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1. Introduction 

Video compression is a very efficient method for storage and transmission of digital video 
signal. The applications include multimedia transmission, teleconferencing, videophone, high-
definition television (HDTV), CD-ROM storages, etc. The hybrid coding techniques based on 
predictive and transform coding are the most popular and adopted by many video coding 
standards such as MPEG-1/2/4 [1] and H.261/H.263/H.264 [2, 3], owing to its high 
compression efficiency. In the hybrid coding system, the motion compensation, first proposed 
by Netravali and Robbins in 1997, plays a key role from the view point of coding efficiency 
and implementation cost [4-11]. A generic hybrid video coder is depicted in Figure 1.   
 

 
Fig. 1. A generic hybrid motion compensated DCT video coder. 
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The main idea of video compression to achieve compression is to remove spatial and 
temporal redundancies existing in video sequences. The temporal redundancy is usually 
removed by a motion compensated prediction scheme, whereas the spatial redundancy left 
in the prediction error is commonly reduced by a discrete cosine transform (DCT) coder. 
Motion compensated is a predictive technique in temporal direction, which compensates for 
the displacements of moving objects from the reference frame to the current frame. The 
displacement is obtained with the so-called motion vector estimation. Motion estimation 
obtains the motion compensated prediction by finding the motion vector (MV) between the 
reference frame and the current frame. 
The most popular technique used for motion compensation (MC) is the block-matching 
algorithm (BMA) due to its simplicity and reasonable performance. In a typical BMA, the 

current frame of a video sequence is divided into non-overlapping square blocks of N N×  

pixels. For each reference block in the current frame, BMA searches for the best matched 

block within a search window of size (2 1) (2 1)P P+ × +  in the previous frame, where P  

stands for the maximum allowed displacement. Figure 2 depicts the basic principle of block 
matching.  
In general, BMAs are affected by following factors: (i) search area, (ii) matching criterion, 
and (iii) searching scheme. The matching criterion is to measure the similarity between the 
block of the current frame and candidate block of the reference frame. Two typical matching 
criteria are mean square error (MSE) and mean absolute error (MAE), which are defined 
respectively as below: 

[ ]
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N N

x y
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where ( , , )f x y k  denotes the coordinate of the top left corner of the searching block of the 

current frame k, and ( , )u v  is the displacement of the matching block of frame 1k − . The 

MAE is the most popular matching criterion due to its simplicity of hardware 

implementation. 
 The searching scheme is very important because it is significantly related to with the 

computational complexity and accuracy of motion estimation for general video applications. 

A straightforward way to obtain the motion vector is the full search algorithm (FSA), which 

searches all locations in the search window and selects the position with minimal matching 

error. However, its high computational complexity makes it often not suitable for real-time 

implementation. Therefore, many fast search algorithms have been developed to reduce the 

computational cost. In general, fast search algorithms reduce the computational burden by 

limiting the number of search locations or by sub-sampling the pixels of a block. However, 

they often converge to a local minimum, which leads to worse performance. 

Most search algorithms estimate the motion vector (MV) for each block independently. In 

general moving scenes, it is very likely that a large homogeneous area in the picture frame 

will move in the same direction with similar velocities. Therefore, the displacements 

between neighboring blocks are highly correlated. Some schemes take advantage of this 

correlation to reduce the computational complexity [14-16]. 
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Fig. 2. Block matching algorithm. 

There are two major problems for the existing fast search algorithms. One is that the 
estimation accuracy in terms of the energy or the entropy of the motion-compensated 
prediction error (MCPE) signal is worse than that of FSA. The other is that the true motion 
may not be obtained even with FSA, which is very important in some applications such as 
motion compensated interpolation and frame (field) rate conversion. Bierling [17] proposed 
a hierarchical search scheme to achieve a truer (smoother) motion vector field over FSA, but 
it results in a worse performance in terms of the energy of the MCPE signal. 
The above two problems may arise from the following reasons [18]: (i) the basic 

assumptions, including pure translation, unchanged illumination in consecutive frames and 

noiseless environment, are not exactly correct; furthermore, another assumption that the 

occlusion of one object by another and uncovered background are neglected is also not 

exactly correct, (ii) the size of a moving object may not be equal to the prescribed block size, 

(iii) the fast search schemes often converge to a local optimum. In Section 2, we will 

introduce how to overcome these problems with a relatively low computational cost. We 

neither relax the above assumptions nor develop a globally optimal search scheme. Instead, 

we use the Kalman filter to compensate the incorrect and/or inaccurate estimates of motion. 

We first obtain a measurement of motion vector of a block by using a conventional fast 

search scheme. We then generate the predicted motion vector utilizing the motion 

correlation between spatial neighboring blocks. Based on the predicted and measured 

motion information, a Kalman filter is employed to obtain the optimal estimate of motion 

vector. In the new method, a local Kalman filter is developed, which is based on a novel 
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motion model that exploits both spatial and temporal motion correlations. The proposed 

local Kalman filter successfully addresses the difficulty of multi-dimensional state space 

representation, and thus it is simpler and more computationally efficient than the 

conventional 2-D Kalman filter such as reduced update Kalman filter (RUKF) [19]. In 

addition, we will also introduce an adaptive scheme to further improve estimate accuracy 

while without sending extra side information to the decoder. 

In low- or very low- bit rate applications such as videoconference and videophone, the 
percentage of MV bit rate increases when overall rate budget decreases. Thus, the coding of 
MVs takes up a significant portion of the bandwidth [20]. Then in very low bit rate 
compression, the motion compensation must consider the assigned MV rate simultaneously. 
A joint rate and distortion (R-D) optimal motion estimation has been developed to achieve 
the trade-off between MV coding and residue coding [20-28]. In [25], a global optimum R-D 
motion estimation scheme is developed. The scheme achieves significant improvement of 
performance, but it employs Viterbi algorithm for optimization, which is very complicated 
and results in a significant time delay. In [26], a local optimum R-D motion estimation 
criterion was presented. It effectively reduces the complexity at the cost of performance 
degradation. 
In Section 3, we will introduce two Kalman filter-based methods to improve the 

conventional R-D motion estimation, which are referred to as enhanced algorithm and 

embedded algorithm, respectively. In the enhanced algorithm, the Kalman filter is 

employed as a post processing of MV, which extends the integer-pixel accuracy of MV to 

fractional-pixel accuracy, thus enhancing the performance of motion compensation. Because 

the Kalman filter exists in both encoder and decoder, the method achieves higher 

compensation quality without increasing the bit rate for MV. 

In the embedded algorithm, the Kalman filter is applied directly during the process of 

optimization of motion estimation. Since the R-D motion estimation consider compensation 

error (distortion) and bit rate simultaneously, when Kalman filter is applied the distortion 

will be reduced, and thus lowering the cost function. Therefore, the embedded algorithm 

can improve distortion and bit rate simultaneously. Specifically, this approach can be 

combined with existing advanced motion estimation algorithms such as overlapped block 

motion compensation (OBMC) [29,30], and those recommended in H.264 or MPEG-4 AVC 

[31, 32]. 

