
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 3

Hemodynamic Considerations in the Pathophysiology
of Peripheral Neuropathy

Daryl I. Smith, Hai T. Tran and Joseph Poku

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75872

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 

Daryl I. Smith, Hai T. Tran and Joseph Poku

Additional information is available at the end of the chapter

Abstract

Peripheral neuropathic pain presents one of the greatest on going challenges to both 
acute and chronic pain management yet our understanding of the origins and pathogen-
esis of this complex disease state are severely lacking. The purpose of this chapter is to 
review the current literature regarding neuropathic pain as impacted by hemodynamic 
alterations. Because of the varied origins of neuropathy, this cannot be discussed as a 
single entity but we can seek to identify a final common pathway. We will for this rea-
son examine each known pathogenetic category of neuropathy separately then discuss 
the effect of hemodynamic alterations through changes in blood pressure to determine 
any correlations between these alterations and specific effects upon neural structure and 
function. We have divided this chapter into sections which describe the more commonly 
known and encountered neuropathies. These are diabetes mellitus, neurotoxic medica-
tions, alcohol-related neuropathy, Vitamin B

12
 deficiency, end-stage renal disease, inflam-

matory bowel disease, and rheumatoid arthritis.

Keywords: peripheral neuropathy, pathophysiology, classifications, mechanisms, 
molecular basis, incidence, literature review

1. Introduction

Peripheral neuropathy is a relatively rare but well-known degenerative disorder of the periph-

eral nervous system with an estimated overall annual incidence of 1.6 per 100,000 and a preva-

lence of 2.4% in the United States [1, 2]. For persons forty years and older, the prevalence is 

about five-fold higher (11.5%) and 10 times higher in diabetic individuals (21.2%) [3]. Among 

the causes of peripheral neuropathies are caused by diabetes mellitus, toxins, alcohol abuse, or 

paraneoplastic syndromes. The most common cause of peripheral neuropathy worldwide is 
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diabetes mellitus. Both sensory and/or motor component (sensorimotor) of the peripheral ner-

vous system can be affected. The symptoms, severity and duration of peripheral neuropathy 
depend on the type of nerve affected, sensory, motor or both, the inciting incidence or causative 
agent, and the length of exposure. Motor neuropathy is characterized by muscular weakness 

affecting mobility, coordination, and respiratory function. Sensory neuropathy is characterized 
by pain, numbness, burning sensation, absent or diminished reflexes and sensation to touch.

2. Background

2.1. Vascular supply to peripheral nerves

The vascular supply to peripheral nerves is often overlooked both in the natural history of 

common, well-understood diseases as well as in the management of acute and chronic pain 

syndromes. When chronic peripheral neuropathic pain develops the results can be devastat-
ing with significant impairment in quality of (QoL) functioning in the activities of daily liv-

ing (ADL) and cause significant loss of income as well as lost productivity in the workplace. 
This chapter will focus primarily upon the vasa nervorum which are the vessels that supply 

the peripheral nerves. The chapter will review, first, the embryology of the vasa nervorum, 
then the resultant anatomy and the physiology of these vessels. This section will provide the 

groundwork for the discussion of molecular pathways that cause changes to both the integ-

rity of these vessels as well as the diminution in the number of functional vessels.

2.2. Summary of neural lesions

Emphasis will be placed upon the second crush theory as a mechanism of vasculopathic 

contribution to decreases in axonal transport mechanisms (Figure 1), as well as specific dis-

eases and drug interactions that result in perfusion dependent mechanisms of neural injury 

(Table 1). These syndromes will include diabetic neuropathy, rheumatoid arthritis-associated 
neuropathy; Vitamin B

12
 deficiency- neuropathy; hypertensive and hypotensive neuropathy; 

chemotherapy and radiation neuropathies.

2.3. Neuropathies and double crush

It should be noted that peripheral neural blood flow has been thought to present as a double 
edged sword in the development of certain neuropathies. In a 1994 study, Jaap et al. exam-

ined the maximal microvascular hyperemic response to local heating in subjects with fasting 

hyperglycemia and compared these to healthy, age and sex matched controls [4]. Bandla et al. 

in at least one setting speculated that diminished flow may be beneficial. In this work they 
examined 15 healthy human subjects and explored the use of continuous flow, limb hypother-

mia to limit the delivery of chemotherapeutic agents to peripheral nerves. No further studies 

have been reported with this specific model yet it serves to broach the theory that reduced 
delivery of toxins may be protective [5]. And In another suggestive study, perfusion effects 
in patients with established neuropathic pain were examined and compared to healthy con-

trols using dynamic contrast-enhanced magnetic resonance imaging. Time-signal intensity 
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analysis showed significantly increased contrast uptake in patients with neuropathy and was 
determined to be the result of increased blood-nerve permeability [6].

Finally the chapter will focus upon interventions that may allow for not only treatment of 

these neuropathies at the earliest stages of their presentations but also preventive measures 

in patients at risk.

It is our hope that this chapter will not only elucidate these mechanisms of disease but also 

stimulate discussions which will lead to further research into this component of neuropathic 

disease in the hope that better patient treatment options may be developed.

Figure 1. Different types of neural lesions that can lead to denervation. Axoplasmic material is represented by the 
density of the shading. Completely healthy neuron (a) axoplasmic flow is complete. (b) In a healthy neuron with one 
area of mild compression flow is maintained distal to a compressive point indicated by “y”. (c) In a healthy neuron with 
two mild compressions, disruption of flow and thus denervation occurs distal to “y” which is the point of compression. 
(d) Denervation.
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3. Causes of peripheral neuropathy

3.1. Diabetic neuropathy

Diabetic Peripheral Neuropathy is a common neurological manifestation of both type I and 
type II diabetes, affecting up to 50% of diabetics with an even greater incidence in those with 
subclinical manifestations. The peripheral neuropathy can involve both motor and sensory 

Table 1. Neuropathies associated with risk of double crush injury.
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nerves and the complexity of the metabolic and vascular factors involved has still not been 

fully elucidated. The sensory loss is classically described as a “stocking and glove distribu-

tion” involving both hand and legs. The underlying pathology causing this neuropathy 
appears to involve both macro and microvascular processes.

3.1.1. Galactose neuropathy

As far back as 1984 galactose was implicated as a cause for peripheral neuropathy in a murine, dia-

betic model. Using C14 iodoantipyrine as a radioactive tracer of tissue perfusion, the group noted 

a significant decline in nerve blood flow in animals that had ingested galactose for 6 months vs. 
controls. There was also a positive correlation between galactose ingestion, endoneurial edema, 

increased tissue pressure, and ultimate demyelination of nerve fibers. The group also found that 
Schwann cells showed significant glycogen accumulation in regions in which there was edema. 
This bolstered the argument that edema, rather than neural hyperactivity in the sorbitol pathway 

was responsible for the pathological changes in galactosemic neuropathy [7].

3.1.2. Diabetes and autonomic function

Another study examined peroneal nerve conduction velocity as a primary outcome of neural 

function and correlated this to the severity of diabetic neuropathy. Mallamaci et al. studied 

autonomic function in uremic patients and were able to show a weak non-statistical relation-

ship between an improvement in neurologic function and post-renal transplant status [8].

Dillon et al. concluded that slow-healing of neuropathic ulcers was associated with a loss of cho-

linergic nerve function, that cholinergic stimulation will increase capillary blood flow and indi-
rectly suggested that improved blood flow to the neural supply of the region may have an overall 
beneficial effect to the insulted tissue [9]. In 1997 the same group advanced their work to conclude 

that peripheral blood flow is inversely related to the degree of peripheral neuropathy [10].

3.1.3. Obstructive sleep apnea and oxidative stress

The role of oxidative stress in the pathogenesis of diabetic peripheral neuropathy as it was 

related to obstructive sleep apnea was studied. There was a 65% incidence of OSA in diabetic 
patient with DPN. In patients with diabetes and OSA, there was a prevalence of 60% of dia-

betic peripheral neuropathy. However, in diabetic patients without OSA, the prevalence was 
27% of diabetic peripheral neuropathy (p < 0.001) [11]. A theory for the precise mechanism of 

this correlation was not discussed.

3.1.4. Role of angiotensin

Angiotensin-converting enzyme was considered as early as 1998 as playing a role in the 

treatment of human diabetic neuropathy in a randomized trial. In this work 41 patients with 

normotension, “mild” diabetic neuropathy and a diagnosis of type I or type II diabetes were 
placed in the randomized double-blind placebo-controlled trial. Assessments of treatment 

efficacy were made using the endpoint of neuropathic symptoms, deficit scores, vibratory 
perception threshold, peripheral-nerve electrophysiology, and cardiovascular autonomic 

function at 6 and 12 months of treatment with the primary endpoint of change in peroneal 
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motor nerve conduction velocity. The study revealed a significant increase in peroneal motor 
nerve conduction velocity, M-wave amplitude and sural nerve action potential amplitude 

(p = 0.03). However vibration-perception threshold, autonomic function and the symptoms 
of neuropathy and deficit score showed no improvement in either group. Yet the question 
remains whether neural functional impairment can ultimately lead to symptomatic improve-

ment and further clinical study is needed to make this determination [12].

3.1.5. Glycochelates and transition metals

The role of transition metals was argued in a review article by Qian et al. in 2000. They presented 
data that heavily glycated proteins known to accumulate in individuals suffering from diabetes 
gain an increased affinity for transition metals such as iron and copper. This affinity results in the 
accumulation of bound metal by elastin and collagen within the arterial wall. The bound metal is 

believed to cause the catalytic destruction of endothelium-derived releasing factor (nitric oxide 
or a nitric oxide derivative). The loss of vasodilatory ability (or chronic vasoconstriction) impairs 
blood to peripheral nerves with resultant deprivation of oxygen and critical nutrients. The 

authors cite initial studies that suggest the administration of chelators such as desferrioxamine 

may prevent or reverse slower peripheral nerve conduction and neuronal blood flow [13].

