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Chapter

Novel Approaches in Meniscal 
Repair Utilizing Mesenchymal 
Stem Cells, New Generation 
Bioscaffolds and Biological 
Adhesives as Cell Delivery  
Vehicles
James Melrose

Abstract

Mesenchymal stem cells (MSCs) have been widely applied in the repair of the 
knee-joint menisci which have a limited ability to undergo spontaneous repair. The 
menisci stabilise the knee-joint and are weight-bearing structures subjected to con-
siderable tensional and compressive forces during flexion-extension and torsional 
loading of the knee. Traumatic loading of the knee-joint menisci can generate a 
number of lesions in the inner avascular meniscal regions. These have a limited 
capability of intrinsic repair and predispose the underlying articular cartilages to 
premature osteoarthritis. A number of strategies have therefore been developed 
for meniscal repair employing MSCs, bioscaffolds, hydrogels, biological glue cell 
delivery systems and agents which promote cell proliferation/matrix synthesis. 
Meniscal implants have also been developed in combination with the above proce-
dures. It is important that meniscal defects be repaired not only to maintain knee-
joint stability but also to prevent further degenerative changes in other knee joint 
tissues. Degenerative menisci contribute degradative proteinases and inflammatory 
mediators to the total synovial degradative proteinase pool. Partial or total surgical 
removal of the menisci is not a solution since this leads to premature osteoarthritis. 
Meniscal integrity needs to be maintained or repair strategies implemented in a 
timely manner to maintain knee joint function.

Keywords: meniscal repair, mesenchymal stem cell, bioscaffolds, biological glues, 
meniscal implants/allografts

1. Introduction

1.1 Meniscal structure: function

The knee joint menisci provide joint stability during weight bearing, the curved 
superior meniscal surfaces provide congruity between the curved femoral condyle 
and flat tibial articular cartilages [1]. The menisci act as shock absorbers and protect 
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the weight bearing articular tissues from excessive point loading [2] transferring 
forces between the femoral and tibial joint surfaces, transmitting 50–90% of the 
total knee joint load during weight-bearing [3, 4]. The structural organisation of the 
meniscus is designed to withstand circumferential hoop stresses which are gener-
ated within the meniscal tissue to dissipate tensile stresses which are transferred 
along the circumferential meniscal collagen fibre networks counteracting the 
tendency of the menisci to be extruded peripherally when the knee joint is sub-
jected to compressive loading [5]. Energy is absorbed into the collagen fibres by the 
dynamic expulsion of joint fluid from the aggrecan-hyaluronan macro-aggregate 
networks entrapped within the meniscal collagenous networks. The menisci are 
fibre reinforced structures stiffening and protecting them from damage by exces-
sive deformation during compressive loading [6] (Figure 1a and b).

The contribution of intact menisci in knee load-bearing is emphasised from the 
increase in contact forces in the underlying articular cartilages of up to 350% fol-
lowing partial or total meniscectomy where as little as 16–34% of the intact menis-
cus may be removed [1, 3, 7]. Radial meniscal tears which extend to its periphery 
may result in significant contact forces being transmitted to the underlying articu-
lar cartilages which can damage these tissues [8].

Water (~70% wet weight) and collagen, (mainly type I, and lower amounts 
of type II, III and VI collagen constitute 60–70% of the meniscal dry weight) are 
major meniscal components [9–15]. Proteoglycans (aggrecan, decorin, biglycan, 
versican, fibromodulin, lumican, keratocan) and elastic microfibrillar glycopro-
teins are quantitatively minor meniscal extracellular matrix (ECM) components 
but convey essential functional properties [14–16]. The meniscus is a complex 
fibre-reinforced structure designed to withstand multidirectional tensional and 
compressive forces (Figure 1a and b). The outer third of the meniscus (red zone) is 
served by a fine capillary network. Defects in this region of the meniscus have the 
ability to undergo spontaneous repair however the inner two thirds of the meniscus 
(white zone) is avascular and has a limited ability to undergo repair (Figure 2a). 
The outer zone of the meniscus is a collagen rich fibrocartilaginous tissue while the 
inner zone contains higher proteoglycan levels and is cartilaginous (Figure 2b). 
Immunolocalisation of perlecan, HSPG2, a large modular HS multifunctional pro-
teoglycan demonstrates a strong localisation pattern in this inner region. Perlecan is 
marker of chondrogenesis [17–20].

Supraphysiological overload of the menisci may generate defects in the inner 
meniscus diminishing its weight bearing capability and ability to resist tensional 
stresses and it becomes less able to dissipate such forces to prevent overloading 
of the underlying articular cartilage. A number of characteristic tears (bucket-
handle, degenerate) occur in the inner meniscal region. Longitudinal and radial 
tears can also affect the outer meniscus (Figure 2c). This can also damage the 
underlying articular cartilages formerly protected by the menisci leading to 
degenerative changes and impacting on the knee’s ability to act efficiently as an 
articulating weight bearing structure. Development of premature osteoarthritis 
(OA) may also result in such circumstances [21, 22]. Menisci in OA knees are also 
subject to ectopic focal depositions of calcium in cyst like structures (Figure 2d). 
Fibrillation of the inner meniscal region is also a common degenerative feature 
in OA. Meniscal cell clustering adjacent to such fibrillations is also common and 
may indicate endogenous adult stem cell activity in response to altered biome-
chanics/nutrition in this region. Cell clustering has also been observed adjacent 
to surface fibrillations in OA articular cartilage and adjacent to lesions in the 
annulus fibrosus of the degenerate intervertebral disc [23–29]. Such cell cluster-
ing may be indicative of an incomplete frustrated repair response by resident 
adult stem cells.
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Many strategies have consequently been developed to effect meniscal repair 
using a number of cell types including mesenchymal stem cells (MSCs) sourced 
from a number of tissues (Table 1), and combinations of bioscaffolds, hydrogels, 

Figure 1. 
Diagrammatic representation of the collagenous organisation in a meniscus. (i) The meniscus contains a 
complex arrangement of radial collagen fibre bundles in the outer meniscus, (ii) thick radial tie bundles 
internally as well as (iii) finer collagen fibre bundles of collagen in lamellar sheets in the inferior and 
superior meniscal surfaces. Notice that the inferior lamina is significantly thicker than the superior lamina. 
Vertical radial sections through 2 year old lateral and medial ovine menisci stained with picrosirius red 
and viewed under polarised light depicting collagen bundles which are highly refractile due to their ordered 
collagenous structure appearing as bright rod-like structures (b). Picrosirius red predominantly visualises 
the major fibrillar meniscal collagen, type I collagen. Methodology for Picrosirius red staining is as described 
earlier [78].
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bioadhesive cell delivery systems and bioactive agents which stimulate the resident 
and exogenous cells applied for therapeutic purposes (Tables 2 and 3).