2. Motion estimation with Kalman filter 

2.1 Review of Kalman filter 
The Kalman filtering algorithm estimates the states of a system from noisy measurement 

[33-36]. There are two major features in Kalman filter. One is its mathematical formulation is 

described in terms of state-space representation, and the other is that its solution is 

computed recursively. It consists of two consecutive stages: prediction and updating. We 

summarize the Kaman filter algorithm as follows:  

 Predicted equation: ( ) ( ) ( ) ( ) ( )kkkkk wΓvΦv +−−= 11 ,  (1) 

 Measurement equation: ( ) ( ) ( ) ( )kkkk nvHz += , (2) 
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where v(k) and z(k) are state and measurement vector at time k, and �H and � are state 
transition, measurement and driving matrix, respectively. The model error w(k), with 
covariance matrix Q(k), and measurement error n(k), with covariance matrix R(k), are often 
assumed to be Gaussian white noises; we assume that w(k)~N(0,Q(k)), n(k)~N(0,R(k)) and 

E[w(k)nT(l)]=0 for all k and l. Let ˆ[ (0)] (0)E =v v , and 

)0(]))0(ˆ)0())(0(ˆ)0([( Pvvvv =−− T
E  be initial values. The prediction and updating 

are given as follows. 
Prediction: 

 State prediction: ˆ ˆ( ) ( 1) ( 1)k k k
− += − −v Φ v  (3) 

Prediction-error covariance: 

)()1()()1()1()1()( kkkkkkk
TT ΓQΓΦPΦP −+−−−= +−

 (4) 

Updating: 

 State updating: )](ˆ)()()[()(ˆ)(ˆ kkkkkk
−−+ −+= vHzKvv  (5) 

 Updating-error covariance: )()]()([)( kkkk
−+ −= PHKIP  (6) 

 Kalman gain matrix: 
1)]()()()()[()()( −−− += kkkkkkk

T
RHPHHPK  (7) 

The P(k) is the error covariance matrix that is associated with the state estimate v(k), and is 
defined as 

 ˆ ˆ( ) [( ( ) ( ))( ( ) ( )) ]T
k E k k k k= − −P v v v v . (8) 

The superscripts “-“ and “+” denote “before” and “after” measurement, respectively. The 
error covariance matrix P(k) provides a statistical measure of the uncertainty in v(k). 

2.2 The overview of motion estimation with Kalman filter 
In general, for moving scenes, the motion vectors among neighboring blocks are highly 
correlated. Therefore, the MV of the current block can be predicted from its neighboring 
blocks if an appropriate motion model is employed. Furthermore, any existing searching 
algorithms can be used to measure the MV. Using the predicted MV and the measured MV, 
a motion estimation method was developed, as depicted in Figure 3. The MV obtained with 
any conventional searching algorithm is defined as measurement, z(k). The measurement is 
then inputted to the Kalman filter and the updating estimate of MV could be obtained [37]. 
Because an identical Kalman filter will be used in the decoder, we can only send z(k), which 

is an integer, instead of ˆ ( )kv , which is a real in general, to the receiver. By the same 

procedure, we can estimate ˆ ( )kv  in the receiver, therefore we can achieve fractional-pixel 

accuracy with the bit rate of integer motion vector. In summary, there are two advantages 
for the new method: (i) it improves the performance of any conventional motion estimation 
due to the fractional-pixel accuracy; (ii) the transmitted bit rate for the motion vector is the 
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same as that of the input integer motion vector, therefore, the new method is compatible 
with the current video coding standards. 
 In the following, we will first introduce a motion model that exploits both spatial and 

temporal motion correlations, and then a local Kalman filter is developed accordingly. The 

local Kalman filter is simpler and more computationally efficient than the conventional 2-D 

Kalman filter such as RUKF. Therefore, it is more suitable for the real-time applications [48-

49]. In addition, to further improve the motion estimate accuracy, we also introduce an 

adaptive scheme. The scheme can automatically adjust the uncertainty of prediction and 

measurement; however, it needs not to send side information to the decoder. 

 

 
 

Fig. 3. Block diagram of motion estimation with Kalman filter 

2.3 Motion estimation using Local Kalman Filter (LKF) 
Let B(m,n,i) be the block at the location (m,n) in the ith frame, and 

V(m,n,i)=[vx(m,n,i),vy(m,n,i)]T be the MV of B(m,n,i), where vx(m,n,i) and vy(m,n,i) denote the 

horizontal and vertical components, respectively. Assume that the MV is a random process, 

and the two components are independent. Then we can model these two components 

separately. In this work, we present a three-dimensional (3-D) AR model that exploits the 

relationship of motion vectors for only 3-D neighboring blocks that arrive at before the 

current block. We only choose the nearest neighboring blocks, in which the motion vectors 

are strongly correlated. We refer to this model as 3-D local model, which is expressed as 

 ( ) ( )
( ), ,

, , , , ( , , )
x klp x x

k l p S

v m n i a v m k n l i p w m n i
⊕∈

= − − − +∑∑ ∑ , (9) 

 ( )
( ), ,

, , ( , , ) ( , , )
y klp y y

k l p S

v m n i a v m k n l i p w m n i
⊕∈

= − − − +∑∑ ∑ , (10) 

where { } { } { }0, 1, 0 1, 1, 0 1, 1, 1S l k p l k p l k p
⊕ = = = = ∪ = ≤ = ∪ ≤ ≤ = . The support of the 

model mentioned above is depicted in Figure 4. 
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                                                  a)                                                                         b) 

Fig. 4. Causal AR models for motion vector associated with spatial and temporal 
neighborhood system. 

2.3.1 State space representation of MV model 
For the fully state propagation, we must represent the proposed models of Eqs. (9) and (10) 
in a state space. This will yield a 13-dimensional state vector. The high-dimension state 
vector will result in a huge computation for estimating the motion vector. To attack the 
computation problem, we decompose the AR model into two parts: filtering and prediction. 
The prediction part will not affect the state propagation; thus it is considered as a 
deterministic input. Consequently, the state space representation can be formulated as  

 ( , , ) ( 1, , ) ( , , ) ( , , )m n i m n i m n i m n i= Φ − + Λ + Γv v u w , (11) 

 ( , , ) H ( , , ) ( , , )m n i m n i m n i= +z v e . (12) 

In the above equations, v(m,n,i) represents the state vector at the location (m,n,i); u(m,n,i) 

denotes a deterministic input; and Φ, Λ, Γ and H are the corresponding matrices. In our 
work, the deterministic input is defined as the prediction part of the model, which will be 
used to implement the local Kalman filter (LKF). Since the motion estimation processes the 
block one by one according to the order of raster scan, the state propagation should be 
performed in one-dimensional manner, as depicted in Eq. (11). 
The main idea in LKF is the approximation of the MV v(m,n,i), which can not be represented 
in terms of v(m-1,n,i). We will demonstrate the state space representation in Eqs. (13) and 
(14) as follows.   

 ( , , ) ( 1, , ) ( , , ) ( , , )m n i m n i m n i m n i= Φ − + Λ + Γv v u w   (13) 

where 
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e . 

The motion vector v(m,n,i), which can not be represented in terms of v(m-1,n,i), consists of 
two components: v(m+2,n-1,i) and v(m+1,n,i-1). We use the most recent estimate with 
uncertainty to approximate them, i.e., 

 ( ) ˆ2, 1, ( 2, 1, ) ( 2, 1, )v m n i v m n i e m n i+ − = + − + + − , (15) 

 ( ) ( ) ( )ˆ1, , 1 1, , 1 1, , 1v m n i v m n i w m n i+ − = + − + + − , (16) 

The above equations indicate that the best available estimate is the most recent update of the 
MV, which is available at time (m,n,i). The current frame MV, v(m+2,n-1,i), is incorporated 
into measurement, and the previous frame MV, v(m+1,n,i -1), is incorporated into 
deterministic input. In our work, the covariance of these two uncertainties is given a small 
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value for simplicity. Through the above process, the motion estimation with 3-D AR model 
can be realized by 1-D recursive manner. 
Given these models, the Kalman filter is described in the following: 
<1> Prediction 

 State prediction: ),,(),,1(ˆΦ),,(ˆ inminminm uvv Λ+−= +−
 (17) 

 Prediction-error covariance: 
TT

inminminm Γ),,(ΓΦ),,1(Φ),,( QPP +−= +−
 (18) 

<2> Updating: 

 State updating: )],,(ˆ),,()[,,(),,(ˆ),,(ˆ inminminminminm
−−+ −+= vHzKvv  (19) 

 Updating-error covariance: ),,(]),,([),,( inminminm
−+ −= PHKIP  (20) 

 Kalman gain matrix: 
1)],,(),,([),,(),,( −−− += inminminminm

TT
RHHPHPK (21) 

The P(m,n,i) is the error covariance matrix that is associated with the state estimate v(m,n,i), 
R(m,n,i) and Q(m,n,i) are the covariance of e(m,n,i) and w(m,n,i), respectively. 
However, the local model can be simplified to consider only spatial or temporal support, 
and then the motion model and the corresponding state space representation are modified 
accordingly. 

