1.662 1.651 1.627 1.654

λ2 0.442 0.453 0.621 0.612 0.577 0.467 0.576 0.446 0.554

λ3 0.442 0.453 0.621 0.612 0.577 0.467 0.576 0.446 0.554

λ4 0.438 0.449 0.498 0.494 0.460 0.436 0.479 0.443 0.454

Mori-Tanaka’s method

λ1 1.571 1.616 1.647 1.647 1.650 1.662 1.651 1.625 1.653

λ2 0.793 0.801 0.868 0.867 0.855 0.807 0.852 0.797 0.841

λ3 0.734 0.739 0.800 0.793 0.782 0.743 0.780 0.738 0.782

λ4 0.635 0.644 0.674 0.670 0.650 0.636 0.661 0.640 0.647

Rule of mixture method

λ1 1.573 1.618 1.646 1.648 1.650 1.662 1.651 1.627 1.654

λ2 1.304 1.303 1.661 1.755 1.725 1.352 1.576 1.304 1.418

λ3 1.001 1.002 1.000 1.001 1.000 0.999 1.000 1.000 0.998

λ4 1.000 1.001 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Chamis method

λ1 1.573 1.618 1.646 1.648 1.650 1.662 1.651 1.627 1.654
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E-glass

LY556

E-glass

MY750

AS4

3501–6

T300

BSL914C

IM7

8511–7

T300

PR319

AS

epoxy

S2-glass

epoxy

G400–800

5260

λ2 0.720 0.724 0.925 0.977 0.964 0.761 0.882 0.726 0.796

λ3 0.560 0.564 0.564 0.564 0.564 0.563 0.564 0.564 0.562

λ4 0.560 0.564 0.563 0.563 0.564 0.564 0.563 0.564 0.564

Modified rule of mixture method

λ1 1.573 1.618 1.646 1.648 1.650 1.662 1.651 1.627 1.654

λ2 0.808 0.813 0.957 0.966 0.934 0.840 0.933 0.811 0.890

λ3 0.734 0.741 0.800 0.793 0.780 0.742 0.779 0.737 0.785

λ4 0.635 0.643 0.672 0.671 0.650 0.638 0.662 0.640 0.648

Halpin-Tsai formulae

λ1 1.573 1.618 1.646 1.648 1.650 1.662 1.651 1.627 1.654

λ2 0.794 0.800 0.867 0.870 0.860 0.809 0.856 0.800 0.839

λ3 0.734 0.741 0.800 0.793 0.780 0.742 0.779 0.737 0.785

λ4 0.635 0.643 0.672 0.671 0.650 0.638 0.662 0.640 0.648

Hill-Hashin-Christensen-Lo method

λ1 1.571 1.616 — — — — — 1.625 —

λ2 0.727 0.755 — — — — — 0.745 —

λ3 0.636 0.642 — — — — — 0.636 —

λ4 0.635 0.643 — — — — — 0.640 —

Self-consistent method

λ1 1.567 1.612 1.645 1.646 1.649 1.662 1.650 1.622 1.653

λ2 0.459 0.496 0.806 0.795 0.764 0.549 0.755 0.471 0.713
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E-glass

LY556

E-glass

MY750

AS4

3501–6

T300

BSL914C

IM7

8511–7

T300

PR319

AS

epoxy

S2-glass

epoxy

G400–800

5260

λ3 0.385 0.420 0.710 0.699 0.661 0.465 0.657 0.396 0.644

λ4 0.197 0.224 0.395 0.382 0.272 0.155 0.338 0.195 0.250

Generalized self-consistent method

λ1 1.571 1.616 1.646 1.647 1.650 1.662 1.651 1.625 1.653

λ2 0.792 0.799 0.870 0.867 0.854 0.809 0.857 0.798 0.839

λ3 0.734 0.740 0.800 0.793 0.780 0.742 0.779 0.738 0.785

λ4 0.635 0.643 0.673 0.671 0.650 0.638 0.662 0.640 0.648

Double inclusion method (Digimat)

λ1 1.568 1.617 1.647 1.648 1.650 1.662 1.652 1.626 1.654

λ2 0.543 0.517 0.766 0.758 0.729 0.559 0.721 0.502 0.679

λ3 0.485 0.465 0.666 0.657 0.649 0.481 0.620 0.453 0.633

λ4 0.402 0.386 0.463 0.456 0.404 0.363 0.429 0.376 0.396

FE-square fiber array

λ1 1.570 1.616 1.645 1.647 1.649 1.662 1.651 1.625 1.653

λ2 0.616 0.635 0.773 0.769 0.744 0.650 0.735 0.630 0.721

λ3 0.421 0.444 0.612 0.596 0.566 0.454 0.565 0.436 0.568

λ4 0.582 0.600 0.643 0.639 0.614 0.593 0.628 0.596 0.611

FE-hexagonal fiber array

λ1 1.571 1.616 1.646 1.646 1.650 1.662 1.651 1.625 1.653

λ2 0.295 0.766 0.853 0.850 0.825 0.775 0.828 0.760 0.815

λ3 1.019 0.669 0.765 0.756 0.741 0.677 0.737 0.667 0.742

λ4 0.633 0.643 0.673 0.671 0.651 0.636 0.662 0.641 0.647
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E-glass

LY556

E-glass

MY750

AS4

3501–6

T300

BSL914C

IM7

8511–7

T300

PR319

AS

epoxy

S2-glass

epoxy

G400–800

5260

FE- FE-square diagonal fiber array

λ1 1.571 1.616 1.645 1.646 1.649 1.662 1.651 1.625 1.653

λ2 0.454 0.856 0.932 0.928 0.921 0.864 0.809 0.856 0.898

λ3 1.210 0.890 0.928 0.926 0.919 0.893 0.918 0.887 0.916

λ4 0.594 0.604 0.643 0.640 0.613 0.593 0.628 0.599 0.609

FE-random fiber array

λ1 1.570 1.615 1.645 1.647 1.649 1.662 1.651 1.625 1.653

λ2 0.660 0.676 0.830 0.826 0.802 0.694 0.798 0.662 0.777

λ3 0.566 0.578 0.731 0.662 0.695 0.592 0.692 0.569 0.693

λ4 0.611 0.621 0.606 0.601 0.634 0.609 0.650 0.615 0.629

Table B4.
The coefficients λi’s for the nine composites by different models.
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