3.1.6. Endothelial control of microcirculation

The role of endothelium-dependent and endothelium-independent microvasodilation and 

their relationships to neural microcirculatory control was examined in type I and type II dia-

betic patients by Kilo et al., in 2000. They used iontophoresed acetylcholine and nitroprusside 

studied in a dose–response technique to elicit C-fiber mediated vasodilation. As expected, 
endothelium-dependent vasodilation of the cutaneous microcirculation was attenuated in 
type II diabetic subjects vs. control; however there was no significant difference between the 
endothelium-dependent vasodilation in type I diabetics vs. controls. There was no difference 
between either diabetic group (type I or type II) regarding endothelium-independent vaso-

dilation. They also found that the C-fiber- mediated axon reflex was impaired in both type I 
and type II diabetics, which the group stated was consistent with a small fiber neuropathy. 
The study led to the conclusion that endothelial function and nitric oxide play a significant 
role in the pathogenesis of peripheral neuropathy in type II diabetic patients and that this 

disease process is the result in part of significant C-fiber impairment. Again, the function of 
C-fibers, the neural component of peri-neural hemodynamics, and the peri-neural chemical 
milieu may begin to suggest a common pathway for the perfusion of peripheral nerves and 

the development of peripheral neuropathy [14].

3.1.7. Axon reflex vasodilation

Axon reflex vasodilation was induced by histamine iontophoresis to assess cutaneous affer-

ent C-fiber function in a diabetic human model. In 2000, Schuller et al. used this approach 
to measure cutaneous vasoconstrictor responses. The group also used two other neurophysi-

ological methods to assess small nerve fiber function in patients with non-diabetic peripheral 
neuropathy: heart rate variation tests to assess cardiac parasympathetic small fiber function, 
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and cutaneous vasoconstrictor response (sympathetic C fibers) induced by deep inspiration 
measured by laser Doppler flowmetry. Based on the study results the authors implied that 
functionally different systems (parasympathetic, sympathetic, and sudomotor) may be affected 
separately and can and should be tested separately. This consideration may be of use in con-

structing experimental human models to test various neuropathy treatment interventions [15].

3.1.8. Genetic therapy of diabetic neuropathy

Reversal of experimental diabetic neuropathy in a murine model induced by two different tech-

niques was explored by Schratzberger et al. in 2001. Both streptozotocin- and alloxan-induced 
diabetes models were employed and nerve blood flow was assessed by laser Doppler imaging 
or direct detection of a locally administered fluorescent lectin. In both models intramuscular 
gene transfer of plasmid DNA encoding VEGF-1 or VEGF-2 resulted in increases in vascularity 
and nerve blood flow to levels found in control animals. The group also reported that constitu-

tive over expression of both transgenes resulted in restoration of large and small fiber periph-

eral nerve function as measured by motor and sensory nerve conduction velocities. Similar 

findings in a lapine model are also reported. There is accumulating evidence, then, that genetic 
therapy may have a role in the treatment of peripheral neuropathy of diabetic origin. Unlike the 

observed efficacy of this gene therapy in chemotherapy-induced neuropathy considerations 
for induction of related angiogenesis would not be a factor in the decision to institute plasmid 

DNA therapy; however a concern for possible retinal angiogenesis and a question of initiating 
or worsening diabetic retinopathy may be a concern. In this regard further research is needed 

first to assess the associated angiogenicity of this treatment in animals and second to establish 
whether any benefit of the therapy can be extrapolated to a human model [16].

3.1.9. Protein kinase

Protein kinase inhibition was examined in a work by Casselini. In this study they reported 

that over-activation of the enzyme and microvascular dysfunction resulted in the disordered 

skin changes observed in diabetic peripheral neuropathy. Their study concluded that in 

patients with DPN ruboxistaurin-enhanced skin blood flow at the distal calf reduced sensory 
symptoms and improved quality of life (QoL) as measured by the Norfolk QoL-DN [17].

The role of inhibition of protein kinase C (PKC) in the study of experimental diabetes in a 
human model was discussed by Sasase et al. 2006. Specifically they emphasize the effects of 
hyperglycemia-induced PKC activation and the subsequent altered hemodynamics, angio-

genesis, vasoconstriction, endothelial permeability, cell growth, cytokine activation and leu-

kocyte adhesion. Their discussion asserts that PKCβ inhibitors were well-tolerated in clinical 
trials and that this inhibition may therefore represent a promising approach to the treatment 

of diabetic complications [18].

3.1.10. Nitrosative stress

The nitrosative stress argument was further discussed in a 2007 paper by Obrosova et al. In 
this work they found that streptozotocin-induced diabetic rats that were maintained with the 
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peroxynitrite decomposition catalyst FP15 exhibited a dose-dependently corrected improvement 
in the neuropathic disorders that occurred secondary to experimental diabetes. These disorders 

were sensory and motor nerve deficits; mechanical hyperalgesia, and tactile allodynia in the 
absence of small sensory nerve fiber degeneration. FP15 was also found to correct endoneurial 
nutritive blood flow and nitrotyrosine fluorescence in aorta and epineurial arterioles, indicating 
that it helped maintain vessel integrity. In addition FP15 alleviated diabetes-induced decreases 
in acetylcholine-mediated relaxation of coronary and mesenteric arteries. The findings iterate the 
significance of nitrosative stress in the development of neuropathy as well as vasculopathy and 
suggest that further studies of PDCs in the treatment of experimental diabetes are needed [19].

The role of peroxynitrite-mediated nitrosative stress in the development of diabetic neuropa-

thy was studied in a murine model by Negi et al. in 2010 [20]. In this work the effect of a 
combination of peroxynitrite decomposition catalyst (PDC), FeTMPyP [21], and a poly (ADP-
ribose) polymerase (PARP) – a nuclear enzyme activated after detection of DNA damage- 
inhibitor [22]. The rationale for the use of the PARP inhibitor was the role that overactivation 

of this enzyme is believed to play in the development of diabetic neuropathy [23]. The group 

studied the following endpoints: motor conduction velocity and nerve blood flow for evalu-

ating neural function; malondialdehyde and peroxynitrite levels to detect oxidative stress-

nitrosative stress; and NAD concentration in sciatic nerve to assess NAD overproduction of 
PARP. Treatment with combination of FeTMPyP and 4-ANI led to improvement in neural 

function and also attenuated the oxidative-nitrosative stress markers. The combination also 
reduced the overactivation of PARP which was demonstrated by increased levels of NAD and 
by the demonstration of decreased PAR immunopositivity in sciatic nerve microsections. The 

authors concluded that treatment with a combination of a PDC and a PARP inhibitor attenu-

ates alterations in peripheral nerves in experimental diabetic neuropathy.

3.1.11. Resistin

Serum levels of the adipokine resistin were shown to correlate with systolic blood pressure, 

diastolic blood pressure and epithelium (ET); and to negatively correlate with nitric oxide. 
More recently [25] resistin was shown to actively induce hypertension and insulin resistance 

in wild type mice believed to occur by the upregulation of angiotensin (Agt) toll-like receptor 
4 expression. In toll-like receptor 4 (tlr4) negative mice or in mice treated with the angiotensin-
converting enzyme inhibitor, perindopril resistin had no effect. The authors concluded from this 
that resistin activates the renin- NF angiotensin system via the TLR4/P65-NFKB subunit/Agt  
pathway which links insulin resistance to hypertension. The higher serum resistin levels in 

patients with diabetic neuropathy vs. diabetics without peripheral neuropathy suggests that 

resistin may play a role in the pathogenesis of type II diabetes and diabetic peripheral neu-

ropathy. The question is also raised regarding whether hypertension secondary to resistin is 
a causative factor in this neuropathy (Figure 2) [24, 25].

3.1.12. Endothelial dysfunction

The relationship between endothelial and neutral control of skin blood flow (SkBF) in patients 
with diabetic peripheral neuropathy was studied by Brooks et al. in 2008 [27]. It is worth 

noting here that in this study, which examined the effect of the isoform protein kinase C 
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inhibitor ruboxistaurin (which has been shown to slow or reverse the progression of diabetic 
neuropathy) [26]; the group found that while RBX had no direct effect of skin blood flow they 
did find correlation between C-fiber mediated and endothelium-dependent skin blood flow 
at baseline. The importance of this finding was that it suggested that improving endothelial 
function could positively affect microcirculation via the neurovascular arcade [27]. Zakareia 

et al. in 2008 concluded that the rise in vascular endothelial growth factor (VEGF) in diabetic 
neuropathy may be protective and preserve neural blood flow, and that the significant rise in 
soluble fatty acids may be causative in the advancement of neuropathy [28].

Pek et al. in 2015 further studied the relationship between endothelial dysfunction and arterial 
stiffness and diabetic neuropathy [29]. This group collected data on blood chemistry, arte-

rial stiffness by carotid-femoral pulse wave velocity (PWV) and endothelial function by laser 
Doppler flowmetry. The group recruited 2054 patients 2014 of whom met the criteria for a 
diagnosis of diabetic peripheral neuropathy (DPN). The presence of DPN in this work was 
defined as either impaired light touch sensation tested using the 10 g monofilament (<7/10 
on either foot) or a neurothesiometer (which compares vibration perception thresholds) 
(Young, 1993) reading of ≥25 V. Patients with DPN were significantly older (60.1 ± 9.9 vs. 