2.3.2 Spatial causal AR models for MV 
Let B(m,n,i) be the block at the location (m,n) in the ith frame, and 
V(m,n,i)=[vx(m,n,i),vy(m,n,i)]T be the MV of B(m,n,i), where vx(m,n,i) and vy(m,n,i) denote the 
horizontal and vertical components, respectively. Assume that the MV is a random process, 
and the two components are independent. A 2-D AR model exploits the motion information 
of only 2-D neighboring blocks that arrived before the current block. In the block matching, 
the calculation of matching criterion is performed block-by-block in a raster scan manner, 
i.e., from left to right and top to bottom. Thus we can define the 2-D AR model for a motion 
vector as 

 ∑ ∑
+∈

+−−=
Slk

xixiklxi inmwilnkmvav
),(

,,0, ),,(),,( , (22) 

 ∑ ∑
+∈

+−−=
Slk

yiyiklyi inmwilnkmvav
),(

,,0, ),,(),,( , (23) 

where { } { },  0,  1S k l l k l
+ = ≥ ∀ ∪ = ≥  is the model support, and akl0 are the model 

coefficients, which can be space varying or space invariant. For simplicity, we assume that 

the model is space invariant. Eq. (22) and (23) are also called the nonsymmetric half-plane 

(NSHP) model [19]. 
We only chose the nearest neighboring blocks in both horizontal and vertical direction 
because their motions are strongly correlated. We call this model as 2-D local motion model. 
In such case, Eq. (22) and (23) can be simplified as 
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 (25) 

The support of the model mentioned above is depicted in Figure 5. 
 

 

Fig. 5. Causal AR models for motion vector associated with spatial neighboring blocks. 

2.3.3 State space representation of spatial local AR model 
For the full state propagation, we must represent the proposed models, Eq. (11) and (12), in 
a state space. Since the Kalman filter is implemented by one-dimensional recursion, it is very 
difficult to transfer the two-dimensional AR model into one-dimensional state space 
representation [39,40]. To attack this problem, we introduce an extra deterministic input into 
the conventional state-space equations, and then we have the state-space representation as 
follows. 
Predicted equation: 

 ( , , ) ( 1, , ) ( , , ) ( , , )m n i m n i m n i m n i= Φ − + Λ + Γv v u w , (26) 

where v(m,n,i) represents the state vector at the location (m,n,i); u(m,n,i) is the introduced 

deterministic input; and Φ, Λ, Γ and H are the corresponding matrices. They are respectively 
defined as 
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v m n i

v m n i

⎡ − ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− = + −
⎢ ⎥

−⎢ ⎥
⎢ ⎥− −⎣ ⎦

v , 

 

( ) ˆ, , ( 2, 1, )m n i v m n i= + −u , 

( ) ( )
( )

, ,
,

2, 1,
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w m n i

⎡ ⎤
= ⎢ ⎥+ −⎣ ⎦

w

, 
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⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Φ , 

0

0

1

0

0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Λ , and 

1 0

0 0

0 1

0 0

0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Γ . 

 

Measurement equation: 

  z( , , )  ( , , ) ( , , )m n i m n i e m n i= +H v , (27) 

where [ ]1 0 0 0 0=H . 

Because the element v(m+2,n-1,i) of the motion vector v(m,n,i) can not be written in terms of 

its previous state, here we use the most recent estimate to approximate it, i.e., 

 ( ) ˆ2, 1, ( 2, 1, ) ( 2, 1, )v m n i v m n i w m n i+ − = + − + + − . (28) 

 

The above equations indicate that the best available estimate is the most recent update of the 

MV, which is available at time (m,n,i). Through the above process, the motion estimation 

based on 2-D AR model can be realized by 1-D recursive manner. 

2.3.4 Temporal causal AR models for MV 
Using the similar definition of the above spatial model, the AR models in the temporal 
direction are defined as  

 ( ) ( )
( ), ,

, , , , ( , , )
x klp x x

k l p S

v m n i a v m k n l i p w m n i
⊕∈

= − − − +∑∑ ∑ , (29) 

 ( )
( ), ,

, , ( , , ) ( , , )
y klp y y

k l p S

v m n i a v m k n l i p w m n i
⊕∈

= − − − +∑∑ ∑ , (30) 

where { }1,  1,  1S l k p
⊕ = ≤ ≤ = . Like the spatial local model, only the adjacent 

neighboring blocks are considered as model support, as shown in Figure 6. In such case, the 

state-space representation of Eq. (29) and (30) are 
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Predicted equation: 

 ( ) ( )

( )
( )

( )
( )
( )

( )
( )

( )

001

1, 1, 1

, 1, 1

1, 1, 1

1, , 1
, , , , 1 ( , , )

1, , 1

1, 1, 1

, 1, 1

1, 1, 1

v m n i

v m n i

v m n i

v m n i
v m n i a v m n i w m n i

v m n i

v m n i

v m n i

v m n i

⎡ ⎤+ − −
⎢ ⎥− −⎢ ⎥
⎢ ⎥− − −
⎢ ⎥

+ −⎢ ⎥= − + +⎢ ⎥− −⎢ ⎥
+ + −⎢ ⎥

⎢ ⎥+ −⎢ ⎥
⎢ ⎥− + −⎣ ⎦

Λ , (31) 

where [ ]111 011 111 101 101 1 11 0 11 1 11
a a a a a a a a− − − − − −=Λ . 

Measurement equation: 

 ( , , ) ( , , ) ( , , )z m n i v m n i e m n i= + . (32) 

 

Fig. 6. Causal AR models for motion vector associated with temporal neighboring blocks. 

Once the motion models and their state space representation are available, same procedure 
can then be obtained as in Section 2.3.1. 

2.4 Adaptive Kalman filtering 
In general, the motion correlation between the adjacent blocks cannot be modeled exactly. 
Similarly, the measurement of motion vector may have error due to incorrect, inaccurate 
and low precision estimation algorithms. Therefore, there exist uncertainties in both 
prediction and measurement processes. The uncertainties of prediction and measurement 
are represented by zero mean white Gaussian noise w(m,n,i) and e(m,n,i) with variance 
q(m,n,i) and r(m,n,i), respectively. In Kalman filtering algorithm, the Kalman gain depends 
on q(m,n,i) and r(m,n,i); therefore, the variances will determine the relative amount of 
updating using prediction or measurement information [41]. Due to the nonstationary 
nature of motion vector fields, the values of the variances q(m,n,i) and r(m,n,i) should be 
adjusted block by block to achieve better performance. 
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In [37], we introduced a distortion function, D1 and D2, to measure the uncertainty for both 
prediction and measurement, and use the distortion function as a reliability criterion. Based 
on such concept, we calculate the covariance q(m,n,i) and r(m,n,i) that are closely related to 
D1 and D2, and then obtain a time-varying Kalman gain. This results in more reliable 
estimate of MV. The idea behind the procedure is that we use the actual distortion of 
prediction and measurement to adjust the covariance instead of the conventional complex 
statistical on-line approaches [37]. Because the distortion measured is more trustworthy than 
any assumption, the developed scheme achieves very good performance as demonstrated in 
[37]. The major disadvantages of the scheme are: (i) it needs to send extra side-information, 
(ii) it increases the overall bit rate, and (iii) the bit stream may be not compatible with the 
current video coding standard. To overcome this problem, we will introduce an adaptive 
scheme, which is simpler and more effective than the previous schemes and it does not need 
to send extra side-information. 
We first calculate the errors compensated by predicted MV and measured MV. And then 

investigate the relation between the difference of the two errors, dΔ , and the difference of 

two motion vectors, MVΔ . Let D1 and D2 be the block distortion of motion compensation 

due to the measurement error and prediction error, respectively, which are defined as 

