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Chapter

Acceleration of Large-Scale 
Electronic Structure Simulations 
with Heterogeneous Parallel 
Computing
Oh-Kyoung Kwon and Hoon Ryu

Abstract

Large-scale electronic structure simulations coupled to an empirical modeling 
approach are critical as they present a robust way to predict various quantum phe-
nomena in realistically sized nanoscale structures that are hard to be handled with 
density functional theory. For tight-binding (TB) simulations of electronic struc-
tures that normally involve multimillion atomic systems for a direct comparison to 
experimentally realizable nanoscale materials and devices, we show that graphical 
processing unit (GPU) devices help in saving computing costs in terms of time and 
energy consumption. With a short introduction of the major numerical method 
adopted for TB simulations of electronic structures, this work presents a detailed 
description for the strategies to drive performance enhancement with GPU devices 
against traditional clusters of multicore processors. While this work only uses TB 
electronic structure simulations for benchmark tests, it can be also utilized as a 
practical guideline to enhance performance of numerical operations that involve 
large-scale sparse matrices.

Keywords: offload computing, GPU devices, large-scale electronic structure 
simulations, tight-binding approach, nanoelectronics modeling

1. Introduction

As the dimension of functional semiconductor devices are scaled down to deca-
nanometer (nm) sizes, the underlying material can no longer be considered con-
tinuous. The number of atoms in the active device region becomes countable in the 
range of ~50 K to a few millions, and their local arrangements in interfaces, alloys, 
and strained systems give non-negligible effects on device characteristics [1–3]. 
Also, most experimentally realized structures are not infinitely periodic, but are 
finite in sizes; such geometries call for a local orbital basis, rather than a plane wave 
basis which implies infinite periodicity. As full ab-initio methods such as density 
functional theory are in principle hard to simulate electronic structures of such a 
huge and discrete atomic structures [4, 5], the necessity of atomistic approaches 
based on an empirical modeling method is quite huge.

The spds* 10-band tight-binding (TB) approach, which employs a set of 10 local-
ized orbital bases to describe a single atom, has been extensively used to explain 
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experimental behaviors of various quantum devices [2, 6–9] through large-scale 
electronic structure simulations with the well-known nanoelectronics modeling 
tool (NEMO) [10, 11]. As the NEMO only runs in traditional computing clusters of 
multicore processors, we also have recently released a new software package for TB 
simulations (Quantum simulation tool for Advanced Nanoscale Devices (Q-AND)), 
which supports computation with Intel Xeon Phi PCI-E add-in devices and shows 
enhanced performance compared to the result obtained with clusters of Intel Xeon 
multicore processors [12].

The major purpose of this work is to explore the performance benefits that 
can be obtained with NVIDIA general-purpose graphical processing unit (GPU) 
devices, which are also PCI-E add-in devices and are popularly adopted by com-
munities to solve various computing-intensive problems. In particular, (1) we 
present methodological details applied to enhance the performance of TB electronic 
structure simulations with GPU devices. Then (2) we show the excellence of speed 
and scalability for end-to-end simulations of realistically sized nanostructures and 
(3) analyze the economic benefits of latest GPU devices for TB simulations against 
computing resources of multicore processors (host CPUs). Extending our previous 
work with Intel Knights Corner coprocessors [12] to the area of GPU computing, 
this work delivers practical information for technical details that are employed to 
accelerate empirical modeling of large-scale electronic structures and therefore can 
serve as a guideline that is beneficial to researchers in the field of nanoelectronics 
who consider a code migration to heterogeneous computing platforms involving 
PCI-E communications, which takes a non-negligible portion of top 500 high- 
performance computing systems in the world [13]. While latest NVIDIA GPU 
devices also support NVLink communications, here we only consider the PCI-E one 
for the performance analysis.