In-vitro experiments have shown that co-culture of bone marrow derived stro-
mal stem cells with meniscal cells increases cell proliferation and matrix synthesis 
[30]. Type I and type II collagen and aggrecan mRNA expression were elevated 
and ECM protein levels increased (Figure 3a and b). Significantly, meniscal cells 
stimulated with FGF-2 or FGF-18 in 3D pellet culture also produced elevated levels 
of these ECM components (Figure 3c and d). MSCs are believed to act both through 
transfer of material directly to resident cell populations through cell-cell contact 

Figure 2. 
Structural features evident in the normal and degenerate meniscus. Diagrammatic representation of the 
vascularisation of a vertically sectioned meniscus showing the extensive capillary network in the outer 
meniscal red zone and lack of a blood supply to the inner two thirds of the meniscus (a). The inner meniscus 
is a cartilage like tissue which is well delineated in a newborn meniscus by immunolocalisation of perlecan, 
HSPG2, a chondrogenic marker proteoglycan (b). Menisci are subject to a number of structural defects which 
are summarised diagrammatically (c). Histochemical visualisation (H & E) and toluidine blue staining, of 
some features of degenerate menisci (d). Focal deposition of small calcium deposits in a cyst like formation 
in the outer meniscus zone in a 53 year old human meniscus. Fibrillation of the inner meniscal zone and cell 
cluster formation. In the normal meniscus single cells are distributed throughout the meniscus with no clustering.
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MSC source Lesion or study type References

Intra-articular injection synovial MSCs Avascular tear [143]

Rabbit meniscal MSCs Central meniscal defect [155]

Synovium derived MSCs Longitudinal tears and punch holes [142, 144, 

145]

Targeted intra-articularly delivered 

super-paramagnetic FeO labelled 

adipose MSCs

Massive lesions encompassing the avascular 

zone

[146]

Bone marrow, adipose, synovium, 

meniscus derived MSC delivery to tears 

in fibrin glue/gel/clot, scaffold

Literature Review of MSCs used in meniscal 

repair in multiple animal models

[44, 45]

Bone marrow and meniscal derived 

MSCs

In vitro cell culture [148]

Blood vessel derived MSCs Avascular tears [151]

Bone marrow derived MSCs and fibrin 

glue

Closure of meniscal tears [149]

Collagen membrane wrapped meniscal 

defects injected with MSCs

Tears in avascular zone [156]

Co-cultured synovial stem cell-

meniscal cell cultures

In-vitro demonstration of superior cell 

proliferation with co-culture compared to 

monoculture

[43]

Systematic review of the use of MSCs 

in meniscal repair

Promising results in human meniscal repair [152]

Comparison of autologous MSCs and 

meniscal cells for meniscal repair

Rabbit meniscal model punch defect, 

successful repair of meniscal defects in OARSI 

grade 3.1 early OA tissues by both cell types

[46–48]

hMSCs delivery in a decellularized 

ECM to meniscal defects in a nude rat 

model

Delivery system appropriate for repair 

purposes

[158]

Review of hMSCs in human meniscal 

repair

Autologous adipose tissue-derived stem cells 

or culture-expanded bone marrow-derived 

stem cells were both suitable for meniscal 

repair

[153]

Prospective, open-label first-in-human 

safety clinical trial of hMSCs delivered 

in collagen scaffold in patients with an 

avascular meniscal tear

Repair of torn avascular meniscal cartilage by 

undifferentiated hMSCs harvested from iliac 

crest bone marrow biopsy. Significant clinical 

improvement over 2 years, no recurrence of 

meniscal tears

[157]

3D co-culture meniscal cell: equine 

MSCs in collagen type I tissue derived 

small intestinal ECM bioscaffold

Favourable in-vitro results obtained with cells 

of meniscal cellular morphology attained by 

MSCs and expression of type I, II collagen

[160]

Allogeneic adipose derived stem cells 

in scaffold free tissue engineered 

construct

Rabbit model using 1.5 mm circular defects 

in anterior horn of medial menisci filled with 

MSCs in bioscaffold gave positive results

[147]

A review of cell based approaches in 

meniscal repair

An assessment of mono and co-culture 

approaches with meniscal cells and MSCs in 

bioscaffolds and scaffold free approaches

[154]

3D MSC: meniscal fibrochondrocyte 

co-cultures for meniscal repair

Change in MSC morphology to a 

fibrochondrocytic phenotype is conducive to 

meniscal repair

[159]

Table 1. 
Mesenchymal stem cell (MSC) sources used in therapeutic approaches for meniscal repair.
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Scaffolds Lesion and study type References

Myoblast loaded PLGA mesh 

scaffold

Avascular tears [172]

HYADD4® HA hydrogel cell 

delivery

Radial-longitudinal tears [173]

Electro spun type I collagen 

scaffolds and vascular/avascular 

region meniscal cells

Avascular meniscal tears [174]

Radio opaque electro spun 

scaffold

Meniscal regrowth [176]

Wrapping of meniscal defects 

with collagen membrane and 

injection of MSCs

Tears in avascular zone [156]

Aligned electro spun nano fibrous 

scaffold

Radial tear [178]