 
( ) ( )

( )

1 1

1
0 0

1
, , ( , , ), ( , , ), 1

    ,

N N

j l

x y

D B m j n l i B m j z m n i n l z m n i i
M N

MAD z z

− −

= =

= + + − + + + + −
×

=

∑∑ #
, (33) 

and 

 
( ) ( )

( )

1 1

2
0 0

1
ˆ ˆ, , ( , , ), ( , , ), 1

ˆ ˆ    ,

N N

x y
j l

x y

D B m j n l i B m j v m n i n l v m n i i
M N

MAD v v

− −
− −

= =

− −

= + + − + + + + −
×

=

∑∑ #
, (34) 

where Bi and Bi-1 are the current block and motion compensated block, respectively. The 

dΔ is defined as 

 dΔ =| D1-D2 |.  (35) 

When MVΔ  increases, dΔ  first increased approximately exponentially, and then decreased 

exponentially; the increasing rate is larger than the decreasing rate. In general, the 

measurement is obtained by a real matching; thus a large MVΔ  means that the prediction is 

far away from optimal location. This results in a large value of dΔ . However, when MVΔ  

exceeds a certain value, the measurement may find incorrect position due to the restrictions 
of block matching, such as cover/uncover-background, complex motion types, etc. Hence 

dΔ will decrease gradually according to the increase of MVΔ . Therefore, we can use two 

exponential functions to model the variance of prediction as: 

 
1 1

2 2

ˆ ˆ1 exp( ( , , ) ( , , ) ),           
( , , )

ˆ ˆexp( ( ( , , ) ( , , ) )),      

a b m n i m n i th
q m n i

a b m n i m n i th th

− −

− −

⎧ − − − − ≤⎪= ⎨
− − − − >⎪⎩

z v z v

z v z v
 (36) 

 r(m,n,i)=1-q(m,n,i), (37) 
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where th is the turning point, which is a reliable index of measurement. If MVΔ  is less than 

th, the measurement is reliable compared with prediction. However, when MVΔ  is far 

away from th, the measurement is less reliable and the prediction should give more 

contribution. The parameters a and b affect the shape of the exponential function and are 

related with searching methods. The parameter values for full search are larger than those 

for fast search. Because the prediction can be calculated in the receiver, no extra-information 

needs to be sent. Therefore, this method is also suitable for real-time application. 

2.5 Simulation results 
Several image sequences including "Miss America", "Salesman", "Flower Garden" and 

"Susie" are evaluated to compare the performances of different motion estimation 

algorithms. The first two sequences are typical videoconference situations. In order to create 

larger motion displacement, each of the two sequences is reduced to 15 Hz with frame 

skipping. The last two sequences contain more complex motion such as rotation, and 

covered/uncovered background. They are converted from CCIR 601 format using the 

decimation filters recommended by the ISO/MPEG standard committee. The 30 successive 

frames of each sequence are used in simulation.  

Four different algorithms are compared: (i) full search algorithm (FSA), (ii) new three-step 

algorithm (NTSS), (iii) NTSS combined with 3-D Kalman filter (3DLKF), and (iv) NTSS 

combined with adaptive Kalman filter (3DALKF). The size of the image block is 16×16. The 

search window is 15×15 pixels (i.e., S = 7) for “Miss America”, “Salesman” and “Susie”, 

31×31(S = 15) for “Flower Garden”. The threshold for the motion detection is 2 for each 

algorithm. The model parameters are obtained by off-line least-squared estimate. In our 

work, the parameters are given by c100=7/C, c-110=2/C, c010=7/C, c110=2/C, c001=5/C, c-

111=0.25/C, c011=0.5/C, c111=0.25/C, c-101=0.5/C, c101=0.5/C, c-1-11=0.25/C, c0-11=0.5/C, and c1-

11=0.25/C. Where C is a normalization factor, and C=26 in our simulation. For non-adaptive 

algorithm, the covariance of w(m,n,i) and e(m,n,i) should be given a priori. In this work, the 

q(m+2,n-1,i) and r(m+1,n,i-1) are 0.095, q(m,n,i) and r(m,n,i) are 0.85 and 0.15, respectively. In 

the adaptive algorithm, q(m,n,i) and r(m,n,i) are adjusted automatically, the parameters a, b 

and th are set as a1=0.55, a2=1.10, b1=0.985, b2=0.009 and th=5.8 for "Flower Garden", a1=1.10, 

a2=0.98, b1=0.735, b2=0.008 and th=4.2 for others sequences. The value is obtained 

experimentally. The q(m+2,n-1,i) and r(m+1,n,i-1) are the same as the non-adaptive 

algorithm. 

The motion-compensated prediction frame is obtained by displacing the previous 

reconstructed blocks using the estimated motion vectors. Since the estimated motion vector 

is a real value instead of an integer, the displaced pixels may not be on the sampling grid. 

Therefore, the well-known bilinear interpolation [17] is adopted to generate a motion 

compensated prediction frame. 

Table 1 summarizes the comparison of the average PSNRs for various algorithms. It 

indicates that all our algorithms perform better than NTSS. The 3DLKF also obtains better 

performance than FSA on the average. It is noted that the 3DLKF needs few additional 

computations over NTSS. The 3DALKF give much better PSNR performance than FSA. 

Figures 7-10 displays the comparison of PSNR of the test sequences obtained by various 

algorithms. It indicates that the proposed method improves the performance. The most 
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important point to note is that the adaptive algorithm can compensate poor measurement 

and thereby raise the PSNR significantly. In addition, the visual quality of the reconstructed 

image is also improved considerably. This can be seen from Figure 11, which shows the 

reconstructed images of frame 74 obtained by NTSS and 3DALKF, respectively. The NTSS 

algorithm yields the obvious distortion on some regions such as the left ear and the mouth, 

as shown in Figure 11 (a). The 3DLKF algorithm, as shown in Figure 11 (c), improves this 

significantly. 
 

Algorithm Image 
Sequence NTSS FSA 3DLKF 3DALKF 

Miss America 38.2581 38.3956 38.6473 38.9077 

Salesmen 34.6905 34.7827 34.9477 35.1080 

Susie 37.8381 37.8742 38.2893 38.5298 

Flower Garden 28.2516 28.4485 28.3836 28.5340 

Average 34.7596 34.8753 35.067 35.2699 

Table 1. Average PSNR for various algorithms 

Figure 12 shows the motion vector fields of "Miss America" obtained by FSA, NTSS and 

3DALKF, respectively. The motion vector fields obtained by 3DLKF algorithm are obviously 

smoother than those by the other algorithms. Although the hierarchical search algorithm 

presented in [17] can also achieve smooth motion vector fields, it obtains lower PSNR than 

FSA. 
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Fig. 7. The PSNR comparison for Miss America sequence at 15Hz 
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Fig. 8. The PSNR comparison for Salesman sequence at 15Hz 
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Fig. 9. The PSNR comparison for Susie sequence at 15Hz 
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Fig. 10. The PSNR comparison for Flower Garden sequence at 30Hz 

 
 

   
 
 

 
 
 

Fig. 11. The comparison of reconstructed image (a) Original image (b) NTSS and (c) 
3DALKF. 
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Fig. 12. The motion vector fields obtained by (a) FSA, (b) NTSS (c) 3DALKF 

In the proposed methods, the 3DALKF is the most computationally expensive scheme. The 

computation time for FSA, NTSS, and 3DALKF are listed in Table 2. It is obvious that the 

computation time of the KF methods are only about 2/5 of the FSA, and is slightly more 

than that of NTSS. Thus it is suitable for real-time application. 