2. Methodology

Electronic structures of target nanostructures are described with a sp3d5s∗ 
TB model [6, 9, 10], which employs 10 orthogonal orbital bases to represent a 
single atom assuming nearest-neighbor couplings. As shown in Figure 1 (top), 
simulation domains are decomposed in a multidimensional manner with MPI and 
OpenMP. Hamiltonian matrices, which are stored in compressed sparse row (CSR) 
format [14], are then decomposed in a row-wise manner. The Schrödinger equation 
solver, which computes normal eigenvalue problems in a numerical perspective, is 
developed with the Lanczos method [15] whose computational bottleneck comes 
from sparse matrix-vector multiplication (SpMV) [12, 15]. The basic idea for the 
performance improvement would thus be to perform SpMV with a simultaneous 
utilization of host CPUs and GPU devices, where Figure 1 (bottom) illustrates this 
idea. Here, each GPU device has a block matrix belonging to an MPI process, which 
sends/receives input (Vin)/output (Vout) vectors to/from the associated GPU 
device. Each MPI process does not need to send the whole Vin since multiplication 
in an MPI process can be done with only three block vectors of Vin (1 in itself, 2 in 
its neighbor processes) as our TB model assumes nearest-neighbor couplings. Upon 
the completion of multiplication, a GPU device just needs to send 1 block of Vout) 
back to its associated MPI process. Host CPUs and GPU devices can thus perform 
multiplication simultaneously with no heavy overhead of data transfer. In the next 
subsections, we present further detailed methodologies for (1) the simultaneous 
utilization of host CPUs and GPU devices and (2) the implementation of efficient 
SpMV CUDA kernels.
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2.1 Simultaneous utilization of both CPU and GPU

The following are two ways of how to efficiently utilize the resources of both 
CPUs and GPUs. One takes the pageable memory when transferring data between 
CPU and GPU, whereas the other uses the pinned memory. The memory can be 
allocated in the pinned memory with the cudaMallocHost function of CUDA library, 
which prevents the memory from being paged out and therefore improves the 
speed of data transfer between host and GPU devices. The pageable (non-pinned) 
memory can be used with the malloc function of standard C library. This subsession 
will discuss in detail how SpMV can be done with the abovementioned two ways.

Computations of SpMV in host CPU and GPU devices are overlapped in default 
since the GPU kernel function is called in a non-blocking manner such that its 
execution can be done in parallel with the execution in CPU code. As shown in 
Figure 2(a), however, data transfer between host and (GPU) device memory can-
not be overlapped with the CPU computation when the pageable memory is used. 
As depicted in Figure 2(b), the pinned memory enables the CPU calculation to be 
overlapped with data transfer [16]. Another merit that can be obtained with the 
pinned memory is that the effective bandwidth of data transfer itself is increased 
by ~3 times compared to the one obtained with the pageable memory, because the 
bandwidth of the PCI-E bus to connect CPU and GPU is not fully exploited with the 
pageable memory [16]. The pinned memory can be used with the cudaMallocHost 
(CUDA library) instead of malloc function. As memory offload is much faster and 

Figure 1. 
(Top) scheme for domain decomposition. Hamiltonian matrices representing real-space simulation domains are 
decomposed in a row-wise manner with a hybrid use of MPI and OpenMP. (bottom) conceptual illustration of 
how to share the computing load of matrix-vector multiplication into both host CPUs and GPU devices.
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communication hiding is possible, the pinned memory would be superior to the 
page memory for saving the wall time of SpMV calculations with GPU devices.

2.2  CUDA SpMV kernels

We have developed three different CUDA SpMV kernels as illustrated in Figure 3: 
(i) a basic kernel that allocates a single CUDA thread per a row in the matrix (naïve), 
(ii) a kernel that always allocates a single WARP to the SPMV operation for a single 
row in the matrix (warp1) [17], and (iii) a kernel that dynamically allocates multiple 
WARPs to the SPMV operation for a single row in the matrix (warp2) [18].

Firstly, the naive kernel is a straightforward approach to map a single CUDA 
thread to a single row in the matrix. Because the Q-AND code uses the CSR format 
to describe the Hamiltonian matrix, SpMV operations need an indirect addressing 
step for every single scalar operation needed for multiplications. Consecutive threads 
therefore have to access irregularly strided memory as illustrated in Figure 3(a). As 
noted by Harris [19], such access patterns would degrade performance, because then 
successive threads may not be able to access the global memory simultaneously to 
read non-zero elements of the matrix (Figure 3(a)).