Collagen gel scaffold or HA 

hydrogel delivery of meniscal, 

synovial and adipose cells

Bucket handle tear [177]

Type I collagen scaffold/

infrapatellar fat pad

Anterior 2 mm round holes [179]

Chondrocyte + PLGA mesh 

scaffold + PRP

Chondrocytes evaluated [180]

Meniscal cells in fibre reinforced 

collagen-GAG scaffold + PRP

Gene profiling study [168]

Method/polymer Details of technique References

Regen Menaflex™ collagen meniscal implant Resorbable meniscal implant, 

however the FDA removed approval 

for device in 2013

[87]

Actifit synthetic meniscal substitute to stabilise 

knee

Post meniscectomy allogeneic 

implant with cell infiltration into 

implant from meniscal wall

[88]

Medial meniscus allograft transplantation (MAT) 

using a modified bone plug

Meniscal allograft harvested using 

an arthroscopic bone plug technique

[100]

Anatomically shaped polycarbonate-urethane 

meniscal implant

Artificial meniscal implant designed 

for the preservation of articular 

cartilage

[93]

Polycarbonate-urethane implant Meniscal replacement [91]

Thermoplastic polyurethane implant Meniscal replacement [98, 219]

Salt modified crosslinked PVA hydrogel meniscus 

cell implant

Meniscal shaped flexible implants 

for meniscal replacement

[95]

Polycaprolactone supplemented with slow release 

microbeads containing CTGF and TGF-β3

3D printed meniscus [103, 106]

Interpenetrating network gels of poly(2-

acrylamido-2-methylpropanesulfonate) and 

polyacrylamide

3D printed meniscal replacement [104]

Table 2. 
Meniscal allografts and implants used for meniscal repair and replacement.
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Scaffolds Lesion and study type References

Juvenile meniscus fragments Avascular tears [181]

A review of biomaterials used in 

meniscal repair

An assessment of state of the art materials 

currently in use in meniscal repair

[197]

Tissue derived ECM scaffolds Biological scaffolds derived from cell and 

tissue-derived ECM have shown great promise in 

tissue engineering maintaining the biological and 

biomechanical properties, structure, and function 

of the native meniscus

[198]

A comprehensive review of 

hydrogels used in meniscal repair

A number of hydrogels exhibiting high water 

regain provide a 3D microenvironment with 

variable topographical properties typical of 

meniscal tissue and useful platforms for cellular 

colonisation. Controlled delivery of bioactive 

molecules has been built into the design of some of 

these scaffolds to enhance repair processes

[200]

Decellularised, micronized ECM 

scaffolds for improved meniscal 

repair

Decellularised menisci cryoground into a 

powder was cytocompatible with meniscal 

fibrochondrocytes, synoviocytes. Cellular 

infiltration and proliferation demonstrated the 

ability of this scaffold to promote cellular survival, 

migration, and proliferation and meniscal repair

[198]

Rapidly dissociation of autologous 

meniscal cells enhances their 

healing properties

Bovine meniscal cells were isolated by rapid 

dissociation using collagenase and applied in a 

fibrin gel to a radial meniscal tear. This procedure 

enhanced the healing properties of the seeded cells 

inserted into the meniscal defect

[199]

Bioactive supplements added to scaffolds

Multiple injection of 

leukoreduced PRP

ACL and meniscal repair [165]

10% human serum, 5% PRP, 5% 

autologous plasma

Non-vascular meniscal lesions [166]

Human chondrocyte-seeded 

PLGA scaffold + PRP

Testing of biocompatibility of bio scaffold in nude 

mice

[170, 197]

PRP plasma for anterior cruciate 

ligament and meniscal repair

A review of clinical and basic science strategies 

aimed at biological augmentation of the healing 

response

[120]

Platelet-rich plasma for open 

meniscal repair in young patients

Effective treatment of horizontal tears extending 

into the avascular zone

[171]

Platelet-rich fibrin for meniscal 

repair

PRP-fibrin promotes rabbit meniscus repair by 

meniscocyte Proliferation, migration, and ECM 

synthesis

[220]

Fibrin clot augmentation Fibrin clot augments meniscal repair [221]

Platelet rich fibrin clot Repair of horizontal meniscal defects [222]

Platelet rich plasma for meniscal 

repair

Prospective, randomized, double-blind, placebo-

controlled study evaluating healing of unstable 

complete vertical bucket handle meniscal healing, 

of unstable, complete vertical meniscal tears 

(Bucket Handle)

[169]
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Scaffolds Lesion and study type References

Administration of an EGF 

inhibitor in a customised collagen 

bio scaffold

Meniscal regeneration in a rabbit model [223]

Administration of Simvastin in 

meniscal repair

Repair of avascular defects in a rabbit meniscal 

defect model

[224]

Overexpression of TGF-β via 

rAAV-mediated gene transfer

Healing of human meniscal lesions [183]

rAAV overexpression of TGF-β Complex meniscal tears [183]

Transduced IGF-1 over-

expressing meniscal cells

Avascular tears [184]

Liposome gene transfer IGF-1 

meniscal cells

Avascular tears [185]

Chondrocyte, VEGF, BMP-7, 

matrigel, HA cultures

Inner avascular tears [186]

Intra-articular injection of 

microRNA-210

Avascular tears [187]

Fibrin-CTGF stimulates meniscal 

cell to repair inner zone meniscal 

defects

Avascular tears [188]

Serum, HA, TGF-β3 

supplemented scaffold directed 

repair of meniscal tears

Directed repair of meniscal tears [182]

Non-viral gene transfer to 

meniscal cells and FGF-2 

overexpressing meniscal cells

FGF-2 transduced meniscal cells in alginate beads [190, 191]

VEGF stimulation of resident 

meniscal cells

Avascular tears [194]

TGF-β1 induction of meniscal cell 

proliferation and migration to a 

meniscal defect

Micro wound assay system [195]

OP-1 putty in punch biopsy 

meniscal holes

2 mm holes—inner meniscus [196]