Figure 2. Perindopril blocks the action of resistin. (A) BP in wild-type mice pre-treated with perindopril (Peri). BP was 
measured before resistin treatment (day 0, D0) and after 6 days of resistin treatment (day 6, D6); (B) plasma glucose 
levels in mice exposed to different treatments; (C) Agt and (D) p65 expression in mice exposed to different treatments 
and in different mouse lines; (E) binding of p65 to the Agt promoter was determined by chromatin immunoprecipitation. 
The resistin group (Retn) was injected with 400 ng/day resistin; while the control group was injected with PBS (control-
vehicle). Perindopril (5 mg/kg/day) was administered orally for 7 days (animals were treated as described in Materials 
and Methods). Data are presented as mean ± SD (n = 8). *p < 0.05, **p < 0.01 (adapted from Jiang et al.. [25]).
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57 ± 10.8 years); had a longer duration of diabetes (15.8 ± 10.0 vs. 10.9 ± 8.6 years); had a higher 
systolic blood pressure (146 ± 20.6 vs. 137.6 ± 18.7 mmHg); and a higher pulse wave velocity 
(11.5 ± 3.5 vs. 9.5 ± 2.7 m/s); poorer endothelium-dependent vasodilation (73.4 (33.9–141.3) vs. 
105.7 (51.2–175)%); and poorer endothelium-independent vasodilation (54.6 (31.2–80.6) vs. 
68.3 (38.2–108.2)%).

These findings contribute to the argument that hypertension and poor vascular compliance 
are risk factors for peripheral neuropathy in clinical diabetes. It should be noted that it may 

prove an ever more daunting task to extrapolate findings from non-human, experimental 
diabetic neuropathy models to the human disease process.

3.1.13. Sodium-hydrogen exchanger

In 2013, Lupaychyk et al. examined the neuropathic endpoints of motor and sensory nerve con-

duction velocities in sciatic motor and sensory nerves, endoneurial nutritive blood flow, vascu-

lar reactivity of epineurial arterioles, thermal nociception tactile allodynia and intraepidermal 

nerve fiber density in a streptozotocin-diabetic murine model following administration of cari-
poride. The Na+/H+ exchanger-1 inhibitor partially reversed the diabetes induced motor and sen-

sory nerve conducting deficits; thermal hyperalgesia; tactile allodynia and intraepidermal nerve 
fiber loss. Cariporide was also associated with reduction of diabetes-induced accumulation of 
advanced glycation end-product, oxidative stress and nitrated proteins in the sciatic nerve. The 

study did not proffer a mechanism for the action of the drug in this role; however NHE activa-

tion has been known to result in calcium overload in some cell types while inhibition of NHE 

appears to prevent reperfusion injury. Of particular interest with the use of this class of drugs, is 
their potent scavenging capacity of oxidizing free radicals which can proceed to damage many 

cellular components including phospholipid A- containing cellular membranes [30–32].

3.1.14. Puerarin

The effect of the isoflavone, Puerarin, was assessed in a review by Wu et al. in 2014. The evalu-

ation of relatively low quality studies involving 1664 via meta-analysis showed that Puerarin 
injection combined with western medications was more effective than conventional therapy 
for diabetic peripheral neuropathy in terms of nerve conduction velocity and hemorheologic 

index. Although suggested by the review: it is not specifically indicated that pressure depen-

dent neurovascular blood flow correlates with symptomatic improvement through use of this 
vasodilator [33].

3.2. Rheumatoid disease

The existence of neuropathic pain in rheumatic disease has been described in the literature. 

Most of these discussions have involved rheumatoid arthritis, systematic lupus erythemato-

sus and systemic vasculitis, and the incidences of neuropathic pain in these populations have 

been limited. In variants of rheumatoid disease with cryoglobulinemia there have been more 

frequent reports. Ferri et al. evaluated the prevalence of neuropathy in 33 unselected patients 
with mixed cryoglobulinemia (age 45–71, 25 female). Using electrophysiologic assessment 
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including sensory nerve conduction velocities in combination with F wave (or the second of 
two voltages observed following electrical impulses applied to the distal aspect of a sensory 

nerve distribution) and H-reflexes (the reaction of the associated musculature following the 
application of an electrical stimulus to the distal region of a sensory nerve) [34]; they were able 

to detect neuropathy in 82% of subjects. They determined that F-wave alterations specifically 
were the most reliable technique to determine neurologic involvement. They then found a 
strong correlation with significantly elevated Cryocrit levels in patients with F-wave altera-

tions (p < 0.008) and determined that hemorheological abnormalities seem to contribute to the 
pathogenesis of nerve injury [35].

3.3. Systemic lupus

Capillaroscopic evaluation was used to assess the association between Raynaud’s phenom-

enon (RP) and systemic lupus erythematosus (SLE). In this work Pavlov-Dolijano et al. stud-

ied 79 total patients who suffered from SLE [36]. Forty four of them (43 women) with RP, 
and 35 (32 women) matched for age, sex, and disease duration with SLE without RP were 
studied. Central nervous system involvement and peripheral neuropathy were significantly 
more common in SLE patients with RP while Sjogren’s syndrome was more common in SLE 
patients without RP. Of particular note was that enlarged capillaries (p = 0.0482), presence 
of avascular areas (p = 0.0476) and granular blood flow (p = 0.0482) were more common in 
patients with SLE who also suffered from RP, than in patients with SLE without RP.

In this work there is no causative relationship neuropathy and SLE with RP proffered, but it 
is a curious finding that micro-vascular dysfunction occurred in close correlation with neuro-

pathic symptomatology.

3.4. Inflammatory enteropathies

Celiac disease is a chronic inflammatory enteropathy that has an associated neurologic disease 
in about 10% of all cases. These include psychiatric illness dementia, seizures, ataxia, but most 

often peripheral neuropathy. In this syndrome it is the celiac disease that may remain subclini-

cal and it is the neuropathy that is the prominent clinical presentation. In this work nerve biopsy 

studies revealed loss of large diameter myelinated fibers, regenerative clusters of myelinated 
nerve fibers and a few isolated thinly myelinated fibers. There were no indications in the work 
that hemodynamic influences affected the development of the related neuropathy [37].

In 2005, Gibbons et al. presented a case series in which they described four patients who 
presented with presyncope and postural nausea. They stated that the four patients had biopsy 

proven celiac disease with dysautonomia present on autonomic evaluation, iterating the like-

lihood of neuropathy, autonomic or otherwise, being a possible presenting sign in patients 

with coeliac disease. Indeed the group stated that the patients comprised 2.4% of patients 

referred for autonomic testing in one yea. While this is greater than the reported prevalence 
of celiac disease in the United States of 0.71% (1 in 144) [38], it is consistent with the reported 

incidence found in peripheral neuropathy [37]. The relationship of hemodynamic alterations 

upon celiac disease- related neuropathy, as in the above work, remains unstudied.
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3.5. Cobalamin deficiency-related neuropathy

Beitzke et al. investigated hemodynamic and autonomic nervous system dysfunction in 
patients with cobalamin deficiency, comparing autonomic responses to 60° passive head up 
tilting in controls vs. patients with the deficiency. Their work revealed that in the experi-
mental or cobalamin deficient group, there was a significant fall in systolic blood pressure, a 
blunted fall of stroke index and cardiac index; and a lack of increase of total peripheral resis-

tance. The results suggested that vitamin B
12

 deficiency causes autonomic dysfunction which 
may the cause for orthostatic hypotension [39]. In this description the causal or contributory 

mechanism is not definitive since any role blood pressure changes may have upon the initial 
development of the neuropathy is not asserted.

3.6. Transient receptor potential cation channel subfamily V and substance P 

receptor

In 2011, Fangyan et al. investigated the cardioprotection of methylcobalamin therapy against 

ischemia/reperfusion injury in isolated hearts of diabetic mice and the involvement of the 

transient receptor potential cation channel subfamily V (TRPV1). In their work they exam-

ined two models: the intact animal; and isolated hearts from streptozotocin (STZ)-induced 
diabetic murine models. In the isolated heart model they measured hemodynamic param-

eters and release of lactate dehydrogenase (LDH), calcitonin gene-related peptide (CGRP) 
and substance P (SP) in coronary effluent during reperfusion. The study revealed that in the 
isolated heart preparations the DM hearts that had received the methylcobalamin regimen 
yielded higher concentrations of SP in the coronary effluent (p < 0.01); higher expression of 
TRPV1 (p < 0.01); and higher expression of substance P receptor (SPR) in myocardium diges-

tates. Normal hearts also yielded higher release of CGRP and SP in the effluent as well as 
higher expression of myocardial TRPV1, calcitonin receptor-like receptor (CRLR) and SPR 
than in DM preparations. They concluded that the cardioprotective effect of Methylcobalamin 
therapy in isolated DM murine hearts is related to the expression of TRPV1 and SPR [40].

3.7. Nerve and axonal regeneration

In murine models methylcobalamin has been shown to have central neuronal protection capa-

bilities which include the promotion of injured nerve and axonal regeneration and protection of 

glutamate induced neurotoxicity [41–43]. However no direct relationship between peripheral 

neuropathy, hypotensive-ischemia, and glutamate has been studied to date. It has been specu-

lated that in certain neuronal subpopulations such as hippocampal field CA-1 and neocortical 
layers 3, 5, and 6 which are characteristically destroyed after sub-maximal hypoxic–ischemic 
exposure that central neurotoxicity is the result of the endogenous exertion amino acid neu-

rotransmitter, glutamate, released into the extracellular space. Whether this is a mechanism of 
neuronal protection in the periphery is unknown. Glutamate in the periphery has been shown 
to be important for sensory input transduction particularly along nociceptive pathways [44]. 