 

Computation time (second/frame) 
Image Sequence 

NTSS FSA 3DLKF 3DALKF 

Miss America 1.0881 6.4162 2.4000 2.6950 
Salesmen 0.5559 3.1694 1.5559 1.8147 

Susie 0.9846 7.0262 2.0477 2.2954 
Flower Garden 1.5017 44.3021 2.5297 2.8367 

Average 1.0326 15.2285 2.1333 2.4105 

Table 2. The computation time for various algorithms 
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3. Rate-constrained motion estimation with Kalman filter 

In BMA, the motion compensated prediction difference blocks (called residue blocks) and 
the motion vectors are encoded and sent to the decoder. In high-quality applications, the bit 

rate for motion vectors,
mv

R , is much less than that for residues, 
res

R ; thus 
mv

R can be 

neglected in motion vector estimation. However, in low- or very low- bit rate applications 
such as videoconference and videophone, the percentage of motion vector bit rate is 
increased when overall rate budget decreases. Thus, the coding of motion vectors takes up a 
significant portion of the bandwidth [20]. Then in very low bit rate compression, the motion 
compensation must consider the assigned motion vector rate and residue rate 
simultaneously, which yields the so-called rate-constrained motion estimation. In this 
section, we will present two Kalman filtering based rate-constrained motion estimation 
algorithms.  

3.1 Rate-distortion motion estimation 

In conventional motion estimation, a major consideration is to reduce the motion 

compensated prediction error such that the coding rate for the prediction error can be 

reduced. This is true for high-rate applications because the bit rate for motion vector (
mv

R ) is 

only a very small part of the overall transmission rates. However, in low bit-rate or very low 

bit-rate situation, 
mv

R is a significant part of the available rate budget. For this reason, 

mv
R should be considered into the process of motion estimation. Therefore, the criterion of 

motion estimation must be modified accordingly. 
In 1994, Bernd Girod addressed this problem first. He proposed a theoretical framework for 
rate-constrained motion estimation, and a new region based motion estimation scheme [22]. 
In motion compensated hybrid coding, the bit-rate can be divided into the displacement 
vector field, the prediction error, and additional side information. Very accurate motion 
compensation is not the key to achieve a better picture quality at low or very low bit-rates.  
In 1998, Chen and Willson confirmed this point again [25], and analyzed this issue 
thoroughly. They explained a new estimation criterion in detail, and proposed a rate-
constrained motion estimation for general video coding system. The performance of video 
compression depends on not only the motion compensation but also the rate budget, which 
include bit-rate for motion vector and bit-rate for prediction error. Therefore, the optimal 
solution can then be searched throughout the convex hull of all possible R-D pairs by 
minimizing the total Lagrangian cost function: 

 ( ) ( ) ( ) ( )min ,
, 1

, , min ,
k k

K
mv res

k k k k k
D S q Q k

J v q D v q R v R v qλ λ
∈ ∈ =

= + ⎡ + ⎤⎣ ⎦∑j j j j
,  (38) 

where K
Q  is the quantization parameter for K  blocks, respectively. This approach, 

however, is computationally intensive, involving a joint optimization between motion 
estimation/ compensation and prediction residual coding schemes. From Eq. (38), we see 
that the DCT and quantization operations must be performed on an MV candidate basis in 

order to obtain ( ),res

k
R v q

j
 and ( ),

k k k
D v q

j
. The significant computations make the scheme 

unacceptable for most practical applications, no matter what software or hardware 
implementation is adopted. Thus, they simplify Eq. (38) by only considering motion 
estimation error and bit-rate for MV. 
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Assume a frame is partitioned into K block sets. Let ˆ K

k
v U∈  be the motion vector estimated 

for block k. Then the motion field of a frame is described by the K1-tuple vector, 

( )
11 2

ˆ ˆ ˆ, ,... K

K
V v v v U= ∈ . The joint rate and distortion optimization can be interpreted as finding 

a motion vector field that minimizes the distortion under a given rate constraint, which can 
be formulated by the Lagrange multiplier method as 

 
min

1

ˆ ˆ( , ) min{ ( ) ( )}
k

k

K

k k k k
V U kU

J v D v R vλ λ
∈ =

= +∑ ∑ , (39) 

where λ  is the Lagrange multiplier; Dk and Rk are the motion-compensated distortion and 

the number of bits associated with motion vector of the block k, respectively. In most video 
coding standards, the motion vectors of blocks are differentially coded using Huffman code. 
Thus, the blocks are coded dependently. However, this simplification has two evident 
defects: (i) it is still too complex, and (ii) the performance is degraded. 
In the same year, Coban and Merserau proposed different scheme on the RD-optimal 
problem [26]. They think that Eq. (39) is a principle for global optimal of R-D problem, but it 
is difficult in implementation. They supposed, if each block is coded independently, the 
solution Eq. (39) can be reduced to minimizing the Lagrangian cost function of each block, 
i.e., 

 
min

ˆ ˆ( , ) min{ ( ) ( )}
k k k k k

V U

J v D v R vλ λ
∈

= + .   (40) 

In order to simplify the problem, although the MV’s are coded differentially, the blocks will 
be treated as if they are being coded independently. This will lead to a locally optimal, 
globally sub-optimal solution. By this way, the framework of R-D optimal motion estimation 
is close to conventional motion estimation. Although it saves computation by ignoring the 
relation of blocks, it reduces the overall performance. 

3.2 Enhanced R-D motion estimation using Kalman filter 
The R-D motion estimation often yields smooth motion vector fields, as compared with 

conventional BMAs [25,26]. In other words, the resulting motion vectors are highly 

correlated. In this work, we try to fully exploit the correlation of motion vectors by using the 

Kalman filter. This is motivated by our previous works [37,40] that the Kalman filter is 

combined with the conventional BMA’s to improve the estimate accuracy of motion vectors. 

The system consists of two cascaded stages: measurement of motion vector and Kalman 

filtering. We can employ a R-D fast search scheme [20,23-26] to obtain the measured motion 

vector. Then we model the motion vectors and generate the predicted motion vector 

utilizing the inter-block correlation. Based on the measured and predicted motion vectors, a 

Kalman filter is applied to obtain an optimal estimate of motion vector. 

For the sake of simplicity in implementation, we employ the first-order AR (autoregressive) 

model to characterize the motion vector correlation. The motion vector of the block at 

location (m,n) of the i-th frame is denoted by v ( , )
i

m n =
, ,

[ ( , ) , ( , )]
i x i y

v m n v m n , and its two 

components in horizontal and vertical directions are modeled as 

 
, 1 , ,
( , ) ( , 1) ( , )

i x i x i x
v m n a v m n w m n= − +  (41) 
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Fig. 13.  The block diagram of the proposed enhanced R-D motion estimation algorithm 

 ),()1,(),( ,,1, nmwnmvbnmv
yiyiyi

+−= . (42) 

where
,
( , )

i x
w m n  and 

,
( , )

i y
w m n  represent the model error components. In order to derive the 

state-space representation, the time indexes k and 1k −  are used to represent the current 

block location ( , )m n , and the left-neighbor block location ( 1, )m n− , respectively. 