Gelatin hydrogel + FGF-2 Horizontal tears [192]

HA-collagen composite + PRP 2 mm holes, implant [47, 193]

Type I collagen scaffold and 

infrapatellar fat pad

Repair of 2mm meniscal defects [179]

Intra-articular injection of micro 

RNA 210

Promotes angiogenesis and repair of avascular 

meniscal defects

[187]

Use of BMP-7 for meniscal repair healing of circular defects in avascular region by 

OP-1 putty

[186]

VEGF, BMP-7, Matrigel™, 

hyaluronic acid, in vitro cultured 

chondrocytes for meniscal repair

Healing of defects in the inner two thirds of the 

meniscus

[186]

Electro spun gelatin/poly(lactic 

acid-co-glycolic acid) bilayered 

nanofiber scaffolds for meniscal 

repair

PLGA nanofibre reinforced scaffolds have useful 

properties and are compatible as a substrate for 

meniscal repair

[175]
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and also by secretion of trophic factors which both stimulate tissue regenerative 
processes [31–42]. Co-cultures of synovial stem cells [43] and MSCs [44–48] with 
meniscal cells have been evaluated in a number of biomatrices for meniscal repair 
purposes (Table 1).

Scaffolds Lesion and study type References

HYADD4 based hydrogel for 

meniscal repair

Intra-articular administration of HYADD4 

hydrogel to human knees containing 

degenerative meniscal tears improved VAS pain 

clinical indices and improved knee functionality 

based on WOMAC scores

[173]

Electro spun collagen bio 

scaffolds for meniscal repair

Electro spun collagen type I scaffolds 

seeded with human meniscal cells placed 

in longitudinal avascular meniscal defects 

stimulated meniscal repair as assessed by 

histology, immunohistochemistry, mechanical 

testing, and MRI

[174]

Aligned electro spun nano fibrous 

scaffolds for meniscal repair

Repair of meniscal radial tears using aligned 

electro spun Nano fibrous scaffolds seeded with 

meniscal fibrochondrocytes

[178]

Non-viral gene transfer systems 

of possible application in 

meniscal repair

A comparison of 18 non-viral gene transfer 

systems to identify an efficient transfection system 

for primary cultures of juvenile and adult human 

meniscal fibrochondrocytes. Overexpression 

of FGF-2 following transfection with FGF-2 

increased meniscal fibrochondrocyte proliferation 

but not GAG synthesis

[190, 191]

Bio adhesives

Pre-treatment of meniscal 

surfaces with collagenase and 

TGF-β3 prior to use of bio 

adhesives for meniscal repair

Enzymatic pre-treatment improves effectiveness 

of bio adhesives

[225]

Biodegradable hyper-branched 

adhesives for meniscal repair

Sealing of meniscal tears [211]

CS-bone marrow tissue adhesive Novel bone marrow derived CS adhesive suitable 

for securing repair tissue interfaces

[214]

3D PGA-HA bio scaffold 

stabilized with fibrin

ECM repair by meniscal cells [189]

New generation meniscal 

adhesives

Inner avascular lesions [211]

Re-attachment of horizontal 

meniscal tears

Fibrin re-attachment [215]

Mussel based bio adhesives bio adhesives containing bactericidal and 

fundgicidal activity and improved wet strength for 

reattachment of surgical incisions

[216, 217]

Abbreviations: PRP, platelet rich plasma; rAAV, recombinant Adeno-Associated Virus; PGA, polyglycolic acid; 
HYADD4®, hyaluronan derivative; PLGA, polylactic-co-glycolic acid, CTGF, connective tissue growth factor; VEGF, 
vascular endothelial cell growth factor; OP-1, osteogenic protein-1; CS, chondroitin sulphate; FGF-2, fibroblast 
growth factor-2; TGF-β, transforming growth factor-β.

Table 3. 
Meniscal repair using bio scaffolds, bioactive substances and bio adhesives.
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2. Meniscus preserving therapies

2.1  Why it is important to preserve the knee joint meniscus? A historical 
perspective

The meniscus was historically considered a vestigial muscle remnant and little 
importance was attributed to this structure for knee joint function. Consequently, 
radical surgery and total removal of the meniscus were common surgical prac-
tice in the 1980s with serious long-term consequences for the meniscectomised 
knee. It should have been obvious from meniscectomy studies used to induce OA 

Figure 3. 
Co-culture of meniscal cells and bone marrow derived mesenchymal stromal cells induces cell proliferation and 
ECM production and is recapitulated to some degree by treatment of meniscal cells with FGF-2 and FGF-18. 
Immunolocalisation of meniscal matrix components in micro-mass pellet culture. Immunolocalisation of type I 
collagen, type II collagen and aggrecan (ACAN) in meniscal-MSC micro-mass pellet co-cultures (a). Negative 
controls of pellets using rabbit IgG (MSC pellet) and mouse IgG (meniscal cell pellet) for immunolocalisation 
in the absence of primary antibody. Anti-type I collagen (clone I-8H5) and anti-type II collagen (clone 
II-4CII) were from MP Biomedicals, Ohio, USA. A rabbit polyclonal antibody (pAb) # 2194 to aggrecan 
G1 domain was a gift from Dr. J Mort Joint Diseases laboratory, Shriners, Hospital for Children, McGill 
University, Montreal, QC, Canada [218]. PAb 2194 was raised against a mixture of four aggrecan specific G1 
peptide-ovalbumin conjugates including HDNSLSVSIPQPSGGC, RVLLGTSLTIPCYFIDPMHPVTTAPS, 
TEGRVRVNSAYQDKGGC and SSRYDAICYTG (single letter amino acid code). Morphometric image analysis 
of meniscal matrix components produced in pellet culture. Quantitation of type I and type II collagen and 
aggrecan immunolocalisation levels in meniscal: MSC co-cultures using Adobe Photoshop CS4 morphometric 
image analysis software as integrated pixel density. Mean values ± SD for 3 pellet sections is shown (b). 
Immunolocalisation of matrix components produced by meniscal cells in pellet cultures stimulated with 
FGF-2 and FGF-18. Immunolocalisation of Type I and Type II collagen and aggrecan (ACAN) in meniscal 
cell micromass pellet cultures stimulated with FGF-2 and FGF-18 (a–c) for 21 days (c). Morphometric image 
analysis of meniscal matrix components using Adobe Photoshop CS4 morphometric image analysis software (d).
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experimentally in animals that surgical removal of the menisci from knee joints was 
not a benign procedure [49–74]. However it took time for these animal findings to 
be translated to human studies [59–61, 65, 67, 70, 72] and for these experimental 
findings to be fed through to human clinical practice and the importance of the 
meniscus in entirety in knee joint articulation, weight bearing and load distribu-
tion became established. Even so, publications were still appearing as late as 2016 
emphasising the importance of the preservation of the knee joint menisci to ensure 
optimal knee joint function three decades after meniscal removal had been shown 
to induce degenerative changes in other knee joint tissues [75].