Complete characterization of the glutamatergic system in the peripheral nervous system is 

necessary, and its changes under varying pathological conditions are necessary. Clearly stud-

ies of any protective effects of Mecobalamin in the periphery need to be conducted before 
speculation upon any directed therapeutic intervention with methylcobalamin can be used.
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3.8. Alcohol

3.8.1. Cardiac autonomic neuropathy and peripheral neuropathy

The link between alcohol and peripheral neuropathy has been described as recently as 2010, 

but the 1998 work by Agelink et al., emphasized the occurrence of autonomic neuropathy, 

and in particular a cardiac autonomic neuropathy (CAN) associated with chronic alcohol-
ism [45]. This alcoholic CAN was also statistically significantly associated with peripheral 
neuropathy to the extent that the group reported that no evidence of CAN was found without 

a concomitant, clinically manifest peripheral neuropathy. The group also reported that the 

neuropathy was likely related to the total lifetime dose of alcohol as well as the duration of 

alcohol dependence; and that these components were the most important factors contributing 

to the pathogenesis of both the autonomic as well as the peripheral components of the disease. 

No distinct relationship of hypertension to the peripheral neuropathy per se was reported by 

any of these groups. Ayad et al. did assert, however, that the cardiac neuropathy/hyperten-

sion profile was consistent with a deleterious effect on vascular hemodynamics and structure 
[46]. This might suggest impairment of the microvasculature as a possible mechanism of 

nerve injury and subsequent peripheral, neuropathic processes.

3.9. Hypertension/hypotension (blood flow)

3.9.1. Hemodynamic correlates

Regarding hemodynamic correlates of blood pressure and neuropathy, Cho et al. referred to 

a cross-sectional study of age-associated peripheral neuropathy (AAPN) in which they deter-

mined that a history of hypertension was protective. In the work they designed, they collected 

baseline data from 584 patients in a longitudinal study of primary care patients 65 years of 
age and older. The patients were selected on the basis of having none of the 10 medical condi-

tions known to cause peripheral neuropathy. The patients were assessed for any associations 

between peripheral neuropathy by examination and the following criteria: history of hyper-

tension, number of anti-hypertensive medications, systolic blood pressure, diastolic blood 

pressure, pulse pressure and orthostatic hypotension. The group concluded that the negative 

correlation between hypertension and AAAPN was unexplainable. They noted that the posi-

tive association between pulse pressure and neuropathy in diabetic subjects supported findings 
from earlier studies and suggested AAPN and diabetic neuropathy may be distinct entities [47].

3.9.2. Cuban epidemic neuropathy

In a 1999 report, the Cuban epidemic neuropathy (CEN) outbreak which occurred from fol-
lowing an outbreak from January 1, 1992 through January 14, 1994 was described. During this 
health crisis, 50,862 Cuban residents were affected. The neuropathy included an optic form 
as well as a peripheral form with both types characterized by weight loss and easy fatigabil-

ity [48]. In 2002, Gutierrez et al. studied autonomic cardiovascular reflexes in patients with 
CEN. They found that affected patients had significantly less heart rate variability during 
paced breathing. They reported that this suggested reduced cardiac parasympathetic innerva-

tion. While this study examined blood pressure changes in the setting of peripheral neuropa-

thy no causative or influential relationship between the two was described [49].
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3.9.3. Chronic venous insufficiency

Chronic venous insufficiency (CVI) as a correlate of peripheral neuropathy was examined in a 
2000 study by Reinhardt et al. [50] This group compared 30 patients with CVI and 20 healthy 

controls using motor and sensory nerve conduction studies, vibration testing and thermotest-

ing, the quantitative, sudomotor axon-reflex test, and Doppler flowmetry. In the CVI group 
distal motor latency of the peroneal nerve was prolonged (p = 0.02); there were increased lim-

its for warm (p = 0.016) and cold detection (p = 0.016); and there was reduced vibration sense 
(p = 0.008). The group goes on to state that the results demonstrate a disturbance of A-alpha, 
A-beta, and A-delta fibers; as well as thermoafferent C-fibers. The mechanism of these dis-

orders, they assert, is neural ischemia caused by a venous microangiopathy and increased 

endoneurial pressure.

3.9.4. Ischemic monomelic neuropathy

The relationship between chronic and critical leg ischemia was studied by Weinberg, et al. 
Nineteen patients suffering from chronic and critical leg ischemia were studied [51]. All patients 

experienced pain only 16% (3) were completely free of neuropathic symptoms. They concluded 
that there is a predominantly sensory neuropathy associated with chronic and critical limb isch-

emia, that measures of blood loss correlate with neurologic symptom scores and the suggest 

that the underlying pathophysiology is a distal axonopathy affecting nerve fibers of all sizes. 
This study implicates a perfusion dependent neuropathic pathogenesis exist in this syndrome.

3.9.5. Sympathetic denervation

The role of regional blood flow was further emphasized in a study that examined whether pain-

ful diabetic neuropathy is associated with abnormal sympathetic nervous function in affected 
limbs. Positron emission tomography (PET) scanning was used after intravenous injection of 
the sympathoneural imaging agent 6-[(18)F]-fluorodopamine to visualize sympathetic inner-

vation and [(13)N]-ammonia to visualize local perfusion. Compared with non-neuropathic 
patients and diabetic patients with unilateral neuropathy in whom comparisons were made 

between the involved limb and the non-involved limb, PET scanning revealed decreased flow-
corrected 6-[(18)F]- fluorodopamine derived radioactivity in patients with painful diabetic 
neuropathy as well evidence suggesting partial loss of sympathetic innervation [52].

The role of hypertension in the development of peripheral neuropathy was studied by Gregory 
et al. in 2012. They asserted that current rodent models did not adequately replicate all patho-

logical features of diabetic neuropathy. Based upon this assertion they tested the hypothesis 

that combining hypertension with insulin-deficient diabetes produces a more pertinent model 
of peripheral neuropathy. In their work behavioral, physiological and structural indices of neu-

ropathy were measured for up to 6 months in spontaneously hypertensive and age-matched 

normotensive rats with or without concurrent streptozotocin-induced diabetes. They found 

that hypertensive rats developed nerve ischemia thermal hyperalgesia nerve conduction slow-

ing and axonal atrophy. In addition they observed the presence of thinly myelinated fibers with 
supernumerary Schwann cells which occur during cycles of degradation and production of 

myelin. The group also noted reduced levels of myelin basic protein. In streptozotocin-induced 
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diabetic rats similar findings were noted save for the absence of thinly myelinated fibers and the 
fact that there were normal levels of myelin basic protein [53]. Hence in the murine model, at 

least in the presence of diabetes, hypertension is not associated with a protective effect against 
the development of peripheral neuropathy seen in at least one human study [47].

3.9.6. Alpha lipoic acid

In an important work written in 2000, Haak et al. studied the beneficial effects of alpha-lipoic 
acid (ALA) is known to have on diabetic polyneuropathy. The work focused upon the effect 
of ALA on microcirculation in patients with diabetes mellitus and peripheral neuropathy. 
Two groups were compared: eight patients (age 60 ± 3 years) with diabetes of 19 ± 4 years 
who received a 6 week course of ALA, 1200 mg each day orally; and a second group of nine 
patients (age 65 ± 3 years) with diabetes of 14 ± 4 years duration. The groups had similar sex 
(~50%) and BMI (24.8 ± 1.3−23.6 ± 0.7 kg/m2) distributions. The second group was studied 
before and after they had received 600 mg ALA or placebo intravenously over 15 minutes 
in order to investigate whether ALA has an acute effect on microcirculation. Capillary blood 
cell velocity was examined at rest and during post reactive hyperemia. They found that the 

oral ALA group showed a significant decrease in the time to peak capillary blood cell veloc-

ity (tpCBV). The intravenous infusion of ALA also decreased the tpCBV in patients with 
diabetic neuropathy. The group determined that in patients with diabetic polyneuropathy 

ALA improves microcirculation via an increased perfusion reserve. They asserted that their 
improvement in the symptoms of diabetic polyneuropathy may be occurring by virtue of 

improvements in microcirculatory blood flow at the level of the vasa nervorum [54].

3.9.7. Hypertension vs. hypotension

In a 2005 study Jarmuzewska et al. sought to determine which component of the blood pres-

sure is responsible for a perceived link between hypertension and sensorimotor peripheral 

neuropathy [55]. To examine this relationship they took 55 consecutive outpatients with 
type II diabetes and measured blood pressure and 10 neurophysiological parameters: nerve 

conduction velocity at the median, ulnar, posterior tibial, and peroneal nerves; and sensory 

amplitude (AMP) and latency (LAT) at the median, ulnar and sural nerve. The results of this 
analysis showed that age, diabetes duration, systolic blood pressure and pulse pressure are 

negatively correlated with nerve function. Their regression analysis showed that after correc-

tion for age, disease duration, glycated hemoglobin, BMI, microalbuminuria, and SBP: PP was 

independently and negatively associated with nerve conduction and signal AMP; and posi-

tively correlated LAT. At least two considerations raised with this work: first there is no sug-

gestion of any mechanistic relationship with the neurophysiologic changes and, second, there 

is presentation of the strength of the correlation between the acquired data and any regression 
line, i.e. R2, despite the group reporting on what the analysis showed. The approach in the 

study, however, was important in that it specifically delineated quantifiable component s of 
nerve function that should be used in clinical models for future works on the relationship of 

flow and pressure dynamics on the development of neuropathic processes.

The relationship between hypotension and sensory motor peripheral diabetic neuropathy 

was further studied in a 2007 work by this same group [56]. Here they studied the connection 
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between cardiovascular risk factors, parameters of metabolic control and the presence of sen-

sorimotor peripheral neuropathy. They examine blood pressure, glycated hemoglobin, lipid 

profile, and the presence of micro- and macro-vascular complications in 31 consecutive outpa-

tients with type II diabetes age 60.7 ± 7.5 who had been diagnosed within 10 years of the study. 
Their work revealed that the prevalence of hypertension- defined as a blood pressure ≥ 140/90- 
was higher in sensorimotor peripheral diabetic neuropathy-positive patients. They went a step 

further and performed regression analysis on the date which revealed that after correction for 

age, gender, disease duration, glycated hemoglobin and serum lipids there was a correlation 

between hypertension and sensorimotor diabetic peripheral neuropathy. The group states that 

there is a strong association between hypertension and sensorimotor diabetic peripheral neu-

ropathy but they report an R2 – or the statistical measure of how close the data are to the fitted 
regression line- of 0.17 (17%), In other words the model explains relatively little of the variabil-
ity of the data about the mean or the incidence of sensorimotor diabetic peripheral neuropathy. 