Consequently, the state-space representation of (41) and (42) are  

 
,1 11

1 ,2 2

( )( ) ( 1)0

0 ( )( ) ( 1)

i x

i y

w kx k x ka

b w kx k x k

⎡ ⎤−⎡ ⎤ ⎡ ⎤⎡ ⎤
= + ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ − ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

, (43) 
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or 

 
x x x
( ) ( 1) ( 1) ( ) ( )

x
k k k k k= − − +V Φ V Γ w , (44) 

where we let 
1 ,
( ) ( )

i x
x k v k= , 

1 ,
( 1) ( 1)

i x
x k v k− = − , 

2 ,
( ) ( )

i y
x k v k=  and 

2 ,
( 1) ( 1)

i y
x k v k− = − . The 

error components, wi,x(k) and wi,y(k), are assumed to be Gaussian distribution with zero 

mean and the same variance ( )q k .  
The measurement equations for the horizontal and vertical directions are expressed by 

1

2

1 0

0 1

x

y

n ( k )x ( k )
( k )

n ( k )x ( k )

⎡ ⎤⎡ ⎤⎡ ⎤
= + ⎢ ⎥⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
z  

 
x( k ) ( k ) ( k ),= +

x
H V n  (45) 

where ( )
x

n k , ( )
y

n k  denote two measurement error components with the same variance ( )r k . 

In general, the model error W(k) and measurement error n(k) may have colored noises. We 

can model each colored noise by a low-order difference equation that is excited by white 

Gaussian noise, and augment the states associated colored noise models to the original state 

space representation. Finally, we apply the recursive filter to the augmented system. 

However, the procedure requires considerable computational complexity and is not suitable 

for our application. Moreover, the blocks are processed independently when the 

measurements are obtained by the R-D fast search algorithm [26]. Thus, we can assume that 

the measurement error is independent. For simplicity but without loss of generality, the 

prediction error and measurement error are assumed to be zero-mean Gaussian distribution 

with the same variances ( )q k  and ( )r k , respectively. 

In the above equations, the measurement matrix H(k) is constant, and state transition matrix 

Φ(k) can be estimated by the least square method. Since the motion field for low bit-rate 

applications is rather smooth, we assume that ( )q k  and ( )r k  are fixed values. 

The algorithm is summarized as follows. 
<Step 1> Measure motion vector 

Measure the motion vector of a moving block, ( ) [ ( ) ( )]T

x y
k z k z k=z , by any R-D search 

algorithms [20][23]-[26]. Encode the motion vector by H.263 Huffman table [7][9]. 

<Step 2> Kalman filtering 
a. The predicted motion vector is obtained by 

ˆ ˆ( ) ( 1) ( 1)k k k− += − −V Φ V . 

b. Calculate prediction-error covariance by  

( ) ( 1) ( 1) ( 1) ( ) ( ) ( ).T T
k k k k k k k

− += − − − +P Φ P Φ Γ Q Γ  

c. Obtain Kalman gain by 

1( ) ( ) ( )[ ( ) ( ) ( ) ( )]T T
k k k k k k k

− − −= +K P H H P H R . 

d. The motion vector estimate is updated by  
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ˆ ˆ ˆ( ) ( ) ( )[ ( ) ( ) ( )]k k k k k k+ − −= + −V V K z H V . 

This is the final estimate output. 
e. Calculate the filtering-error covariance by 

( ) [I ( ) ( )] ( )k k k k
+ −= −P K H P . 

<Step 3> Go to <step 1> for next block. 

In the above algorithm, the optimal estimate ( )ˆ kV  is usually real, which yields fractional-

pixel accuracy estimate. The conventional BMA can also obtain the fractional-pixel motion 
vector by increasing resolution with interpolation and matching higher-resolution data on 
the new sampling grid. However, this not only increases computational complexity 
significantly, but also raises overhead bit rate for motion vector. On the contrast, the 
required computational overhead is much lower than that of the conventional BMA with 
fractional-pixel matching. In addition, using the same Kalman filter as in the encoder, the 
decoder can estimate the fractional part of motion vector by receiving integer motion vector. 
In summary, this method achieves fractional pixel performance with the same bit-rate for 
motion vector as an integer-search BMA, at the cost of a small increase of computational 
load at the decoder. Furthermore, because the Kalman filter is independent with motion 
estimation, it can be combined with any existing R-D motion estimation scheme with 
performance improvement. 

3.3 Kalman filter embedded R-D motion estimation 
The main feature of the above enhanced scheme is to obtain fractional pixel accuracy of 
motion vector with estimation instead of actual searching. Hence, no extra bit rate is needed 
for the fractional part of motion vector. However, because the enhanced algorithm does not 
involve the estimation process of motion vector, the obtained motion vector is not optimum 
from viewpoint of distortion. To address the problem, here we introduce a method for R-D 
motion estimation in which the Kalman filter is embedded. We refer to it as Kalman filter 
embedded R-D motion estimation and describe the details as follows. 
The cost function of Kalman filter embedded R-D motion estimation can be formulated as  

 min
ˆ ˆ( , ) min{  [ ( )] ( )}

k k k k k
V U

J v Kalman D v R vλ λ
∈

= + , (46) 

where the ˆ[ ( )]
k k

Kalman D v  is a distortion of Kalman filter-based motion compensation. It is 

obtained by Kalman filtering the integer-point motion vector and the resulting floating-
point motion vector is used to generate motion compensation prediction. In such case, the 
motion vector is represented in integer-point, but it can generate motion compensation with 
fractional pixel accuracy. Therefore, the assigned bit rate for motion vector is not affected by 

ˆ[ ( )]
k k

Kalman D v , but the total cost function is reduced due to the accuracy increase in 

compensation. Figure 14 is the block diagram of the embedded algorithm. For simplicity, we 
select Eq. (46) as the criterion for motion estimation. 
The Kalman filter embedded R-D motion estimation algorithm is summarized as follows. 
<Step 1> Kalman filter-based motion estimation 
a. Select a location in the search range and denote it as a candidate measurement of 

motion vector [ , ]
x y

z z .  

www.intechopen.com



 Kalman Filter: Recent Advances and Applications 

 

572 

b. Apply the Kalman filter to [ , ]
x y

z z using the procedure of Step 2 in the previous section. 

Then we obtain an optimal estimate of motion vector ˆ ˆ[ , ]
x y

v v , which is with fractional 

accuracy. Calculate the distortion ˆ[ ( )]
k k

Kalman D v according to the ˆ ˆ[ , ]
x y

v v . 
 
 

 

Fig. 14. The block diagram of the proposed embedded R-D motion estimation algorithm 

 

<Step 2> Calculate the bit rate of the motion vector [ , ]
x y

z z  according to the H.263 Huffman 

table [7][9]. Notice that transmission motion vector is [ , ]
x y

z z , which is an integer; thus the 

required bit rate of motion vector is not affected by Kalman filter. 
<Step 3> Using (46), we calculate the cost function. If the best match is found, go to <step 
4>; otherwise, go back <Step 1> to select the next location for estimation.  
<Step 4> Go to <step 1> for next block. 
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In the enhanced algorithm, the Kalman filter is not applied during the block searching. It is 
only used to enhance the performance when motion vector is obtained by R-D motion 
estimation. Therefore, the Kalman filter can be viewed as a post processing of motion 
estimation. However, in the embedded algorithm, the Kalman filter is applied for every 
block searching by employing the joint rate-distortion. Thus, it can be considered as a new 
R-D motion estimation approach. Since it includes the Kalman filter into the optimization 
process, the embedded method performs better than the enhanced version at the cost of 
computational complexity. 