Secondly, the warp1 kernel uses the maximum number of CUDA threads of a 
single WARP for multiplications of a single row in the matrix. A WARP is defined 
as the group of threads and consists of contiguous threads (32 threads for Tesla K40 
devices) [19, 20]. Since threads in a single WARP can access the global memory 
simultaneously, we can reduce the number of transactions that are required to 
access the global memory, and therefore we expect non-negligible performance 
enhancement for SpMV operations against the naïve kernel (Figure 3(b)) [18]. 
However, this solution may not be the best one, since we always use a single WARP 
for a single matrix row, and therefore we may have idle threads (or WARPs) if the 
maximum number of WARPs supported by a single GPU device is larger than the 
number of rows of a block matrix that are belonging to that GPU device.

Figure 2. 
Comparison of two methodologies for simultaneous utilization of both CPU and GPU. (a) With pageable 
memory, data transfer between CPUs and GPU devices cannot be hidden behind the SpMV computation.  
(b) With pinned memory, data transfer can be overlapped with the SpMV computation and can be performed 
with much higher bandwidth.
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Thirdly, the warp2 kernel dynamically allocates WARPs to a single matrix row 
as depicted in Figure 3(c). Here, the number of WARPs allocated to a single matrix 
row is dynamically determined by counting the number of corresponding non-zero 
elements, i.e., an integer value that is closest to “the number of non-zero elements 
in one matrix row/the number of threads per a single WARP. “We note the warp2 
kernel would be optimal for our problem since the TB Hamiltonian matrix normally 
has non-zero elements that are larger than 32.

In addition, we can increase the performance by utilizing the texture memory 
for the vector data retrieval, where texture memory, which is a read-only memory, 
is cached on-chip and provides higher effective bandwidth by reducing memory 
requests toward off-chip DRAM. Since the in/out vectors are irregularly accessed 
by threads from the global memory of GPU devices, the performance improvement 
could be driven by applying the texture memory. The following section reveals the 
result of the evaluation.

Figure 3. 
Conceptual scheme of three SpMV CUDA kernels. (a) A basic kernel that maps a single thread to a single 
row in the matrix for SpMV (naive). Here, consecutive threads (t0, t1,…,tn − 1) access nonconsecutive words. 
(b) A kernel that uses WARP statically (warp1). It always allocates a single WARP (32 threads in Tesla K40) 
to a single row in the matrix. Consecutive threads (t0, t1,…,tn − 1) access consecutive words. (c) A kernel that 
uses WARP dynamically (warp2). It dynamically allocates WARPs to a single row considering the sparsity of 
matrix.
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3. Results and discussions

This section discusses the performance evaluation of our solver from following 
perspectives: (i) the strong/weak scalability of end-to-end simulations and the 
optimal GPU load (i.e., the portion of SpMV calculation allocated to GPU devices 
that shows the best speed), (ii) impact of the pinned memory on computing 
performance, (iii) performances of the three different CUDA SpMV kernels, and 
(iv) energy efficiency and economic benefit of GPU computing for electronic 
structure simulations against the results obtained with CPU computing only. 
All the benchmark tests are performed on the two test-bed machines: one is the 
K40 test-bed including three computing nodes connected with an infinite-band 
4 × FDR (56 Gbps) network, where each node has two Intel Xeon CPUs E5-2650 
v3 [21], two NVIDIA Tesla K40 GPU cards [20], and one 128G DDR3 1867 MHz 
memory, and another is a P100 test-bed including one node with same configu-
ration except two NVIDIA Tesla P100 cards [22]. The codes are compiled with 
CUDA 8.0 library, Intel C++ compiler 16.0, and OpenMPI 1.10.2. Si:P quantum 
dots (QDs), which are defined to be huge silicon (Si) layers encapsulating a 
single phosphorus (P) atom and are studied with a 10-band TB model for designs 
of Si-based quantum computers [8, 9, 23], are used as target devices for all the 
benchmark tests.

