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Abstract

Transcriptomes include coding and non-coding RNAs and RNA fragments with no 
apparent homology to parent genomes. Non-canonical transcriptions systematically 
transforming template DNA sequences along precise rules explain some transcripts. 
Among these systematic transformations, 23 systematic exchanges between nucleo-
tides, i.e. 9 symmetric (X ↔ Y, e.g. C ↔ T) and 14 asymmetric (X → Y → Z → X, e.g. 
A → T → G → A) exchanges. Here, comparisons between mitochondrial swinger RNAs 
previously detected in a complete human transcriptome dataset (including cytosolic 
RNAs) and swinger RNAs detected in purified mitochondrial transcriptomic data 
(not including cytosolic RNAs) show high reproducibility and exclude cytosolic 
contaminations. These results based on next-generation sequencing Illumina tech-
nology confirm detections of mitochondrial swinger RNAs in GenBank’s EST data-
base sequenced by the classical Sanger method, assessing the existence of swinger 
polymerizations.

Keywords: swinger RNA, non-canonical transcription, mitogenome, systematic 
nucleotide exchange, blast analyses

1. Introduction

Transcription is an intracellular mechanism that produces RNA by DNA-dependant RNA 

polymerisation. RNAs coding for polypeptide chains are mRNAs translated by other tran-

scription products, tRNAs and ribosomal RNAs. Some RNAs do not correspond to any DNA 
sequence in the genome, suggesting in some cases spontaneous emergence [1]. These RNAs 

remain usually unreported and are ignored. Similarly, proteomic data include numerous pep-

tides that do not match canonical translation of predicted ORFs, but imply translation of stop 
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codons [2–8] by tRNAs with anticodons matching stops [9–11] or by tRNAs with expanded 

anticodons [12–14]. Assuming fusion of different transcripts explains the origins of some of 
these non-canonical RNAs [15]. Some human RNAs matching exons differ from their DNA 
by specific changes, called RDDs (RNA-DNA differences) [16]. RDDs can be single nucleotide 

substitutions or deletions [17–19], presumably resulting from post-transcriptional edition 

[20, 21]. Some short transcripts correspond to mitochondrial DNA at the condition that one 
assumes mono- or dinucleotide deletions after each transcribed nucleotide triplet [22, 23]. 

Formation of secondary structures by del-transformed sequences apparently downregulates 

del-transcription itself or its products, delRNAs [24].

Another type of systematic transformation consists of 23 systematic exchanges between 

nucleotides, 9 symmetric (X ↔ Y, e.g. A ↔ C,) [25, 26] and 14 asymmetric exchanges 

(X → Y → Z → X, e.g. A → C → G → A) [26, 27]. For example, in systematic transformation 

A ↔ C, nucleotide A is introduced in place of nucleotide C and vice versa. The two-headed 

arrow (↔) indicates that A and C replace each other during transcription. One-headed arrows 

(→) indicate asymmetric exchanges: in the example A → C → G → A, nucleotide A is system-

atically incorporated in place of every C; similarly, C replaces G and G replaces A during 

RNA polymerisation. Transcripts corresponding to systematic exchanges are called swinger 

RNAs. BLASTn analyses detect about 100 predicted swinger RNAs (longer than 100 nucleo-

tides) in GenBank’s EST database in addition to the (approximately) 10,000 canonical human 
mitochondrial RNAs in that database. Hence, about 1% of the human mitochondrial tran-

scripts in GenBank’s EST database correspond to 1 among 23 systematic nucleotide exchanges 
[25–28]. These systematic nucleotide exchanges (an expression that fits chemical contexts) are 
called bijective transformations in mathematical contexts [29–31]; swinger transcription fits 
biological contexts.