3.4 Simulation results 
The performance of the RD-motion estimation with Kalman filter (RD-Kalman) was 
evaluated using a set of standard image sequences including Forman, Mother and Daughter, 
Carphone, Salesman and Claire. All sequences are with CIF (352×288) or QCIF (176×144) 
resolution and frame rate of 10 Hz. Since the RD-Kalman motion estimation has fractional 
pel accuracy, the results are compared with the conventional RD algorithm and MSE-
optimal scheme with both integer and half-pixel accuracy. The block size 16×16 and search 
range 64×64 for CIF format and block size 16×16 (or 8×8) and search range 31×31 for QCIF 
format were chosen, respectively. The conventional RD and RD-Kalman adopted the same 
motion estimation strategy as that in [25]. Specifically, for the current block, the motion 
vectors of the left-neighbor block and up-neighbor block, and the motion vector obtained 
with MSE criterion, were selected as the predicted search center, and then a small search of 
3×3 is performed. 

For the KF-based motion estimation, the parameters are chosen experimentally as follows: 

the model coefficients 
1 1

1a b= = , model error variance q(k)=0.8, measurement error variance 

r(k)=0.2, initial error covariance P(0)=I, and initial state ˆ (0) 0=V . It is evident that from 

[31], the estimated motion vectors are real values rather than integer. The displaced pixels 

may not be on the sampling grid. Therefore, the well-known bilinear interpolation is 

adopted to generate a motion compensated prediction frame. A Huffman codebook adopted 

from H.263 standard was used in the coding of 2-D differentially coded motion vectors. The 

various algorithms were compared in terms of rate and distortion performance. The common 

PSNR measure defined in the following was selected to evaluate distortion performance.  

 
2

10

255
10 logPSNR

MSE
= ⋅  (47)  

Moreover, rate performance was evaluated by the number of bits required to encode an 
image frame or a motion field. 
The Lagrange multiplier λ , which controls the overall performance in the rate distortion 
sense, is a very important parameter. Generally, an iterative method is needed to determine 
the value of λ . However, it is very computational expensive. As pointed out in [26], for 

typical video coding applications λ  is insensitive to different frames of a video sequence; 

thus a constant λ  of 20 is adopted in the simulations. 

The simulations were carried out by incorporating various motion estimation algorithms 
into an H.263 based MC-DCT video coding system. To be fair in the comparisons, we fixed 
the overall coding bit-rate at 4000 bits per frame for CIF-Claire and CIF-Salesman. For QCIF 
format, two block sizes are conducted for each sequence, which are assigned two different 
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bit-rates per frame, respectively. The bit rates preset are 2000 bits (8×8) and 1600 bits (16×16) 
for Forman, 1400 bits and 1000 bits for Mother & Daughter, and 2000 bits and 1300 bits for 
Carphone, respectively. 
 

CIF-Claire Sequence, fixed coding bit-rate at 
4000 bits 

Block size, 16 x 16  

MC 
psnr 

MC+Res psnr MV rate Res rate 
Overall 

rate 

Full Search 38.86 39.67 1620 2424 4048 

Half Pixel 40.32 40.92 2089 1989 4078 

Half Pixel(RD) 39.23 41.53 1349 2637 3986 

Half Pixel(RD) + 
KF(en) 

39.46 41.79 1349 2637 3986 

Half Pixel(RD) + 
KF(em) 

39.57 42.43 1133 2686 3849 

RD Optimal 38.82 41.76 1326 2628 3954 

RD + KF(en) 38.93 41.82 1326 2628 3954 

RD + KF(em) 39.20 42.33 947 2784 3731 

Table 3. Comparisons of compression performance, in terns of PSNR, Overall Bit Rate, and 
MV Bit Rate for various motion estimation algorithms using the CIF-Clair 100 frames under 
15 frames/s 
 

CIF-Salesman Sequence, fixed coding bit-rate at 
4000 bits 

Block size, 16 x 16  

MC 
psnr 

MC+Res psnr MV rate Res rate 
Overall 

rate 

Full Search 37.42 40.56 1042 2802 3844 

Half Pixel 38.94 41.28 1268 2770 4038 

Half Pixel(RD) 37.88 40.82 1043 2773 3816 

Half Pixel(RD) + 
KF(en) 

38.23 41.13 1043 2773 3816 

Half Pixel(RD) + 
KF(em) 

38.78 41.67 977 2786 3763 

RD Optimal 37.33 40.93 1028 2805 3833 

RD + KF(en) 37.45 41.16 1028 2805 3833 

RD + KF(em) 38.54 41.51 950 2878 3828 

Table 4. Comparisons of compression performance, in terns of PSNR, Overall Bit Rate, and 
MV Bit Rate for various motion estimation algorithms using the CIF-Salesman 100 frames 
under 15 frames/s 

The averaged results for 100 frames of CIF format sequences are summarized in Tables 3 
and 4. The Kalman-based R-D motion estimation approach outperforms the MSE-optimal 
and conventional RD algorithms in terms of PSNR. Since the Kalman filter has fractional pel 
accuracy with the rates of integer motion vector, it achieves significant PSNR improvement, 
as expected. When the integer-based Kalman filter is compared to the motion estimation 
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methods in half pixel accuracy, it still achieves better PSNR, but not so significantly. It can 
be seen that the Kalman filter with half pixel accuracy performs better slightly than that 
with integer pixel accuracy. This may be due to the limitation of bilinear interpolation; i.e., 
the accuracy improvement is saturated when too many interpolations are performed. The 
performance may be further enhanced with the advanced interpolation filters [45,46]. 
 

QCIF-Foreman Sequence, fixed coding bit-rate at 

2000 bits 

Block size, 8 x 8  

MC 

psnr 
MC+Res psnr MV rate Res rate 

Overall 

rate 

Full Search 32.37 33.49 1274 776 2050 

Half Pixel 33.75 34.38 1438 626 2064 

Half Pixel(RD) 33.44 34.57 1162 844 2006 

Half Pixel(RD) + 

KF(en) 
33.59 34.61 1162 844 2006 

Half Pixel(RD) + 

KF(em) 
33.71 34.93 1047 956 2003 

RD Optimal 31.83 34.27 1096 903 1999 

RD + KF(en) 31.92 34.33 1096 903 1999 

RD + KF(em) 32.11 34.62 1022 971 1993 

*MV: Motion Vector *MC：Motion Compensation. *Res：Prediction Residuals. (DFD) 

Table 5. Comparisons of compression performance, in terns of PSNR, Overall Bit Rate, and 
MV Bit Rate for various motion estimation algorithms using the QCIF-Foreman 100 frames 
under 10 frames/s 

 

QCIF-Foreman Sequence, fixed coding bit-rate at 

1600 bits 

Block size, 16 x 16  

MC 

psnr 
MC+Res psnr 

MV 

rate 
Res rate Overall rate 

Full Search 30.75 32.79 635 970 1605 

Half Pixel 31.83 33.55 728 893 1621 

Half Pixel(RD) 31.69 33.72 655 948 1603 

Half Pixel(RD) + 

KF(en) 
31.76 33.79 655 948 1603 

Half Pixel(RD) + 

KF(em) 
31.89 33.97 604 993 1597 

RD Optimal 30.62 33.13 583 1028 1611 

RD + KF(en) 30.72 33.39 583 1028 1611 

RD + KF(em) 31.04 33.67 553 1051 1604 

Table 6. Comparisons of compression performance, in terns of PSNR, Overall Bit Rate, and 
MV Bit Rate for various motion estimation algorithms using the QCIF-Foreman 100 frames 
under 10 frames/s 
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At the same bite rate level and integer pixel accuracy, the enhanced algorithm achieved an 

average of 1.23 dB gain over MSE-optimal and 0.34 dB gain over the conventional RD. The 

embedded version achieved an average of 1.77 dB gain over MSE-optimal, and 0.88 dB gain 

over the conventional RD. Note that the new methods have lower bit rate. Tables 5-7 

summarized the average results for QCIF format sequences. For both block sizes of 16×16 

and 8×8, the Kalman filter-based R-D motion estimation approaches achieve significant 

PSNR improvement. Particularly, the embedded Kalman R-D algorithm achieves the best 

performance due to its ability in reduction of motion vector rate as well as the compensation 

distortion. 