3.1  Evaluation of utilization of both GPUs and CPUs

Using the pinned memory and the warp2 kernel with texture memory, simula-
tions are performed for Si:P QDs with a convergence criterion of 10−8 eV and are 
completed when 104 Lanczos iterations are reached or 10 lowest energy levels in 
conduction band are found. Every bar graph of Figure 4 has the following six 
elements: MPI communication (Comm), data transfer from host to GPU device 
(CopyIn), SpMV + data transfer from GPU device to host (SpMV + CopyOut), dot 
product (VVDot), memory operations (MemOp), and other portions (Others). Note 
that SpMV + CopyOut includes the time required for SpMV on GPU devices and 
data transfer from GPU device to host memory, while SpMV on CPUs is performed 
at the same time.

Figure 4(a) and (b) presents the strong and weak scalability of the end-to-end 
simulation at the K40 and P100 test-beds, respectively. The Si:P QD tested for 
the strong scalability has a cuboid Si layer that consists of a total of 30 × 80 × 80 
[100] unit cells and has a dimension of ~16 nm × 43 nm × 43 nm (about 1.5 million 
atoms). The problem size for the weak scalability test is 15n × 80 × 80 [100] unit 
cells (n × 7.5 × 105 atoms), where n denotes the number of MPI ranks. As we use 10 
bases to describe a single atom, the degrees of freedom (DOF) of corresponding 
Hamiltonian matrices are ~15 million (for strong scalability) and ~7.5 million/rank 
(for weak scalability), respectively. Here, we see that the strong scalability is gener-
ally quite good, where each MPI rank is mapped to 10 CPU cores and one GPU card. 
The job using six MPI ranks is 2.34 times faster than the one executed with two 
ranks for the 30 × 80 × 80 unitcells at the K40 test-bed. It shows nice scales accord-
ing to the number of cores, because a significant portion of the wall time is taken by 
SpMV that would give a nice scalability as the matrix has a block-tridiagonal shape, 
and therefore the burden of MPI communications would not become a serious 
problem. The weak scalability also shows good since the wall time is not signifi-
cantly affected by MPI communications.

In addition, Figure 4(c) and (d) illustrates the performance comparison in 
terms of the wall time according to the GPU load at the K40 and P100 test-beds, 
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respectively. The QD considered for the experiment here has 30 × 80 × 80 unit 
cells. The elapsed time is described as a function of computing load for SpMV on 
GPU devices (GPU load). As described in the previous section, SpMV is the most 
time-consuming part such that it takes about 56% of the wall time when CPUs 
perform all the multiplications (GPU load is zero) at the K40 test-bed. However, as 
the GPU load increases, SpMV takes less time and shows the best speed when the 
GPU load is ~70%. This optimal GPU load depends on the hardware performance 
of GPU devices such that, at the P100 test-bed (with same host CPUs), it is ~90%. 
The speedup becomes 1.44× and 1.7× for the target simulation at the K40 and P100 
test-beds, respectively, against the case when GPU load is zero (only CPUs are used 
for simulations).

Then let us discuss why this optimal GPU load becomes about 70 and 90% 
at the K40 and P100 test-beds, respectively. Since the performance of SpMV 
depends on various factors such as computing units, memory bandwidth and 
latency, network speed, and PCI-E bandwidth between host and GPU device, it 
is not easy to clearly extract the exact value of the optimal GPU load. However, 
the “ideal value” of the GPU load could be approximately calculated using only 
the theoretical peak performance of computing units, because the performance 
of SpMV would be maximized when both CPUs and GPUs complete comput-
ing operations at the same time. If we denote the peak performance (in the 
unit of floating point operations per second (FLOPS)) of host CPUs and PCI-E 

Figure 4. 
Performance of Q-AND code with GPUs computing using the pinned memory and the warp2 kernel with 
texture memory. (a) Strong scalability of computing 30 × 80 × 80 unit cells at the K40 test-bed. (b) Weak 
scalability of computing 15 × 80 × 80 unit cells per single MPI process at the K40 test-bed. (c) Performance 
of computing 30 × 80 × 80 unit cells as a function of the GPU load at the K40 test-bed. (d) Performance 
comparison of computing 30 × 80 × 80 unit cells as a function of the GPU load at the P100 test-bed.
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connected devices by PH and PD, respectively, the optimal GPU load (x) can be 
calculated as the following equation (Eq. (1)):

  x =   100 ×  P  D   _______ 
 P  D   +  P  H  

    (1)