Mitogenomes are comparatively small, also because of the selection against multiple direct 

repeats [32–35] and invert repeats [15]: these form secondary structures that are frequently 

excised; such deletions are frequently deleterious. Vertebrate mitogenomes have densely 

packed coding and non-coding regions templating for RNAs. Non-canonical transforma-

tions greatly increase potential numbers of RNA products for single sequences: four and five 
RNA transcripts when assuming systematic deletions of mono- and dinucleotides for del-

transcriptions, respectively, and 23 swinger RNAs when considering systematic nucleotide 

exchanges. Therefore, studies of swinger transformations focus on the human mitogenome, 

which is short (16,569 bp), hence reducing potential false-positive detections due to sheer 

genome size and because ample sequence data are available from several sources for this 

organism.

Note that swinger DNA has been detected (mainly corresponding to rRNA genes) for mito-

chondrial and nuclear sequences [36–38]. Hence, swinger RNAs result from canonical tran-

scription of swinger-transformed DNA or swinger transcription of regular DNA [22]. Some 
mass spectra match predicted peptides translated from del- and swinger-transformed RNA 

[39–42]. Detection of chimeric RNAs, consisting of part regular, and part swinger-transformed 

contiguous sequences suggests that regular canonical and swinger-transformed RNA result 
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from single polymerisation events, probably by the same polymerase [43]. Peptides corre-

sponding to such chimeric RNAs also occur [44].

Secondary structure formation by swinger-transformed sequences associates with swinger 
RNA detection [45], suggesting regulation of swinger RNA processing by secondary struc-

tures, as observed for canonical mitochondrial RNAs, i.e. tRNA punctuation [46].

Abundances of human mitochondrial swinger RNAs detected in GenBank’s EST database 
[25, 26], originating from various sources using Sanger sequencing, are proportional to 
those detected in transcriptomic data produced by next-generation sequencing, Illumina 

technology [47]. Similarly, abundances and lengths of swinger RNAs detected in Mimivirus’ 
transcriptome sequenced by 454 technology are proportional to those detected when using 

SOLID sequencing [01]. These analyses confirmed that swinger RNAs are not sequencing 
artefacts due to specific sequencing technologies, but data sources do not exclude contamina-

tion by cytosolic RNA. Here, we compare the previously described human mitochondrial 

swinger transcriptome [39] from a complete human transcriptome (including cytosolic 

RNAs) with the swinger transcriptome as detected in purified human mitochondrial lines 
[48]. Reproducibility of swinger RNA coverages of the human mitogenome would exclude 

sequencing artefacts and cytosolic contaminations as alternative explanations for hypotheti-

cal swinger RNAs. We predict (1) the detection of swinger RNAs from transcriptomic data 

extracted from purified mitochondrial lines and (2) high similarities between mitogenomic 
swinger RNA coverages described here and previously [39].

2. Materials and methods

2.1. Detection of swinger RNAs

We used GenBank’s BLASTn (‘somewhat similar sequences’ with default alignment param-

eters) [49] for in-silico alignment searches between each of the 23 swinger-transformed 

versions of the human mitogenome (NC_012920) and transcriptomic data in GenBank’s 
Sequence Read Archive (SRA) (SRX084350-SRX084355 and SRX087285), sequenced by RNA-
Seq, Illumina HiSeq 2500 technology [48]. Alignments with more than 80% identity were 

recorded and used as a swinger RNA candidate for further analysis.

2.2. Mitogenomic gene coverage by swinger RNAs

Locations of detected swinger RNAs were recorded by mapping these RNAs on the human 
mitogenome. We analyse separately 17 mitogenomic regions: the D-loop, 2 ribosomal RNAs 

(12S and 16S), 13 protein-coding genes involved in the electron transport chain and the 
WANCY region (intragenic region between ND2 and CO1 that templates for tRNAs with 

cognate amino acids W, A, N, C and Y). Percentage coverages by detected swinger RNAs 

were calculated for each swinger transformation in each selected mitogenomic region and 

used for further statistical analyses.