 

 
 

QCIF-Mother & Daughter Sequence, fixed coding bit-rate at 

1400 bits 

Block size, 8 x 8  

MC 

psnr 
MC+Res psnr 

MV 

rate 
Res rate Overall rate 

Full Search 37.21 38.79 762 654 1216 

Half Pixel 38.57 39.88 816 603 1419 

Half Pixel(RD) 37.72 40.14 638 670 1308 

Half Pixel(RD) + 

KF(en) 
37.98 40.66 638 670 1308 

Half Pixel(RD) + 

KF(em) 
38.32 41.98 463 694 1157 

RD Optimal 37.15 40.28 431 705 1136 

RD + KF(en) 37.23 41.31 431 705 1136 

RD + KF(em) 37.55 42.06 216 806 1022 

 

Table 7. Comparisons of compression performance, in terns of PSNR, Overall Bit Rate, and 
MV Bit Rate for various motion estimation algorithms using the QCIF-Mother & Daughter 
120 frames under 10 frames/s 

Figures 15 and 16 compare the MSE-Optimal, conventional R-D, enhanced Kalman R-D and 

embedded Kalman R-D schemes with both integer and half pixel accuracy in terms of PSNR 

with approximately fixed bit rate for each sequence, respectively. Figures 17 to 19 compare 

these algorithms in terms of bit rate with approximately fixed PSNR for each sequence, 

respectively. The results indicate that the proposed schemes achieve better rate-distortion 

performance. 

The motion vector fields generated by various algorithms are shown in Figures 20-21, 

respectively. The test sequences contain mainly small rotation and camera panning. This 

algorithm produces smoother motion fields because of the filtering effect of Kalman 

filter. 
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Fig. 15. Comparisons of PSNR performance using the QCIF-Froeman sequence, 120 frames 
at 10 frames/s, fixed coding bit-rate at 2000 bits. Block size = 8 x 8, search range = [-15, 16]. 
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Fig. 16. Comparisons of PSNR performance using the QCIF-Froeman sequence, 120 frames at 
10 frames/s, fixed coding bit-rate at 2000 bits. Block size = 16 x 16, search range = [-31, 32]. 
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Fig. 17. Comparisons of bit-rate performance using the CIF-Salesman sequence, 120 frames at 
10 frames/s, fixed average PSNR Full Search at 39.93 dB, Half Pixel Search at 40.01 dB, Half 
Pixel RD at 39.92 dB, Half Pixel RD with KF(En) at 39.95 dB, Half Pixel RD with KF(Em) at 
40.05 dB, RD-Optimal at 39.88 dB, RD with KF(En) at 39.95 dB, and RD with KF(Em) at 39.98 dB. 
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Fig. 18. Comparisons of bit-rate performance using the QCIF-Mother & Daughter sequence, 
200 frames at 10 frames/s, fixed average PSNR Full Search at 38.80 dB, Half Pixel Search at 
38.82 dB, Half Pixel RD at 38.75 dB, Half Pixel RD with KF(En) at 38.81 dB, Half Pixel RD 
with KF(Em) at 38.89 dB, RD-Optimal at 38.77 dB, RD with KF(En) at 38.83 dB, and RD with 
KF(Em) at 38.87 dB. 
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Fig. 19. Comparisons of bit-rate performance using the QCIF-Carphone sequence, 120 
frames at 10 frames/s, fixed average PSNR Full Search at 37.23 dB, Half Pixel Search at 37.32 
dB, Half Pixel RD at 37.20 dB, Half Pixel RD with KF(En) at 37.29 dB, Half Pixel RD with 
KF(Em) at 37.37 dB, RD-Optimal at 37.14 dB, RD with KF(En) at 37.28 dB, and RD with 
KF(Em) at 37.30 dB. 

 

 

 

Fig. 20 (a). Motion field estimated by the 
conventional Half Pixel scheme on the QCIF-
Foreman sequence frame 204. The PSNR 
quality is 34.56 dB and it requires 1230 bits to 
encode using the H.263 Huffman codebook. 

 
 

Fig. 20 (b). Motion field estimated by the Half 
Pixel with RD-Optimal on the QCIF-Foreman 
sequence frame 204. The PSNR quality is 
34.15 dB and it requires 1158 bits to encode 
using the H.263 Huffman codebook. 
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Fig. 20 (c).  Motion field estimated by the Half 
Pixel RD with Enhanced Algorithm scheme 
on the QCIF-Foreman sequence frame 204. 
The PSNR quality is 34.27 dB and it requires 
1158 bits to encode using the H.263 Huffman 
codebook. 

 
 
Fig. 20 (d).  Motion field estimated by the 
Half Pixel RD with Embedded Algorithm 
scheme on the QCIF-Foreman sequence 
frame 204. The PSNR quality is 34.66 dB and 
it requires 889 bits to encode using the H.263 
Huffman codebook. 

 

 

 
Fig. 21 (a). Motion field estimated by the 
conventional Half Pixel scheme on the QCIF-
Mother & Daughter sequence frame 28. The 
PSNR quality is 34.83 dB and it requires 1476 
bits to encode using the H.263 Huffman 
codebook. 

 
 
Fig. 21 (b).  Motion field estimated by the 
Half Pixel with RD-Optimal scheme on the 
QCIF- Mother & Daughter sequence frame 
28. The PSNR quality is 34.52 dB and it 
requires 1112 bits to encode using the H.263 
Huffman codebook. 
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Fig. 21(c). Motion field estimated by the 
Half Pixel RD with Enhanced Algorithm 
scheme on the QCIF- Mother & Daughter 
sequence frame 28. The PSNR quality is 
34.67 dB and it requires 1120 bits to encode 
using the H.263 Huffman codebook. 

 
 

Fig. 21(d). Motion field estimated by the Half 
Pixel RD with Embedded Algorithm scheme 
on the QCIF- Mother & Daughter frame 28. 
The PSNR quality is 34.95 dB and it requires 
868 bits to encode using the H.263 Huffman 
codebook. 

 
In general, the Kalman filtering is computationally expensive. However, both the 

computational complexities of the enhanced and embedded algorithms are relatively small 

because the calculation of Kalman filtering can be significantly simplified. The extra 

computational load required for the algorithms is summarized in Table 8 [47]. It indicates 

the extra computation introduced by the proposed method is small. 

 

Computational Complexity Motion Estimation 
Algorithms Additions Multiplications Bilinear interpolation 

Enhanced algorithm (per 
block) 

5 3 1 (8N2(×)+6N2(+)) 

Embedded algorithm (per 
search) 

5 3 1 (8N2(×)+6N2(+)) 

Table 8. Extra computation required by Kalman filtering for each algorithm 

4. Conclusions 

In this chapter, we have introduced two types of motion estimation based on Kalman filter, 

without and with rate-constraint. The first type employs the predicted motion information 

and the measured motion information to obtain an optimal estimate of motion vector. The 

predicted motion is achieved through the use of AR models which characterize the motion 

correlation of neighboring blocks. The measurement motion is obtained by using any 

conventional block-matching fast search scheme. The results indicate that the method 

provides smoother motion vector fields than that of the full search scheme, and saves 

computational cost significantly. 
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For the rate-constraint case, we have introduced two efficient Kalman filter-based R-D 
motion estimation algorithms in which a simple 1-D Kalman filter is applied to improve the 
performance of conventional RD motion estimation. Since equivalent Kalman filters are 
used in both encoder and decoder, no extra information bit for motion vector is needed to 
send to the decoder. The algorithm achieves significantly PSNR gain with only a slight 
increase of complexity. The enhanced algorithm is a post processing, and can be easily 
combined with any conventional R-D motion estimation schemes. The embedded algorithm 
can more effectively exploit the correlation of block motion.  
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