Since a single computing node of the K40 test-bed has a PH of about 0.736 × 1012 
FLOPS for twenty CPU cores of Xeon E5-2650 v3 [21], and a PD of about 
2.620 × 1012 FLOPS for two Tesla K40 devices [20], x is derived to about 78.1%, 
which it is a little higher than the measured value (70%) due to the ignorance 
of other factors (memory bandwidth, etc.). For the P100 test-bed (PD of about 
10.600× 1012 FLOPS) [22], x is also evaluated to about 93.5%, while we find it at 
~90%. Even though the derived values are not strictly accurate, we can still explain 
why the optimal GPU load of the K40 and P100 test-beds turns out to be higher 
than the one (~65%) measured with Xeon Phi Knights Corner coprocessors [12].

3.2 Effects of pinned memory on performance

As explained in the previous section, the pinned memory may make a non-negligible 
impact on the overall performance of large-scale simulations. Figure 5(a) shows the 
performance measured with the pinned and pageable memory at a 70% (K40) and 90% 
(P100) GPU load, where a single computing node is used with the warp2 kernel and tex-
ture memory. The Si:P QD has 30 × 80 × 80 unit cells. Results indicate that the case with 
pinned memory shows better performance than the one with pageable memory due to the 
following two points: (1) The reduction of CopyIn time due to the increased bandwidth of 
PCI-E bus with pinned memory and (2) SpMV + CopyOut time as communication hiding 
behind the computation. We observed the effective bandwidth of PCI-E communication 
is ~3.31 GB/s with the pageable memory on every test-bed, while it reaches ~10.40 GB/s 
with the pinned memory, driving ~3.14 speedup in data transfer. The effective speed of 
SpMV operations increases by a factor of 1.36 and 1.19 with pinned memory compared 
to the speed with pageable memory at the K40 and P100 test-beds, respectively, since 
utilization of the pinned can overlap computation and data transfer. The performance for 
end-to-end simulations therefore becomes 1.27 and 1.21 times faster with pinned memory 
against the performance obtained with pageable memory at 70% GPU load (K40) and 
90% GPU load (P100), respectively.

Figure 5. 
Performance measured in a single computing node for end-to-end simulations of 30 × 80 × 80 unit cells at the 
optimal GPU load (70% for K40 and 90% for P100). (a) Performance measured with the pinned and pageable 
memory when the warp2 kernel is used. (b) Performance of three different SpMV CUDA implementations. 
SPMV calculations are slightly accelerated with utilization of the texture memory.
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Though here we only focused on the performance of PCI-E communications, it 
is possible to estimate the performance benefit that may be obtained with NVLink 
communications. For this purpose, we investigate how the bandwidth of communi-
cations between CPU and GPU affects the overall performance, where we find that 
the overall speedup is ~1.21× due to the ~3.1× enhancement of PCI-E bandwidth on 
the effects of pinned memory in PCI-E add-in P100 devices. Because the bandwidth 
improvement with NVLink connectivity between CPU and GPU is ~3× compared 
to the PCI-E [24], we may roughly expect that there will be another ~1.06× speedup 
for the end-to-end simulation with NVLink add-in P100 devices.

3.3  Performance analysis of SpMV CUDA kernels

Here we investigate the performance of three different SpMV CUDA kernels 
and present a short discussion about the effects of the texture memory on the 
performance. Figure 5(b) shows the performance of the three SpMV implemen-
tations at the single computing node of the K40 and P100 test-beds, where the 
pinned memory is utilized with a 70% (K40) and 90% (P100) GPU load. The Si:P 
QD for target simulations has 30 × 80 × 80 unit cells. The grid/block size is set to 
21,000/256 and 672,000/256 of the naive and warp1 kernel, respectively. For the 
warp2 kernel, the grid/block size is set to 30/1024 and 112/1024 at the K40 and P100 
test-beds, respectively, since the number of streaming multiprocessors is 56 for 
P100 devices, while it is 15 for K40 (the grid size is set to an integer multiple of the 
number of available streaming multiprocessors).