Swinger RNAs in the Human Mitochondrial Transcriptome
http://dx.doi.org/10.5772/intechopen.80805

81



3. Results and discussion

3.1. Swinger RNAs in the human mitochondrial transcriptome

Table 1 summarises results from BLASTn analyses of the purified mitochondrial tran-

scriptome [48] for the 23 swinger-transformed versions of the human mitogenome. In total 

4120 reads aligned with the 23 swinger-transformed versions of the human mitogenome, 

Read Contigs Id Coverage Read Contigs Id Coverage

Regular 700 142 99.76 8479 400 69 100 7658

A ↔ C 181 42 93.94 1239 163 10 89.12 389

A ↔ G 448 5 92.20 184 6 2 87.26 97

A ↔ T 98 48 94.34 1376 186 17 90.63 593

C ↔ G 319 7 89.99 227 28 8 85.01 343

C ↔ T 338 51 90.59 1599 253 26 92.47 937

G ↔ T 435 35 92.43 1614 400 5 88.36 249

A ↔ C + G ↔ T 123 25 89.79 730 11 2 86.23 76

A ↔ G + C ↔ T 63 34 92.63 982 69 8 89.3 257

A ↔ T + C ↔ G 126 36 92.87 1112 97 11 94.8 395

A → C → G → A 80 25 93.81 778 21 12 90.59 439

A → C → T → A 160 52 92.99 1474 31 12 90.79 453

A → G → C → A 98 58 91.70 1729 43 17 93.13 573

A → G → T → A 98 39 91.29 1245 28 12 88.49 469

A → T → C → A 218 50 93.12 1578 363 20 92.13 810

A → T → G → A 84 29 94.08 873 12 5 90.21 190

C → G → T → C 122 43 94.15 1167 21 4 88.44 247

C → T → G → C 165 57 91.90 2058 126 17 86.42 791

A → C → G → T → A 140 45 92.33 1306 38 15 89.53 575

A → C → T → G → A 157 35 95.32 971 54 10 92.65 327

A → G → C → T → A 211 26 92.63 713 99 15 87.35 530

A → G → T → C → A 78 27 93.60 777 30 11 91.29 369

A → T → C → G → A 195 17 88.94 463 60 9 92.1 321

A → T → G → C → A 183 55 94.14 1874 115 16 94.78 601

Current data are from purified mitochondrial lines, previous data are from complete human transcriptome, including 
cytosolic and mitochondrial transcriptomes. Columns 2–5: current analyses. Columns are (1) swinger transformation 

(includes lack of transformation), (2) aligning read numbers, (3) contig numbers, (4) mean identity between reads 
and transformed mitogenome and (5) total mitogenomic coverage by all swinger contigs. Columns 6–9 indicate 

corresponding data in the same order for the previous study.

Table 1. Total human mitogenome coverage by detected swinger RNAs from current (2018) and previous (2016) [39] 

analyses of two different datasets sequenced by Illumina.
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producing 841 contigs. The highest detected identity between a theoretical mitogenome 

swinger transformation and a read was 95.32% for transformation A → C → T → G → A, 

and the lowest identity was 88.94% for transformation A → T → C → G → A. The overall 

identity averaged at 92.86%. A previous swinger analysis of other transcriptomic data [39] 

found swinger transformations A ↔ G and C ↔ T least and most frequent, respectively. 

Here, swinger transformation A ↔ G remains the least frequent; C ↔ T is the second most 

frequent, suggesting high reproducibility.

Total mitogenome coverages by swinger RNAs for each transformation were plotted as a func-

tion of corresponding coverages from a previous analysis published in 2016 [39]. Coverages 

are positively correlated (Pearson correlation coefficient r = 0.669, one-tailed p = 0.0002, 
Figure 1). Coverages for the purified mitochondrial line transcriptomes are systematically 
greater than for those for previous analyses (supplementary data and Table 1) [39].

3.2. Gene-level comparisons of swinger RNA coverages

Swinger RNA coverages of each of the 17 mitogenomic regions (D-loop, 2 rRNAs, 13 CDs and 
the WANCY region) are in Tables 2 and 3, for analyses of current and previous Illumina data 

[39], respectively. Pearson correlation coefficients between swinger coverages were calculated 
considering (1) genes, i.e. for each gene across the 23 different transformations, and (2) for 
each swinger transformation, across the 17 different mitogenomic regions.