In this light the question of the relationship of hypertension with peripheral neuropathy, at 
least in the setting of type II diabetes remains equivocal. This is especially so in comparison to 
at least one study in non-diabetic patients which indicates that hypertension may be protective 

against the development of peripheral neuropathy [47]. In addition any question of a causal 
mechanism between hypertension and peripheral neuropathy remains unanswered.

Another attempt to correlate hemodynamics with peripheral neuropathy sought to use brachial-
ankle pulse wave velocity, which is considered to be a valid marker of clinical atherosclerosis. 

The brachial-ankle pulse wave velocity is a measure of arterial stiffness and can be measured 
by peripheral tonometry, Doppler ultrasound and catheter tip manometry. Park et al. assessed 
692 patients with type II diabetes (314 men, 376 women) with a mean age of 56.9 ± 10.9 years 
and a mean duration of diabetes of 7.9 ± 6.3 years [57]. The group chose the endpoints of neu-

ropathic pain intensity on the numeric visual analog scale, the neurological assessment using 

ankle reflexes and the 10 g monofilament test; and the brachial-ankle pressure wave velocity. 
They found a positive correlation between the presence of peripheral neuropathy and maximal 

baPWV (r = 0.127, p < 0.001). After applying the independent t test the group then reported that 
the patients with peripheral neuropathy had higher maximal baPWV, systolic blood pressure, 
subject number of female sex; and older age compared with controls.

The role of hypertension in the development of peripheral neuropathy was not necessar-

ily clarified in this work as the authors offered no such explanation, however the existence 
of peripheral artery disease as measured by baPWV and neuropathy raises the question of 
whether similar compliance changes occur in the microvasculature and specifically impact 
perfusion of peripheral nerves via the vasa nervorum.

The relationship between hypertension and diabetic peripheral neuropathy remains unclear 

and a consistent correlation (either positive or negative) between the two entities is yet to 
be found in the literature. Ozaki et al. in 2016 used a murine model to further examine this 
question [58]. Specifically their goal was to analyze the effects of hypertension on diabetic neu-

ropathy. They studied morphologic features of peripheral nerves in rats with hypertension. 

They divided Male rats into two groups: alloxan-induced diabetic rats who received deoxy-

corticosterone acetate salt (DOCAS-salt) and non-diabetic rats who also received DOCA-salt. 
Sciatic, tibial (motor) and sural (sensory) nerves were then studied histomorphologically. 
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Systolic blood pressure was maintained above 140 mmHg in both groups and endoneurial ves-

sels in both groups showed endothelial hypertrophy and vessel lumen narrowing (Figure 3). 
However electron microscopic analysis revealed duplication of the basal lamina surrounding 

the endothelium and pericytes of the endoneurial vessels, a lesion the group stated that was 

more frequent and severe in the diabetic group (Figure 4). They also reported that on mor-

phometric analysis of the tibial nerve there was a shift to smaller fiber and myelin sizes in the 
diabetic group than in the control group (Figure 3).

3.9.8. Superoxides

The role of superoxides in relationship to peripheral nerve damage caused by microvascular 

dysfunction in a murine model was examined in an important work by Jin et al. in 2012 

[59]. In this study the group examined the effect of the sulfated polysaccharide complex sulo-

dexide. This drug is known to induce acceleration of spontaneous fibrinolysis-thrombolysis 
of preformed thrombi [34]; to inhibit leukocyte activation and endothelial adherence [60] 

Figure 3. Representative sections of sural nerve in the control (A) and diabetic (B) groups. The small- sized myelinated 
fibers are increased in the diabetic group (arrows). Endoneurial fibrosis is observed in both groups (adapted from Ozaki 
et al. [58]).

Hemodynamic Considerations in the Pathophysiology of Peripheral Neuropathy
http://dx.doi.org/10.5772/intechopen.75872

59



Figure 4. Representative sections of sciatic nerve in the diabetic (ADN) and control groups (DN). (A, B) in endoneurial 
vessels (white arrows), narrowing of the lumen with endothelial hypertrophy is observed in both groups. Both nerves 
show edema (black arrow) and fibrosis (arrowhead) in the endoneurium. (C, D) Electron microscopically, duplication of 
the basal lamina (arrows) surrounding the endothelium and pericytes of endoneurial vessels is seen in the ADN group. 
Many collagen fibers are also present around the vessels of both groups. (E, F) high magnification of Figure 2 (C, D) has 
been performed. Duplicated basal laminae (arrows) of the diabetic group are also seen between collagen fibers, but in 
the DN group, edema is observed among collagen fibers (adapted from Ozaki et al. [58]).

and to protect endothelial integrity in the microcirculation [61]. The group divided female 

Sprague–Dawley rats into four groups normal, normal + SDX; DM; DM + SDX. They found 
that superoxide dismutase activity in the blood and sciatic nerve were increased significantly 
after sulodexide treatment. They also found that electrical current perception threshold was 

reduced, and that skin blood flow was improved in the DM + SDX group compared to the DM 
group (p < 0.005). They also found that that the mean myelinated axon area was significantly 
larger in the DM + SDX group vs. the DM group. The results of this work suggest not only 
the beneficial role of SDX in treating the peripheral neuropathy of DM but also that the drug 
may be useful in neuropathies of other origins. The work also supports the possible role of 

microneurovascular dynamics in the development of the disease.

3.9.9. Alpha adrenoceptor agonists

Small fiber neuropathy in diabetic patients treated with alpha-adrenergic agonists was the sub-

ject of a study by Schmiedel et al. in 2008 [62]. The emphasis of this work was on the impairment 
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of 0.1 Hz microvascular vasomotor. It tested the hypothesis that dermal vasoconstriction- 

induced microvascular oscillations are reduced in diabetic patients with peripheral and/or auto-

nomic neuropath; and whether this method could be used as a non-invasive surrogate marker 

to assess diabetic small fiber neuropathy. The work examined four matched groups: diabetic 
patients without neuropathy; with peripheral neuropathy; with peripheral and autonomic neu-

ropathy; and non-diabetic controls. Following iontophoretic administration of phenylephrine 

0.1 Hz oscillations recorded at the foot were significantly attenuated in diabetic patients with 
peripheral and/or autonomic neuropathy compared to diabetic patients without peripheral 

neuropathy. Oscillation measures correlated significantly with all markers of peripheral neu-

ropathy (p < 0.001) but not with markers of microvascular endothelial function of metabolic 
syndrome markers. In a logistic regression model, reduced microvascular oscillations at the foot 

were a strong predictor for the presence of peripheral neuropathy.

The findings of this work suggest that attenuation of oscillations, an indicator of vascular 
compliance, is reduced in the presence of diabetic neuropathy. The question then arises: is 
there a loss of such compliance in other or all described peripheral neuropathies. These stud-

ies are yet to be performed.

3.10. Uremia

Peripheral neuropathy in chronic kidney disease (CKD) or uremic neuropathy affects 90% of 
CKD patients [63]. There are multiple causes of CKD, the majority of which result from primary 
renal disorders. Among the CKD variants that occur as a complication of systemic disease, dia-

betes mellitus is the most common cause worldwide. It is noteworthy that regardless of the 

cause, patients afflicted with CKD have a high prevalence of neurologic complications. Initial 
work on the disease suggested that uremic neuropathy only occurred when the glomerular fil-
tration rate (GFR) was consistently 12 mL/minutes. Recent studies, however, have demonstrated 
that uremic neuropathy occurs in about 70% of patients prior to their requiring hemodialysis 
[64]. The characteristic symptoms, which include pain, loss of sensation, and weakness, can be 

disabling. Uremic neuropathy commonly affects large motor neurons and sensory fibers. Small 
nerves are commonly involved as well. Early signs and symptoms include distal sensory loss 

and reduced tendon reflexes in the lower extremities. As the neuropathy progresses, the loss of 
sensation extends proximally in the lower extremities. Similar symptoms can occur in the upper 

extremities. In the advanced stages, motor nerves of the lower extremities are affected leading 
to muscle atrophy and resulting weakness. The effects of systemic uremia on peripheral nerves 
can be demonstrated by the generalized decrease in conduction velocity in both motor and 

sensory nerves. This is caused by structural changes along the length of the peripheral nerves. 

In addition to structural changes, there is likely an unknown uremic toxin that is neurotoxic.

Studies have identified several compounds that are now considered to be possible neurotox-

ins. Creatinine, urea, uric acid, guanidine, methyl guanidine, guanidinosuccinic acid, oxalic 

acid, phenols, aromatic hydroxyacids, indicant, amines, myoinositol, beta-2 microglobulin, 

parathyroid hormone, amino acids, and neurotransmitters all fall into this group. None of 
these compounds, however, have moved beyond the speculative consideration and been 

definitively proven to be a cause of peripheral neuropathy.