Among the naive, warp1, and warp2 kernel, the warp2 outperforms as expected. 
The speedup of the warp2 kernel is the 7.96/6.73 (K40/P100) and 1.12/1.24 com-
pared to the naive and the warp1 kernel, respectively. The huge performance 
enhancement that is particularly achieved against the naive kernel reflects the 
importance of coalescing global memory access as Liu et al. also reported that 
the effective bandwidth is poor for large strided memory access [18]. The warp2 
kernel also works faster than the warp1 kernel since less threads would be idle with 
dynamic allocations as discussed in the “Methodology” section. While multiple 
WARPs can be involved to process a single row in the matrix (and threads in a single 
WARP can concurrently access the global memory), there is an inter-WARP time 
lag (only a single WARP can process multiplications at a time). The performance 
gain, however, is remarkable such that 15–20% of the wall time is reduced with a 
dynamic allocation of WARPs.

All the three kernels show faster operations in P100 devices than in K40 devices, 
and the speedup in P100 devices turns out to be ~2.77 on average. Although the peak 
performance of P100 devices is 4.05× higher than that of K40 devices (in FLOPS for 
double precision), the measured average performance gain (2.77) is much lower than 
this value (4.05), since the performance of SpMV is mainly limited by the bandwidth 
of global memory rather than the core clock of GPU devices [25]. Figure 5(b) also 
shows the performance difference created by utilization of the texture memory for 
retrieval of vector data retrieval. With the texture memory, the speed of the warp2 
kernel improves by a factor of 1.06 (K40) and 1.19 (P100) against the case without 
the texture memory, since the texture memory enables fast random accesses to vector 
data and uses a cache to provide broad bandwidth.

3.4 Energy efficiency and economic benefits of GPU computing

Not only is the elapsed time an important metric, but also the energy efficiency 
is a significant one to explore. The power usage of host and the two PCI-E con-
nected devices is evaluated as a function of elapsed time (Figure 6), where we 
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consider the power consumed by host (CPU packages with off-chip DRAMs) and 
Tesla GPU devices. The power usage in host and GPU devices is measured with 
Intel Running Average Power Limit (RAPL) library [26] and NVIDIA Management 
Library (NVML) [27], respectively.

Figure 6(a), (b) and (c) shows the real-time power consumption of a single 
computing node at a 0% GPU load (CPU only), 70% GPU load with K40, and 90% 
GPU load with P100 GPU devices, respectively. A Si:P QD consisting of 30 × 80 × 
80 unit cells is simulated with the warp2 kernel where pinned memory and texture 
memory are used. Here, all the results show similar patterns such that  
(i) the power consumption starts to increase during the initial processes of 
electronic structure simulations, i.e., matrix construction that requires memory 
access to store non-zero elements, row/column indices. (ii) The power usage then 
shows a rapid oscillation during the process of Lanczos iterations, and (iii) it 
finally returns to the normal (standby) value when all the calculation is finished. 
Figure 6(d) informs that the average instantaneous power consumption of a single 
computing node with K40 and P100 devices is 157.58 and 117.55 Watt, whereas the 
host of test-beds uses 279.76 and 270.05 Watt, respectively. Figure 6(e) shows the 
total energy consumed by the end-to-end simulation, which can be calculated by 
multiplying the time-averaged power usage by the wall time. During the execution 
in a single computing node of the K40 test-bed, CPUs and GPUs consume about 
542.32 and 305.40 KJ, respectively, while corresponding values with P100 devices 
become 331.44 and 144.33 KJ, respectively. ~614.18KJ is consumed for the CPU-only 
case. Compared to the results measured with K40 GPU devices, a single computing 
node with P100 devices consumes ~1.34× less energy, while it finishes the target 
simulation ~2.88× faster. Figure 6(f ) shows the total energy consumed by the 
three SpMV kernels in the single computing node of the K40 and P100 test-beds, 
where the pinned memory is utilized with a 70% (K40) and 90% (P100) GPU load 
for simulations of a Si:P QD consisting of 30 × 80 × 80 unit cells. Coalescence of 
global memory access (Figure 3(c)) drives a significant performance improvement, 
such that the warp2 kernel not only shows the smallest energy consumption but 

Figure 6. 
Power usage and energy consumption associated with the target simulation. The real-time power consumption 
measured in a single computing node at (a) 0% GPU load (CPU only), (b) 70% GPU load with K40 devices, 
and (c) 90% GPU load with P100 devices. (d) Time-averaged power usage and (e) total energy consumption 
measured in a single computing node at the optimal GPU load (70% for K40 and 90% for P100). (f) Total 
energy consumption of three different SpMV CUDA implementations in a single computing node at the 
optimal GPU load.
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has the best wall-time performance among the three kernels. Reduction in energy 
consumption of the warp2 kernel turns out to be 2.99×/1.59× (K40/P100) and 
1.12×/1.09× compared to the naive and the warp1 kernel, respectively.