Currently, the consensus in the surgical treatment of meniscal tears is to preserve 
as much functional meniscal tissue as possible to preserve knee joint function [76].

The menisci play critical protective roles for the knee joint articular cartilages 
through shock absorption and load distribution and also have important roles 
to play in proprioception and balance [5]. The ESSKA (European Society for 
Sports Traumatology, Knee Surgery and Arthroscopy) MENISCUS CONSENSUS 
INITIATIVE was initiated in 2014 to find a European consensus on the treatment of 
meniscus pathologies [76].

Further studies in animals [73, 77–79] established a more direct contribution 
from meniscal degeneration to joint structures globally during degenerative condi-
tions such as OA and RA. During the development of arthritic conditions in animals 
[73, 77, 79] and humans [80] tissue proteoglycans become fragmented through 
proteolytic degradation and this reduces the weight bearing and articulatory 
properties of the articular cartilages and menisci and may even impact on subchon-
dral bone [80]. Matrix metalloproteases (MMPs), ADAMTS (A Disintegrin and 
Metalloproteinase with Thrombospondin motifs)-4 and ADAMTS-5 produced by 
articular chondrocytes have a major impact on aggrecan and other cartilage proteo-
glycans reducing the weight bearing properties of the knee joint articular cartilages. 
The increase in synovial degradative protease pool during OA and RA was previ-
ously attributed to the articular chondrocytes which respond to inflammatory 
cytokines in the arthritic joint by producing these degradative proteases. Recent 
in-vitro studies have however now shown that meniscal fibrochondrocytes also 
potently respond to interleukin-1 and tumour necrosis factor-α by producing sig-
nificant levels of MMPs (MMP-1, 2, 3, 9, 13), ADAMTS-4 and ADAMTS-5 and are 
a major cellular source of these components in the total global degradative enzyme 
pool present in synovial fluid [81–83]. Meniscal cells actually produce higher levels 
of these degradative components than articular chondrocytes, thus represent a 
previously unidentified therapeutic target in the treatment of OA and RA.

2.2 Meniscal implants

Partial or total meniscal replacement by collagen or synthetic allografts follow-
ing meniscectomy have yielded mixed results (Table 2) [84, 85]. Implants fall into 
two categories, (i) porous, resorbable implants which stimulate tissue regeneration 
and (ii) solid, non-resorbable implants which physically replace the meniscus [86]. 
The Regen Menaflex™ collagen total meniscal implant (CMI®, Ivy Sports Medicine) 
is a resorbable implant. A review of the CMI® by Hansen et al. in a 10 year follow up 
confirmed good clinical outcomes, solid integration of the CMI® with host tissue 
and it was concluded that the CMI® held promise for meniscal repair [87]. After 
a protracted series of re-reviews of experimental data, technical issues and pro-
tocols the FDA rescinded approval for the Menaflex® device in 2013. The Actifit® 
polymeric polyurethane partial implant (ORTEQ Sports Medicine) is a honeycomb 
scaffold that enables blood-flow through it providing a route for cellular in-growth 
as the body’s natural healing process takes place. Once the damaged section of the 
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meniscus surgically removed the implant is attached to an area of the remaining 
meniscus with a good blood supply [86]. This has improved knee joint function 
and reduced knee pain in patients for up to 5 years after implantation and a stable 
cartilage profile was achieved in 46.7% of patients but a relatively high failure rate 
was also reported [88–90].

An artificial Polycarbonate-urethane implant has been developed for replace-
ment of the medial meniscus [91–93]. NUsurface® have developed a polyethylene 
reinforced polycarbonate urethane total meniscal implant, approved for use in 
Europe since 2008 and in Israel since 2011 [94]. The safety and long-term perfor-
mance of the NUsurface implant is currently under evaluation in SUN (Safety Using 
NUsurface®) and VENUS (Verifying the Effectiveness of the NUsurface® System) 
clinical trials in the USA.

Salt modified cross-linked PVA based hydrogels seeded with meniscal cells have 
been evaluated for meniscal repair [95] as have polyglycolic acid implants seeded 
with chondrocytes [96] and (poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) 
meniscal implants seeded with fibrochondrocytes [97].

Biodegradable thermoplastic polyurethane Estane® polymer (Lubrizol Corp, 
USA) porous implants have been evaluated in dogs as a meniscal replacement [98]. 
Colonisation of the implant by resident meniscal synovial cells from the periph-
eral attachments, laying down of matrix components within the implant and the 
biointegration of the implant to the peripheral meniscal attachment tissues were 
evaluated 3–6 month post implantation. This demonstrated that the implant filled 
completely with meniscal tissue as demonstrated by toluidine blue staining for 
proteoglycan, and for type II collagen and I by immunolocalisations using specific 
collagen antibodies. Histological evaluation of the tibia and femoral articular 
cartilages confirmed these tissues did not degenerate in the experimental period 
employed for this study.