Figure 1. Total mitogenome coverages by swinger RNAs across the complete human mitogenome in previously analysed 

data [39] (y-axis) as a function of those obtained in current observations from purified mitochondrial lines.
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Transformation D-loop 12S 16S ND1 ND2 W-Y CO1 CO2 ATP8 ATP6 CO3 ND3 ND4L ND4 ND5 ND6 Cytb

A ↔ C 6.4 5.6 9.1 0.0 15.1 25.0 5.8 0.0 9.2 3.7 7.3 11.8 0.0 8.3 7.9 26.7 3.7

A ↔ G 0.0 0.0 0.0 0.0 0.0 0.0 2.4 0.0 0.0 0.0 0.0 9.0 0.0 0.0 2.7 0.0 6.0

A ↔ T 9.4 2.8 8.3 3.2 15.9 11.5 1.7 3.1 22.2 0.0 7.7 7.5 8.4 20.4 10.6 20.2 2.5

C ↔ G 0.0 0.0 0.0 0.0 6.4 4.6 1.9 0.0 11.6 0.0 0.0 8.4 6.7 0.0 0.0 7.2 0.0

C ↔ T 13.9 2.5 9.9 11.3 8.8 0.0 0.1 1.5 28.5 13.5 6.8 9.5 0.0 5.4 17.9 41.5 11.4

G ↔ T 20.9 0.0 10.6 3.8 13.3 0.0 0.0 0.0 33.3 13.4 0.0 0.0 0.0 13.2 18.9 46.9 9.6

A ↔ C + G ↔ T 2.6 5.2 7.7 0.0 5.6 5.6 8.4 4.1 0.0 0.0 0.0 0.0 0.0 4.4 5.5 11.4 1.8

A ↔ G + C ↔ T 2.9 2.1 0.0 7.7 18.0 5.6 7.7 3.8 0.0 0.0 4.1 7.5 21.2 10.3 6.4 18.9 0.0

A ↔ T + C ↔ G 4.7 7.2 7.0 2.4 8.5 6.6 10.5 5.1 35.7 0.0 4.1 27.5 0.0 9.4 4.9 0.0 5.3

A → C → G → A 4.5 2.5 0.1 0.0 7.5 8.2 0.0 0.0 10.1 12.8 6.3 0.0 0.0 0.0 8.7 13.0 7.7

A → C → T → A 9.0 0.0 6.7 5.0 13.8 19.6 9.9 20.8 13.5 12.0 9.8 8.4 0.0 10.1 6.3 15.0 9.2

A → G → C → A 12.6 9.6 6.7 8.7 19.3 0.0 7.4 0.0 41.1 10.4 14.0 7.5 15.5 13.9 10.8 27.8 4.6

A → G → T → A 10.8 2.7 3.6 5.9 12.7 0.0 3.4 6.7 28.5 13.1 11.7 7.5 0.0 9.2 10.8 18.9 2.8

A → T → C → A 12.3 2.2 7.3 15.9 12.0 0.0 6.8 3.8 21.7 7.6 11.0 16.5 20.2 10.4 7.7 35.0 6.3

A → T → G → A 7.0 2.7 3.3 2.5 8.0 0.0 7.0 6.4 15.0 8.4 0.0 9.2 0.0 3.1 7.5 2.1 6.8

C → G → T → C 10.1 4.9 2.0 11.5 20.0 0.0 5.4 0.0 17.4 3.5 19.0 13.6 0.0 7.3 5.8 14.9 0.0

C → T → G → C 14.4 0.6 4.7 10.3 12.4 0.0 8.2 14.2 41.1 7.6 3.7 0.0 7.1 24.5 13.8 46.5 14.8

A → C → G → T → A 11.6 5.0 4.0 10.7 20.7 0.0 3.8 3.1 15.0 4.4 6.1 8.1 0.0 4.2 14.2 21.7 3.0

A → C → T → G → A 10.4 3.0 5.3 0.0 5.1 15.6 1.7 8.0 0.0 4.0 7.5 8.4 0.0 1.5 11.6 16.4 9.6