Recent evidence suggests that hyperkalemia plays a major role in uremia related peripheral 

neuropathy. Hyperkalemia has been shown to cause axonal dysfunction in a dose-dependent 
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manner. This dysfunction can be reversed with the treatment of hyperkalemia suggesting 

that maintaining normal potassium level in CKD patients can help prevent uremic peripheral 
neuropathy [65]. There is no evidence to suggest that normalizing serum potassium levels 

can reverse the peripheral nerve dysfunction in patients with existing uremic peripheral neu-

ropathy at any stage. It is known that uremic toxins are likely to be direct or indirect causes 

of central nervous system neurodegeneration. Uremia indirectly contributes to systemic 

inflammation, endothelial dysfunction and atherosclerosis leading to neurodegeneration 
and cognitive dysfunction. Several compounds including uric acid, indoxyl sulphate, rho-

cresyl sulphate, interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha have been 

suggested as likely contributors to the development of neurodegeneration [66]. Interestingly, 

crystalin-C has recently also been attributed to neurodegeneration through amyloid plaque 
formation [67]. The possible direct causes of neurodegeneration have been mentioned pre-

viously. Intuitively, it is possible to suggest that neurodegeneration directly or indirectly, 

centrally and/or peripherally is multifactorial. It involves multiple causative agents that may 

act either as direct neurotoxins or via the induction of systemic inflammation, endothelial 
dysfunction, and atherosclerosis. Each of these processes may lead to the disruption of pres-

sure-dependent blood flow, and ultimately lead to neuropathy and cell death.

3.11. Chemotherapeutic agents

Chemotherapy-induced peripheral neuropathy (CIPN), as the name implies, occur in oncology 
patients who have been exposed to neurotoxic chemotherapeutic agents. CIPN is debilitating 

and often develops after several treatments in a dose dependent fashion. Interestingly, a few 

of the newer chemotherapeutic agents can cause CIPN in an idiosyncratic way unrelated to the 

accumulated dose of the agents. In a 2007 work Kannarkat et al. reviewed the literature regard-

ing complications of common chemotherapeutic agents and chemotherapeutic agents that had 

been recently developed [68]. While their main emphasis was upon the cognition-impairing 
effects of the therapy they also looked at the occurrence of neuropathic pain with the drug 
Bortezomib which was the first therapeutic proteasome inhibitor to be used in humans. The 
group found that the drug has a propensity toward causing a largely sensory but reversible 

peripheral neuropathy. The group found from the literature that the infusion of magnesium and 

calcium pre- and post- oxaliplatin infusion reduces the neuropathy associated with this specific 
drug but that it may actually interfere with clinical response to oxaliplatin. They stated that no 

other known interventions at the time reduced the incidence or severity of neuropathy related 

to platinum compounds, taxanes (toxoids), or thalidomides. They did suggest that regional 
neural blood flow, DNA damage, mitotic dysfunction, defects in neural repair, and oxidative 
stress may play roles in the effects of chemotherapeutic agents upon the nervous system.

CIPN affects approximately 30 to 40% of patients receiving neurotoxic chemotherapeutic 
agents [69]. Common groups of agents with established associations with CIPN are plati-

num based drugs, vinca alkaloids, taxanes (toxoids), thalidomide, and proteasome inhibitors. 
Cyclophosphamide, methotrexate and immune check point inhibitors have also been reported 

to cause CIPN. CIPN is often caused by primary direct neurotoxic effect on the neurons often 
with a predilection for sensory over motor and autonomic neurons causing anatomic and/or 

physiologic changes. Symptoms are likely amplified by hyper-excitability and central sen-

sitization. The anatomic changes are mainly targeted at the dorsal root ganglion neurons or 
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their axons leading to peripheral sensory loss, ataxia, and pain. A significant exception to this 
mechanistic tendency of chemotherapeutic agents is the likely mechanism by which plati-

num compounds cause neuropathy. This is based upon the fact that, typically, only a sensory 

neuropathic component is observed. Regarding thalidomide and its newer analogues, recent 

evidence of its toxicity pathway suggests that anti-angiogenesis may play a significant role in 
the cause of CIPN. Anti-angiogenesis may not be unique to the thalidomide class but indeed 
may contribute to a common pathway to CIPN for all chemotherapeutic agents [70, 71].

Platinum-based chemotherapeutic agents commonly used include cisplatin, oxaliplatin, and 

carboplatin. Of these, the most toxic compound is cisplatin. All of the platinum-based chemo-

therapeutic agents cause permanent sensory CIPN. They are believed to inflict damage upon 
the dorsal root neurons. This is the result of adduct formation with nuclear and mitochon-

drial DNA which ultimately leads to cellular apoptosis. There is also evidence to suggest that 
cisplatin-linked anti-angiogenesis causes peripheral neuropathy [71]. Direct mitochondrial 
damage also occurs and is postulated to the coasting phenomenon in which the symptoms of 

CIPN continue to worsen several months after the discontinuation of therapy [72].

The role of platinum-based chemotherapeutic agents in the development of neuropathy was 

evaluated in a prospective study by Boogerd et al. in which the group examined the occurrence 

and degree of central peripheral and autonomous neuropathy. Twelve patients were examined 

before, during and after initiation of cisplatin treatment. Their evaluations included neurologic 

examination, nerve conduction studies of median and peroneal nerves, and short latency somato-

sensory evoked potentials (SSER) after median and tibial nerve stimulation. They noted that SSER 
appeared to be the most sensitive method for the detection of peripheral nerve impairment [73].

In 2011, Cunningham et al. stated that chemotherapy induced peripheral neuropathies (CIPN) 
developed from unknown mechanisms but that symptoms could be reduced by manual ther-

apy (massage) implying that digital augmentation of blood flow may provide symptomatic 
relief from neuropathic pain [74].

Yeo et al. in 2016, using a murine model, showed that clonidine dose-dependently reduced 
oxaliplatin-induced allodynia and spinal p–p 38 mitogen activated protein kinase (MAPK) 
expression. When given in combination with the MAPK inhibitor SB203580, reduced dose cloni-
dine decreased allodynia without significant, undesirable motor or cardiovascular effects [75].

3.11.1. Antimicrotubule agents

This class of chemotherapeutic agents includes taxanes (or toxoids), vinca alkaloids, and the 
newer agents, eribulin, ixabepilone, brentuximab, vedotin, and ado-trastuzumab emtansine. 

Taxanes, paclitaxel, docetaxel, and cabazitaxel are used commonly and cause painful, dose 

and length-dependent sensory neuropathy. The mechanism for this is likely due to the abil-

ity of taxanes to cause target interference with microtubule-based axonal transport function 

[76]. Vinca alkaloids, vincristine, vinblastine, vindesine, and vinorelbine destabilize microtu-

bule formation interfering with axonal transport and mitochondrial function. The compounds 

can lead to length-dependent sensory neuropathy with some motor neuron involvement. The 

degree of neuropathy may be long term or permanent. Epothilones, eribulin and ixabepilone, 

have the same mechanism of action as taxanes, causing axonal sensorimotor CIPN [77].
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Brentuximab vedotin and ado-trastuzumab emtansine are biologic hybrid agents created by 

the conjugation of tumor specific antibody to a chemotherapy agent. They both interfere with 
microtubule function and the use of these agents results in a high incidence of CIPN.

In a 2000 study Ekholm et al. examined the taxoid chemotherapeutic agent Paclitaxel in order to 

determine if it changed cardiovascular regulation in breast cancer patients previously treated 

with anthracyclines. They concluded that Docetaxel treatment did not cause deterioration of 
vagal cardiac control in breast cancer patients after exposure to epirubicin. They also determined 

that the observed changes in blood pressure response suggested that docetaxel changes sympa-

thetic vascular control; however the changes appeared to be related to changes in cardiovascular 

autoregulation as opposed to neuropathic changes in the peripheral sympathetic fibers [78].

Later, in 2007, Kirchmair and his group studied Paclitaxel as used in the treatment of breast, 
lung, and ovarian cancers; and thalidomide as used to combat multiple myeloma and other 

bone marrow cancers [70]. Again, the rationale for the study was the dose limiting effect of the 
development of peripheral neuropathy when these drugs are used. The group hypothesized 

that the toxic neuropathies resulting from the destruction of vasa nervorum and that the neu-

ropathy could be reversed by administering an angiogenic cytokine. The group used a murine 

model and employed intramuscular gene transfer of naked plasmid DNA encoding VEGF-1 
administered in parallel with Taxol injections. They found that in this setting there was com-

plete inhibition of nerve function deterioration and inhibition of peripheral nerve vasculature 

diminution. A similar result was seen when the study was repeated using thalidomide. The 

work iterates the implication of microvascular damage as the basis for toxic neuropathy and, 

again, regional blood flow and vascularity appear to be critical components in the develop-

ment as well the prevention of peripheral neuropathy.

Gracias et al. in 2011 studied peripheral neuropathy secondary to paclitaxel exposure in 
a murine model [79]. Paclitaxel targets tubulin and stabilizes the microtubule polymer and 

protects it form disassembly and blocks mitotic progression at the spindle checkpoint which 

delays the onset of anaphase and triggers apoptosis [80]. In their work, Gracias et al. dosed 
male Sprague–Dawley rats with 1 mg.kg paclitaxel for four doses over 8 days and examined 
hind paw vasodilation as an indirect measure of calcitonin gene-related (CGRP) release. When 
compared to rats that were injected only with vehicle, capsaicin- or electrical stimulation of the 

sciatic nerve- induced vasodilation, paclitaxel-treated rats demonstrated significantly attenu-

ated vasodilation. Paclitaxel did not affect direct vasodilation induced by intradermal injection 
of methacholine or CGRP which demonstrated that blood vessels’ ability to dilate remained 
intact. These results suggest that paclitaxel affects the peripheral endings of sensory neurons to 
alter transmitter release, and this may contribute to the symptoms seen in neuropathy. Further 
we may possibly query whether the diminished vasodilation from more central stimulation may 
inhibit blood flow to the degree that consistent vasa nervorum- mediated perfusion becomes 
impaired leading to peripheral nerve compromise and subsequent peripheral neuropathy.

3.11.2. Proteasome inhibitors

The proteasome inhibitor, bortezomib, causes length-dependent small fiber neuron axonal sen-

sory neuropathy. Fortunately, it is a reversible phenomenon. Additionally, bortezomib may also 

cause severe immune-mediated polyradiculoneuropathy in some patients. Newer generation 
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proteasome inhibitors, carfilzomib and ixazomib, have a lower incidence of CIPN compared 
to bortezomib [81, 82]. The mechanism by which proteasome inhibitors cause CIPN is thought 

to be the result of their effects on the microtubules and mitochondria of sensory neurons. This 
effect results in decreased axonal transport and function [83, 84].