A number of critical reviews on the performance of meniscal implants [86, 87, 
99–101] generally acknowledge that despite initial promising findings long-term 
and randomised controlled studies still need to be undertaken to confirm implant 
performance and reliability for meniscal repair and that the development of a 
meniscal replacement tissue of comparable performance to native tissue has yet to 
be achieved.

2.3 3D printing of knee joint menisci

Polycaprolactone has been used as a scaffolding material to form an exact 
meniscal replica using a 3D printer [102–105]. MRI scans of the meniscus are 
converted into a 3D image, data from this image is then used to drive a 3D printer, 
which produces a scaffold in the exact shape of the meniscus, down to a resolution 
of 10 μm. Differential release of CTGF and TGF-β3 to drive formation initially of 
the outer collagenous meniscal region then the more cartilaginous inner meniscus is 
achieved by slow release microspheres containing CTGF and TGF-β3 in the printed 
meniscus. These attract meniscal progenitor cells into the scaffold which lay down 
tissue gradients to form the collagenous outer and cartilaginous inner regions of the 
meniscus. In sheep this takes between 4 and 6 weeks to achieve meniscal replace-
ment and the scaffolding material then slowly redissolves to be eliminated by 
normal resorptive processes.

Interpenetrating networks of poly(2-acrylamido-2-methylpropanesulfonate) 
and polyacrylamide can be prepared by varying the ratio of polyacrylamide to 
cross-linker, to yield a gel with compression strength and elastic modulus of 61.9 
and 0.44 MPa. This gel has maximum compressive and tensile strengths of 93.5 
and 1.4 MPa respectively. This can be used in a 3D printer to prepare replacement 
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menisci from a patients X-ray computed tomography image of a meniscus [104]. 
Slow release of CTGF and TGF-β3 from a 3D printed meniscus stimulated endog-
enous stem/progenitor cells to undertake meniscal regeneration [106].

3. Meniscus regenerative therapies

3.1 Therapeutic use of mesenchymal stem cells in tissue repair

Mesenchymal stem cells (MSCs) have been the subject of intense investiga-
tion since their discovery in the 1960s due to their remarkable efficacy in tissue 
repair. MSCs were originally considered to migrate into sites of injury, where 
they engrafted, and differentiated into functional cells, resulting in regeneration 
of damaged or diseased connective tissue [107]. Findings from several hundred 
animal studies and many human clinical trials have challenged this mode of action. 
MSCs certainly exhibit a remarkable ability to repair diseased tissues, but it has 
become increasingly apparent that they do not engraft in enough numbers or for 
sufficient durations in tissue defects to provide tissue repair and clinical benefit 
directly. Additional modes of action for MSCs have therefore been proposed based 
on their ability to enhance resident cell viability and/or proliferation, reduce cell 
apoptosis [108, 109], and, in some cases, modulate immune responses [110–114]. 
These are due to paracrine effects due to secreted growth factors, cytokines, and 
hormones by the MSCs and cell-cell interactions mediated through communicating 
nanotubes, which convey extracellular vesicles containing reparative peptides/pro-
teins, mRNA, and microRNAs [107]. Caplan (2017) has proposed that stem cells 
should be renamed Medicinal Signalling Cells to more accurately reflect how they 
home in on injured or diseased tissue sites secreting bioactive factors with immu-
nomodulatory and trophic properties which direct the resident cells to undertake 
the tissue repair process, this may happen long after the MSCs have disappeared 
from the defect site [115].

MSCs have gained popularity for tissue repair with good reason [32, 116], and 
several applications have been developed for their use in the repair of connective 
tissues including the meniscus [117–125].

3.1.1 How do MSCs effect tissue repair?

Despite their widespread use in therapeutic applications the precise mode of 
action of MSCs remains elusive [126–130]. MSCs undergo engraftment in a defect 
site and differentiate to an appropriate cell lineage conducive to tissue repair [131] 
where they act as in-situ reservoirs of trophic factors [132] which direct resident 
cell populations to effect tissue repair [33, 40, 133–135]. It is un-resolved whether 
cell-cell contact is essential for MSC action in tissue repair [33, 117, 131]. The 
pluripotency of MSCs facilitates the differentiation of the engrafted cells to effect 
tissue repair [33, 133]. However, some evidence shows that only a small proportion 
of the MSCs actually integrate and survive in the host tissues and the predominant 
mechanism by which MSCs participate in tissue repair appears to reside in their 
paracrine activity through the production of a multitude of growth factors and 
cytokines [33, 132]. Lipid micro vesicles released by MSCs have also been shown to 
be an important means of cellular communication and occurs alongside the media-
tors secreted by the MSCs. Nano vesicles/exosomes transfer proteins, lipids and 
small RNAs to neighbouring cells, and through these mediate a variety of biological 
responses in addition to those mediated by soluble trophic factors supplied by the 
MSCs [35, 136, 137].
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3.2 Use of MSCs and chondrocytes for meniscal repair

The use of meniscal, chondrocytes or MSCs [138] in tissue engineering [139] 
using synthetic and biological scaffolds [101] containing bioactive factors [140] 
hold promise in the repair of the meniscus. Direct intra-synovial injections of MSCs 
have also been employed and meniscal regeneration and resolution of pain recorded 
[135, 141]. MSCs sourced from a number of tissues including synovial tissues 
[142–145], adipose [146, 147], bone marrow [45, 148–150] and blood vessels [151] 
have been applied in a number of applications to promote meniscal repair [44–48, 
152–158] (Table 1). Co-cultures of meniscal cells and MSCs have also been exam-
ined in meniscal repair strategies [43, 159, 160]. Furthermore, a diverse range of bio 
scaffolds have been developed containing CS have been developed to promote MSC 
differentiation in-vivo for varied applications in repair biology [161] (Table 3).  
These scaffolds are also appropriate for strategies aimed at meniscal repair but have 
yet to be applied in this area.