Now let us talk about the energy efficiency of our code for electronic structure 
simulations. Without losing generality, we roughly can define the energy efficiency 
as the rate of SpMV operations performed for the unit power consumption (1 W). 
The rate of SpMV operations can be estimated by the ratio of the total number of 
floating point operations that a single simulation performs (NF) and the total wall 
time taken until the simulation is completed. Therefore, the energy efficiency of 
simulations (η) can be approximated with Eq. (2):

  η =   NF ____ 
 T  total  

   ×   1 ___ 
W

   =   NF ____ 
 E  total  

    (2)

where Etotal and Ttotal represent the total energy consumption and wall time 
required to complete a single simulation, respectively. From the derived equation, 
the energy efficiency could be calculated for K40 and P100 devices and host CPUs. 
Although it is not easy to exactly quantify NF, we can at least compare the energy 
efficiency of different computing devices by assuming that NF would be linearly 
proportional to the workload of SpMV allocated to specific computing platforms. 
By setting the energy efficiency of CPU-only computing to 1, the energy efficiency 
of K40 devices (70% GPU load) and P100 devices (90% GPU load) would be ~1.43 
and 3.81, respectively. We conclude the energy efficiency of P100 devices is ~2.66× 
and 3.81× better than that of K40 and CPU devices for the target simulation. Note 
that these quantities are hard to be obtained just with officially known hardware 
specifications [20–22].

Finally, let us close this section with a short discussion about the economic ben-
efits that can be delivered by GPU computing for TB simulations. Since GPU devices 
are not cheap [28, 29], it would be interesting to compare the “time saving” achieved 
by a single US dollar spent for additional GPU devices. As we already have shown in 
Figure 4, the CPU-only simulation of 30 × 80 × 80 unit cells is finished in ~2476 s, 
which is average of the results measured with K40 and P100 devices (Figure 5(c) 
and (d)). While the simulation is finished in ~1701 s with K40 at the optimal GPU 
load (70%), we must additionally pay ~4.6 K US dollars to buy two K40 GPU devices 
[28]. With P100 devices, the simulation takes ~1472 s at the optimal GPU load (90%) 
and requires ~14.7 K US dollars to buy two P100 GPU devices [29]. Thereby, we get 
~0.17 and ~0.07 s/USD for K40 and P100 devices, respectively. While the perfor-
mance enhancement driven by GPU computing may be impressive in the perspective 
of computing time, we claim more expensive devices may not always deliver better 
economic benefits. Readers are therefore strongly encouraged to build a careful 
budget plan whether they are thinking to buy new GPU devices.

4. Conclusion

The cost efficiency of general-purpose graphical processing unit (GPU) devices 
for tight-binding (TB) simulations of extremely large-scale electronic structures has 
been examined with a focus on the speed and the amount of energy consumption. 
Technical strategies used to exploit the strength of GPU-coupled offload computing 
have been elaborated in detail with a short but clear description of the main numer-
ical method employed to tackle large-scale Schrödinger equations. Benchmark 
tests have been performed against realistically sized solid Si:P quantum dot devices 
that contain several million atoms. Tesla K40 and latest P100 GPU devices are 
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considered as the test platform. The technics we employed for the efficient offload 
computing of large-scale TB simulations drive a non-negligible enhancement of 
the computing speed. Compared to the performance tested with Intel Xeon V3 host 
CPU only, K40 and P100 devices can achieve up to ~2× and ~6× speedup for sparse 
matrix-vector multiplication (SpMV), which is the numerical operation needed to 
solve electronic structures. In terms of the amount of total energy consumption, 
however, K40 shows worse performance compared to the CPU-only case, while 
P100 still holds the strength.
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