Bortezomib is used in the treatment of multiple myeloma and is known to result in peripheral 

neuropathy [85], Tsukaguchi et al. [86] employed the use of lafutidine an H2-blocker with gas-

troprotective activity which is believed to function via a similar mechanism as capsaicin, i.e., 

increasing mucosal blood flow via capsaicin-sensitive afferent neurons, and selective blockade 
of afferent sensory neurons. An example of this function is the ability of lafutidine to reduce the 
pain of glossodynia and taxoid-induced peripheral neuropathy [86].

Peripheral neuropathy (PN) caused by bortezomib was studied in eight patients twice a week 
for 2 weeks followed by 1 week without treatment for up to four cycles. Lafutidine was admin-

istered orally at 10 mg twice daily. The total occurrence of PN was four out of the eight patients. 

They found from this limited study that although the total occurrence of PN after the first course 
and in no cases was bortezomib treatment discontinued because of PN. It may be speculated 

that lafutidine is useful for the amelioration of bortezomib-induced PN. Bortezomib is a 20S 

proteasome complex inhibitor that acts by disrupting various cell signaling pathways leading 

to cell cycle arrest, apoptosis, and inhibition of angiogenesis. Bortezomib causes mitochondrial 

changes resulting in swollen and vacuolated mitochondria in axons, opening of mitochondrial 

permeability transition pore (mPTP) with release of intracellular calcium; and activation of 
caspase and apoptotic pathways [87]. The anti-angiogenesis activity of this drug may have 

implications upon the pressure and flow development component of peripheral neural blood 
supply and the evolution of neuropathic changes.

Speculation upon the role of a capsaicin-like intervention in this neuropathy must of neces-

sity consist of consideration of interactions at a number of sites in the molecular pathways of 

nerve injury and death. Studies, then, are needed to dissect these interactions and shed light 

upon the effect of this treatment.

3.11.3. Antiretroviral chemotherapeutic agents

Patients treated with antiretroviral medications of the nucleoside analogue reverse transcrip-

tase inhibitors (NRTIs) class of drugs can develop myopathy and neuropathy of varying 
severity after prolonged therapy with the neuropathy characterized as painful, sensory and 

axonal [88]. NRTIs cause mitochondrial DNA (mtDNA) dysfunction and impaired oxidative 
phosphorylation. There is evidence that the resultant mitochondrial toxicity is due to a new 

category of acquired mitochondrial toxins, azido groups that compete as substrates of DNA 
pol-gamma and terminate mtDNA synthesis and thus lead to axonal degradation [89].

In a 2005 case report Fodale et al. describe a fatal exacerbation of peripheral neuropathy in which 

iatrogenic mitochondrial damage occurred. They describe a 57 year old man with mild neurop-

athy with hepatitis B and C virus treated with the antiretroviral lamivudine 300 mg per day. The 

causal relationship was implied when at 3 months of therapy he presented with dysphoria and 

progressive muscle weakness. He subsequently developed quadraparesis, acute respiratory fail-
ure and sudden cardiac arrest with successful resuscitation. The lamivudine was discontinued 
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and respiratory capacity improved. The patient subsequently died suddenly despite hemody-

namic, ventilator and metabolic support. Electrophysiological studies prior to death revealed 

sensory-motor axonal neuropathy. Biochemical and mitochondrial DNA molecular genetics 
suggested possible widespread iatrogenic mitochondrial damage. The group speculated that 

mtDNA dysfunction could be a potential cause of the sudden cardiac arrest [90].

3.12. Antibiotics and antifungals

Antibiotics are commonly used agents in both inpatient and outpatient settings. They are 
generally well tolerated but may cause peripheral neuropathy in idiosyncratic as well as dose-

dependent fashions. The incidence of peripheral neuropathy associated with antibiotics is 

drug dependent and is relatively rare compared to the incidence seen with chemotherapeutic 

agents. It has been demonstrated that clinically appropriate doses of bactericidal antibiotics 

can cause mitochondrial dysfunction that leads to leakage of toxic reactive oxygen species 

(ROS) from the mitochondrial electron transport chain (ETC) in mammalian cells [91]. The 

ROS can interact with cellular components such as lipids, protein and DNA. The end result is 
oxidative stress with subsequent tissue damage. The oxidative stress produced by bacterio-

static antibiotics is significantly less. Similar to the chemotherapeutic agents, antibiotics have 
been shown to inhibit angiogenesis [92], which has been proposed as a major mechanism 

of chemotherapeutic-related neurotoxicity and peripheral neuropathy [70]. The antibiotic 

classes that are known to cause peripheral neuropathy are: aminoglycosides, tetracyclines, 

fluoroquinolones, oxazolidinones, and polymyxins. Clinical observations however suggest 
that the malady is not limited to these antibiotic groups alone.

3.12.1. Aminoglycosides

The ototoxicity associated with aminoglycosides is well described. The role of this antibiotic in 

causing peripheral neuropathy and encephalopathy is less commonly discussed. The mecha-

nism leading to peripheral neuropathy is unclear. Gentamycin has been linked to peripheral 
neuropathy and microscopic examination of involved neural tissue have reveals lysosomal 

abnormalities that as of yet have no clear cause [93]. Current evidence appears to suggest 

that this group of antibiotics causes nerve damage via the activation of NMDA receptors 
and subsequent release of oxidative radicals. It is postulated that the excitotoxicity activation 
of NMDA receptors within the cochlear leads to the formation of ROS causing ototoxicity 
[94, 95]. Intrastriatal neomycin leads to gliosis. It is noteworthy that this effect is attenuated 
in the presence of NMDA antagonists. Neuromuscular blockade, commonly associated with 
aminoglycosides, is a temporary form of peripheral neuropathy. These agents inhibit the 

quantal release of acetylcholine pre-synaptically and bind to the acetylcholine receptors post-
junctionally at the neuromuscular junction causing weakness.

3.12.2. Tetracyclines

Tetracyclines have been associated with neuropathy of the cranial nerves [96]. However, the 

cause and incidence are unclear.
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3.12.3. Fluoroquinolones

Fluoroquinolones have been known to cause peripheral neuropathy. Oral fluoroquinolones 
are associated with an increased risk of developing peripheral neuropathy of up to 30% 

[97], and an overall incidence of 1% of developing this disorder [98]. Of all the cases of 
fluoroquinolones associated peripheral neuropathy, 9% of these patients had Guillain-Barre 
syndrome [98]. The three fluoroquinolones commonly implicated in peripheral neuropathy 
are ciprofloxacin, levofloxacin, and moxifloxacin [97, 98]. Fluoroquinolones are associated 
with neurotoxicity of central nervous system possibly through their inhibition of GABA 
receptors [99]. Peripheral nerves also express GABA receptors. Whether the interaction of 
fluoroquinolones with GABA receptors of peripheral nerves or Schwann cells or whether it is 
a combination of an interaction with both classes of cells that leads to peripheral neuropathy 

still remains unknown.

3.12.4. Oxazolidinones

Oxazolidinones is a unique class of antibiotics that is completely different from any other 
antibiotic group. The only oxazolidinone available for clinical use is linezolid. Little is known 
about the mechanism by which linezolid causes peripheral neuropathy or the incidence of 

this peripheral neuropathy. There are reports of linezolid causing Bell’s palsy and optic neu-

ropathy [100, 101]. and there is at least one report that details four cases of linezolid causing 

peripheral neuropathy with concomitant use of a selective serotonin re-uptake inhibitor (SRI) 
[102]. In a retrospective analysis of 75 patients receiving treatment with a combination of six 
drugs including linezolid and pyridoxine, 13% of the patients were found to have sensory 

peripheral neuropathy [103].

3.12.5. Metronidazole

Metronidazole has been reported to cause both motor and sensory peripheral as well as optic 

and autonomic neuropathies [104–107].. The incidence of peripheral neuropathy is unknown 

and appears to be dose dependent. The precise mechanism of metronidazole causing neu-

ropathy is unknown. It has been suggested that metronidazole-induced vasogenic edema 

leading to axonal swelling is a likely cause [108].

3.12.6. Polymyxins

The polymyxins, polymyxin B and colistin have an approximately 7% incidence of paraes-

thesias and polyneuropathy in treated patients [109]. It appears that the route of administra-

tion correlates with the severity of the incidence of neuropathy. Intravenous administration 

of polymyxin B incidence of neuropathy is 27% as compared to 7.3% for the intramuscu-

lar route [110]. Neurotoxicity is also dose dependent and there is a sex predilection with 

females having a higher rate of neurotoxicity as compared to males. The mechanism of 

neurotoxicity is postulated to be the interaction of polymyxins with neurons due to their 

high lipid content [111].
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3.12.7. Nitrofurantoin

Nitrofurantoin has been implicated as the cause of sensorimotor polyneuropathy in pediatric 

patients, especially those with a history of renal insufficiency. This manifests as paresthesia 
and dysesthesia in the lower extremities [112–114]. The incidence is estimated to be about 

0.0007% [115]. The precise mechanism of the polyneuropathy is unknown.

3.12.8. Isoniazid

Isoniazid causing dose-dependent, reversible sensorimotor peripheral neuropathy is a well-

known phenomenon that is preventable with the administration of pyridoxine. The incidence 

of peripheral neuritis is from 6% to approximately 20% in patients taking exposed to a dose of 

6 mg/kg daily [116, 117]. There are also reports of isoniazid in combination with ethambutol 

causing severe but reversible optic neuritis [118]. The mechanism by which isoniazid causes 

peripheral neuropathy is unknown but it has been suggested to relate to isoniazid-induced pyr-

idoxine deficiency. The complex relationship between isoniazid and pyridoxine is unknown. 
In adults, pyridoxine supplement is recommended with isoniazid treatment. However, in the 

pediatric population, pyridoxine prophylaxis with isoniazid is not necessary [119].