3.3 Co-culture of MSCs/meniscal cells and in-vitro stimulation with  
FGF-2/FGF-18

MSCs hold tremendous promise in regenerative medicine however their mode 
of action remains to be precisely established. Direct cell-cell transfer of stem cell 
material to resident cells has been shown to promote tissue repair processes, while 
soluble trophic factors secreted by the stem cells can also stimulate repair. In order 
to examine these possibilities further in the meniscus, bone marrow MSCs and 
meniscal cells have been co-cultured in micro-mass pellet cultures (Figure 3a 
and b). The influence of FGF-2 and FGF-18 on meniscal pellet cultures have also 
been assessed to mimic the action of soluble trophic factors (Figure 3c and d). 
Immunolocalisation of the extracellular matrix (ECM) components type I and II 
collagen and aggrecan (ACAN) have been used to assess the response of the menis-
cal cells to these treatments. Meniscal cell proliferation is significantly elevated by 
MSC co-culture, and deposition of type I collagen and type II collagen and ACAN 
elevated. FGF-2 and FGF-18 also increase these ECM components in pellet culture. 
Cross-talk between meniscal cells and MSCs (and FGF-2 and FGF-18 to a lesser 
extent) thus positively influence cell proliferation and matrix production conducive 
to tissue replenishment and repair which would be expected to be re-capitulated 
in-vivo upon administration of stem cells to meniscal defects. Thus direct cell-cell 
contact and soluble trophic factors both stimulate meniscal repair processes.

3.4 Bioscaffolds, bioactive substances and bioadhesives and meniscal repair

The outer and inner meniscus have widely differing repair capability correlat-
ing with their relative blood supply [162, 163] (Figure 1a). The inner meniscus 
has the poorest blood supply and consequently the weakest repair response. Many 
strategies have focussed on the development of measures to improve repair of the 
inner meniscus and they fall into three broad categories: (i) mesenchymal stem 
cells administered by direct intra-articular injection; (ii) bioscaffold, hydrogel or 
bioadhesive cell delivery vehicles for the delivery of chondrocytes, meniscal cells 
or MSCs into meniscal defects; and (iii) meniscal implants and allografts for total 
or partial meniscal replacement. These procedures are often undertaken with 
bioactive substances in the scaffold, hydrogel or bioadhesive delivery system which 
stimulate repair processes in therapeutic and resident cell populations (Table 3). 
An alternative approach is the co-culture of MSCs with chondrocytes or meniscal 
cells to pre-condition these or expand cell numbers prior to their incorporation 
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into bioscaffolds, hydrogels or bioadhesives prior to administration to the meniscal 
defect [159, 164] (Figure 3a and b). Platelet rich plasma or platelet rich fibrin clots 
have been used to enhance meniscal repair in bioscaffolds [120, 165–171].

Myoblast loaded PLGA scaffolds have been evaluated for the repair of inner 
meniscal defects [172]. A derivatised HA, HYADD4® hydrogel cell delivery system 
has been used for the repair of radial-longitudinal tears in a randomised controlled 
study [173]. Electrospun type I collagen and gelatin-PLGA bilayered nanofibre 
reinforced scaffolds seeded with meniscal cells isolated from outer and inner regions 
have been used in the repair of lesions in the inner meniscus [174, 175] and radio-
opaque collagen scaffolds have been used in order to observe the action of thera-
peutic cells including MSCs on meniscal repair [176]. Meniscal defects wrapped in 
collagen membranes prior to injection of autologous chondrocytes for repair have 
been evaluated for the repair of the avascular meniscus [156]. Collagen gel scaffolds 
containing meniscal, synovial and adipose stem cells have been employed for menis-
cal repair [177] or in electrospun nanofibrous scaffolds [178]. The use of a type I 
collagen scaffold and infrapatellar fat pad for meniscal repair has been evaluated 
in rabbits [179]. PLGA mesh and fibre reinforced collagen-GAG scaffolds seeded 
with chondrocytes [180] or meniscal cells [168] supplemented with PRP have been 
evaluated for meniscal repair. Minced juvenile menisci sandwiched with meniscal 
explants from inner meniscal regions have been evaluated for their reparative poten-
tial on tears of the inner meniscal regions [181]. A number of bioactive factors have 
been evaluated for their reparative properties on meniscal defects. These include 
multiple injections of leuko-reduced PRP [165], 10% human serum, 5% PRP, 5% 
autologous plasma [182]. Over expression of TGF-β induced by a rAAV vector, 
stimulated matrix production and cell proliferation in human meniscal explants 
consistent with active repair [183]. IGF-I over-expressing meniscal cells induced by 
transfection of the hIGF-I gene [184] or by liposome Fugene 6 transfer of hIGF-I, 
stimulated ECM production, proliferation and differentiation of cultured meniscal 
cells and explants from the inner meniscus [185]. VEGF, BMP-7 and HA stimulated 
chondrocytes have been implanted into meniscal defects to undertake repair in-vitro 
[186]. Intra-articular injection of microRNA 210 stimulated mitochondrial activity 
and angiogenesis promoting repair of avascular meniscal defects by upregulation 
of anabolic matrix genes by resident meniscal cells, VEGF and FGF-2 production 
[187]. Fibrin-CTGF administration into avascular defects stimulated repair by the 
resident meniscal cells [188] as did HA, TGF-β3, platelet concentrates and serum 
supplemented scaffolds [166, 182, 189]. FGF-2 over-expressing meniscal cells [190, 
191] and gelatin-FGF-2 scaffolds [192] also stimulated repair of inner meniscal 
defects. HA-collagen-PRP composites [47, 193], VEGF [194], TGF-β1 [195] and OP-1 
[196] also stimulated meniscal cells and MSCs to undertake repair of inner meniscal 
defects or punch biopsy wounds in menisci. The bioscaffolds used in meniscal repair 
or regenerative strategies have been extensively reviewed [197–200].

3.5 Bioadhesives and meniscal repair

First generation fibrin sealant/glue formulations (Tisseel® (Baxter International 
Inc.), Tissucol® (Baxter Healthcare SA), Beriplast® (CSL Behring GmbH), 
Hemaseel® (Haemacure Corp)) were originally based on bovine fibrinogen, 
thrombin and aprotinin isolated from pooled bovine donors. With the discovery 
of bovine spongiform encephalitis and the technical difficulty of removing prions 
from bovine protein products, second generation fibrin glues were developed using 
human proteins and in-house methodologies for the isolation of autologous platelet 
plasma. Vitagel® (Orthovita Inc.)/Costasis® (Angiotech Pharmaceuticals Inc.) 
is a fibrin sealant variant containing bovine collagen and thrombin and human 
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plasma. To minimise transmission of viral components, second generation fibrin 
sealants/glues utilise heat-treated human fibrinogen, autologous platelet plasma 
and virally incapacitated human thrombin. Autologous fibrin sealants based on 
platelet rich plasma (PRP), or platelet poor plasma (PPP) with added calcium and 
thrombin, produce a platelet gel which promotes haemostasis and wound healing 
aided by the release of platelet growth factors (especially TGF-β1 and TGF-β2) 
and cytokines. Autologous fibrin sealants suffer inconsistency due to variation 
in patient plasma protein profiles. Commercial FDA approved second genera-
tion fibrin sealants such as Quixil® (OMRIX Biopharmaceuticals SA)/Crosseal™ 
(OMRIX Biopharmaceuticals) have controlled levels of fibrinogen and thrombin 
with aprotinin replaced by the anti-fibrinolytic, tranexamic acid. Concerns over the 
use of tranexamic acid subsequently led to it being dropped from the formulation 
in the product Evicel® (Ethicon HCP). Formulations of fibrin sealants/glues have 
been developed as aerosol administered foams and collagen films based on equine 
collagen and combinations of animal (Tachocomb® (Baxter Healthcare Corp)) 
and human fibrinogen/thrombin (Tachocomb H®, TachoSil® (Baxter Healthcare 
Corp)). While fibrin sealants/glues were originally developed to minimise surgical 
blood loss and to aid in wound repair they have now been applied as autologous 
cell delivery vehicles for osteochondral repair in autologous chondrocyte implanta-
tion (ACI) whereby chondrocyte numbers are expanded in-vitro then loaded into 
cartilage defects and are contained within this site using a periosteal or collagen 
membrane sutured over the defect site and sealed along its margins using fibrin 
sealants/glues. This technique was subsequently modified using the matrix assisted 
chondrocyte implantation (MACI) procedure where chondrocytes seeded into a 
matrix material were placed into the chondral defect and sealed in place with fibrin 
sealant/glue obviating the use of sutures. A modification of this procedure (fibrin 
ACI) where fibrin sealants were used as scaffolds for cell delivery has also been 
developed. The fibrin ACI methodology has been applied to the repair of meniscal 
tears [201–203] using a number of bioactive supplements to improve cell prolifera-
tion and matrix synthesis to promote meniscal repair.

An interesting novel bio-glue has been discovered in the Australian frog genus 
Notaden bennetti. During the mating season the female frog expresses an adhesive 
exudate from the dorsal skin which ensures sexual union with the male for an 
extended period to ensure effective fertilisation. This exudate has been harvested 
from frog skin by electro-stimulation and characterised. Examination of the toxic-
ity and biocompatibility of this biological glue [204], its molecular composition 
and mechanism of action [205] has shown that this protein based adhesive [206] 
is non-immunogenic, biocompatible, displays elastomeric properties similar to 
elastin and the strength of its adhesive properties is several fold that of fibrin glue. 
This frog glue has been used in combination with suturing of infraspinatus tendon 
to the bone interface in rotator cuff operations and significantly increased the 
strength of these attachments [207]. The frog glue also outperformed fibrin glue 
for the re-attachment of the cut surfaces of a longitudinal bucket handle meniscal 
tear in an in-vitro comparison [208, 209]. Marine sources of biological glues from 
the New Zealand green lipped mussel and barnacle are known and have appropri-
ate strong adhesive properties for orthopaedic applications, these await commer-
cialisation [210–213].

CS-bone marrow tissue adhesive [214], fibrin stabilised PGA scaffolds [189] 
have both found application in meniscal repair. New generation bio-glues has been 
used as cell delivery vehicles and as bioadhesives in meniscal repair [210, 211] and in 
the re-attachment of horizontal meniscal defects [215]. Mussel based bioadhesives 
containing antibiotics and fungicides with improved wet strength properties for use 
in the closure of surgical incisions have even been developed [216, 217].
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4. Conclusions

i. Direct MSC-meniscal cell contact and soluble trophic factors both stimulate 
meniscal repair processes by the resident meniscal cell populations.

ii. The bioscaffolds, hydrogel and bioadhesive cell delivery described in this 
review provide not only protective matrices for MSC and other administered 
cells but provide a matrix for attachment of migrating cells at the defect site 
and physical stabilisation of the defect site to prevent further damage while 
the repair process ensues. MSCs have impressive therapeutic credentials.

iii. Bioscaffolds and cell delivery systems have undergone significant advances 
in the last few years facilitating the localisation of MSCs in tissues for repara-
tive purposes, and hold considerable therapeutic promise in the treatment of 
problematic lesions in the inner meniscus zone.

iv. Many biomaterials have been examined in the quest for potential meniscal 
implants but none have displayed as efficient properties as the native menisci 
of the human knee.

v. Clinical trials of partial/total replacement menisci are enrolled and their 
results are eagerly awaited. Despite promising results, scaffold and implant 
properties still need optimisation.

vi. Advanced degeneration of menisci and mechanical damage result in a 
significant loss of meniscal tissue and there is a clear need for a replacement 
material either for a portion of the meniscus or the meniscus in entirety.

vii. Significant in-roads have been made in the development of new biopolymers 
for use in 3D printing and slow release biofactors which direct meniscal 
regeneration.

viii. Developments in bioadhesive design offers improved adhesive properties 
for surgical applications. These can also be used as cell delivery vehicles to 
promote meniscal regeneration.
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