3.12.9. Triazole antifungals

The triazole antifungal class of drugs includes itraconazole and voriconazole, which are cur-

rently in clinical use. These drugs associated with an increased risk of development of periph-

eral neuropathy. The incidence is estimated to be approximately 10%, and the symptoms are 

partially or fully reversible after cessation of therapy [120]. The precise cause remains unknown.

3.13. Miscellaneous

3.13.1. Oxidative stress

The role of thiobarbituric acid reacting substances (TBARs) measure of lipid peroxides in the 
neural blood flow abnormalities associated with diabetes and its metabolic changes in periph-

eral neuropathy was studied in 2005 by Migdalis et al. In this work 77 patients with type II 
diabetes (39 neuropathic and 38 non-neuropathic) and 38 control patients were studied. The 
neuropathic study group had significantly lower levels of TBARs, 3.5 μmol/L (2.2–5.6, p < 0.05) 
compared to controls, 4.5 μmol/L (3.08–8.05, p < 0.001) and to diabetics without neuropathy 
4.9 μmol/L (3.09–8.05, p < 0.001). In the neuropathy group there was a negative correlation 
between the score for nerve dysfunction with TBARs level, r = −0.42, p < 0.01.

This finding was counter intuitive since lipid peroxide levels or TBARs are typically thought 
to be elevated in disease states such as atherosclerosis and diabetes (Yagi, 1998). The implica-

tions of this study are unclear with the authors asserting that TBAR levels in patients with 

diabetic neuropathy are “abnormal” but do not offer an explanation of the negative correla-

tion between the score for nerve function with the TBAR levels.

We submit that further studies need to be undertaken in order to clarify this relationship. 
Based on contemporary works in murine models a most reasonable sequel to this study 
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would be follow-up examinations of TBARs and anti-oxidant therapies in these same in vivo 

diabetic neuropathy preparations [121].

The oxidative stress and pro-inflammatory processes which contribute to vascular complica-

tions including endothelial dysfunction and peripheral neuropathy in diabetes mellitus was 

examined in a 2006 study by Nangle et al.. [21] In this work the group administered eugenol – 

which is known to have antioxidant and anti-inflammatory properties especially in the inhibi-
tion of lipid peroxidation [122] – to streptozotocin induced diabetic rats. The group analyzed 

endoneurial blood flow reduction; gastric fundus maximum nitrergic nerve-mediated relax-

ation reduction; and maximum endothelium-dependent relaxation reduction in renal artery 

rings all in diabetic animals. Eugenol significantly improved or completely reversed each of 
these reductions but did not affect diabetes-increased sensitivity to phenylephrine-mediated 
contraction. Nevertheless the study demonstrated that both vascular as well as neural com-

plications of experimental diabetes are improved by the antioxidant/anti-inflammatory agent 
eugenol and reinforces the argument for the role of pressure-flow perfusion dependence on 
the development of oxidative stress-related peripheral neuropathy.

3.13.2. Eosinophilic granulomatosis with polyangiitis (EGPA)

In 2015 Boubabdalloui et al. discussed a case report of eosinophilic granulomatosis with poly-

angiitis (EGPA) and described a peripheral vasculitis in a 21 year old man who presented with 
an associated peripheral neuropathy [123].

3.13.3. Nitric oxide

Some studies have suggested a key role of nitric oxide in development of injuries resulting 

from malfunction of the microvasculature as a result of neuropathic peripheral nerves. These 

neuropathies may be age- or disease- related. In a 2002 article Minson et al., examined ther-

mally induced cutaneous vasodilation capacity (% CVC max; 28 mM nitroprusside infusion) 
in response to the nitric oxide inhibitor NG-nitro-L-arginine methyl ester (L-NAME) which 
was infused throughout the protocol [124]. The study compared 2 groups using microdialysis 

fibers placed in the forearm skin of 10 young subjects (age 22 ± 2 years) and 10 older subjects 
(77 ± 5 years) with skin blood flow subsequently measured by laser-Doppler flowmeters. The 
protocol entailed the heating of both sites to 42°C for approximately 60 minutes with data 
expressed as a percentage of maximal vasodilation. The work revealed that local heating 

before L-NAME infusion resulted in a significantly reduced initial peak, 61 ± 2% CVC max, 
in younger subjects vs. 46 ± 4% CVC max in older subjects; and a reduced plateau CVC in 
younger subjects (93 ± 2% CVC max) as well as in older subjects (82 ± 5% CVC max). When 
the nitric oxide synthetase (NOS) inhibitor was infused following 40 minutes of heating CVC 
declined to the same value in the young and older adults. They concluded from the work 

that the overall contribution of nitric oxide to the plateau phase of the SkBF response to local 

heating was less in the older subjects. Further they concluded that age-related changes in 

both axon reflex-mediated and NO mediated vasodilation contributed to attenuated cutane-

ous vasodilator responses in the elderly [124]. In 2010, Fromy et al. focused upon mecha-

nosensitivity and vasodilation or pressure-induced vasodilation (PIV) or the dilation of the 
cutaneous microvasculature when a non-nociceptive external pressure is locally applied to 
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the skin [125]. PIV is mediated by mechanical stimuli (pressure) applied to sensory C-fibers 
which subsequently release neurotransmitters that cause the release of endothelial factors 
which cause smooth muscle relaxation of the cutaneous microvessels. This response has been 

documented in both murine as well as in human models. Based on earlier studies in which 

this group demonstrated that PIV is altered in the skin of old mice without neuropathy, the 

group then hypothesized that older humans would have reduced PIV as well. Their study 

examined two age groups: older subjects (60–75 years) and younger subjects (20–35 years). 
They determined that there were statistically significant changes in percentage vasodilation 
in response to local pressure application among all (young, non-neuropathic older, and neu-

ropathic older) groups (Figure 5).

The group states that there is altered physiological ability to protect the skin against localized 

in 60–75 year old subjects and that older subjects who present with a severe sensory deficit, 
i.e., neuropathy are particularly at risk for pressure ulcer occurrence because of a loss of local 

PIV [125]. One important aspect of this work is that it implies a role of nitric oxide both from 
this group’s previous murine model work and implications from related thermosensitivity 

studies by Minson et al… [124] Another important aspect is the possibility that nitric oxide 

may play a role in pressure-induced vasodilation. Indeed some low-threshold mechanore-

ceptors as well as some thermoreceptors fall into the class of unmyelinated C-fibers which 
release the aforementioned neurotransmitters that initiate the cascade which may result in the 
expression of nitric oxides and the resultant microvasodilation.

3.13.4. Environmental toxins

Other toxicities have been described as causing neuropathy. In a 1999 report, Fung et al., described 

the development of severe neuropathy in a 57-year-old man who developed signs and symptoms 
of peripheral following a 2-day exposure to styrene. During this time the patient had been apply-

ing the styrene this time applying the styrene which was contained in a fiberglass resin to the 

Figure 5. Percentage of vasodilation in response to local pressure application (4.2 kPa) in young (n = 12), non-neuropathic 
older (n = 12), and neuropathic older (n = 10) subjects. Statistically significant changes relative to young subjects 
(***p < 0.001) and non-neuropathic older subjects (###p < 0.001) CVC is cutaneous vascular conductance. The line drawn 
across the box is the median. The lower and upper edges of the box are drawn at the first and third quartiles, respectively. 
The whiskers represent the maximal and minimal value (adapted from Fromy et al. [125]).
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inside of the septic tank. The neuropathy was documented by signs and symptoms consistent 

with a neuropathic process which was later confirmed by nerve conduction studies [126].

Abnormalities of peripheral nerves have also been observed as a result of exposure to the 

highly toxic industrial cleaner and insecticide, carbon disulfide. In a 2004 work, Huang et al. 
examined the effects of CS on the central and peripheral nervous system 3 years following 
cessation of exposure. They found that abnormalities of the PNS persisted and included 

clinical symptoms and electrophysiological findings. They also determined that central ner-

vous system changes occurred and persisted with brain magnetic resonance images showing 

changes in the basal ganglia and the subcortical white matter that were suggestive of vascular 
events, particularly in the small vessel. The group also noted in one patient diffuse cerebral 
hemispheric demyelination. In their conclusion they stated that the cardiovascular system 

involvement may be due to thrombotic effects as opposed to atherogenic effects [127]. This 

raises the question of the genesis of the demyelination seen in the central nervous system. 
Was this the result of microangiopathy, and if so was there a similar genesis in the peripheral 
nerves with demyelinative changes there as well? No microscopic exams of the peripheral 

nerves were reported at that time, which leaves perfusion dependence of the development of 

peripheral neuropathy subject to speculation which necessitates further study.

4. Conclusion

The causes of peripheral neuropathy are many as we have encountered in the preparation 

of this chapter. Perhaps the most pronounced theme occurred at the molecular level where 

it appeared that oxidative stress and angiogenesis played possibly the most prominent roles 

in the development of perfusion dependent peripheral neuropathy. It is at this level that we 

believe extensive research must be performed both at the bench as well as at the bedside in 

order to find possible correlation with any basic science breakthroughs. It is certainly appar-

ent to our group that interventions specifically at those points, i.e., control of the produc-

tion and removal of free radicals as well as the manipulation of differential angiogenesis are 
essential. Completion of the latter task can only be described as daunting since many disease 
processes including several malignancies are promoted by angiogenesis. To differentially 
promote neuroprotective angiogenesis while inhibiting pathogenic angiogenesis and control-

ling concomitant beneficial perfusion pressures may lead to optimal results as we seek to 
alleviate suffering from peripheral neuropathy.
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