A → G → C → T → A 5.9 2.3 2.2 0.0 17.3 0.0 3.8 4.2 0.0 3.4 0.0 0.0 4.4 0.0 10.0 0.0 5.0

A → G → T → C → A 2.9 0.0 3.7 2.9 7.5 2.6 5.0 0.0 0.0 11.2 5.1 0.0 9.8 2.8 7.5 13.9 4.6

A → T → C → G → A 2.3 2.8 3.5 0.0 2.9 0.0 3.1 1.3 0.0 0.0 6.1 0.0 0.0 6.5 2.9 0.0 2.2

A → T → G → C → A 16.9 4.1 10.4 8.7 17.8 13.0 6.1 10.4 26.6 6.8 0.0 0.0 0.0 4.4 17.1 39.2 17.7

Table 2. Percentage coverage of mitogenomic regions by swinger RNAs in this study.
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Transformation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 r P

A ↔ C 4.1 0.0 0.0 0.0 3.1 0.0 0.0 0.0 14.5 0.0 0.0 9.5 9.4 7.0 3.8 8.4 0.0 0.21 0.418

A ↔ G 0.0 0.0 0.0 0.0 0.0 0.0 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.6 0.0 0.0 0.198 0.446

A ↔ T 8.9 4.1 4.2 0.3 7.7 0.0 1.6 0.0 17.9 13.0 0.0 0.0 0.0 7.5 4.4 0.0 0.0 0.366 0.148

C ↔ G 5.1 0.0 0.0 0.0 9.8 0.0 3.2 0.0 13.5 0.0 0.0 0.0 0.0 0.0 0.0 6.7 0.0 0.66 0.004

C ↔ T 9.4 5.9 7.0 9.4 7.6 0.0 0.0 6.1 15.5 0.0 0.0 9.8 0.0 4.4 6.9 33.0 2.6 0.869 0.000

G ↔ T 3.7 0.0 0.0 5.0 4.7 0.0 0.0 0.0 24.2 0.0 0.0 0.0 0.0 0.0 0.0 10.1 4.3 0.696 0.002

A ↔ C + G ↔ T 0.0 0.0 0.0 0.0 0.0 0.0 2.7 0.0 0.0 0.0 0.0 9.8 0.0 0.0 0.0 0.0 0.0 −0.168 0.520

A ↔ G + C ↔ T 3.1 3.0 0.0 0.0 2.8 0.0 0.0 0.0 0.0 16.9 0.0 9.0 9.4 0.0 1.9 6.7 0.0 0.212 0.414

A ↔ T + C ↔ G 0.0 0.0 4.9 4.3 9.8 0.0 2.1 0.0 17.9 0.0 0.0 0.0 0.0 2.4 2.5 0.0 0.0 0.646 0.005

A → C → G → A 6.2 0.0 0.0 0.0 14.3 0.0 1.9 6.7 0.0 0.0 0.0 11.3 0.0 0.0 1.5 8.4 0.0 0.045 0.863

A → C → T → A 8.2 2.8 0.0 0.0 7.7 0.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0 4.9 1.7 9.3 1.1 0.117 0.654

A → G → C → A 10.7 3.0 0.0 0.0 6.5 0.0 0.0 0.0 17.4 46.9 0.0 0.0 9.8 2.1 6.8 7.8 0.0 0.32 0.210

A → G → T → A 11.1 0.0 2.2 2.2 3.9 0.0 0.0 0.0 19.3 0.0 0.0 0.0 0.0 5.3 2.5 14.3 0.0 0.825 0.000

A → T → C → A 5.0 0.0 5.6 0.0 7.5 0.0 7.3 0.0 33.8 0.0 5.1 10.1 0.7 5.9 5.7 21.1 0.0 0.67 0.003

A → T → G → A 0.0 2.9 0.0 3.9 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 8.2 0.0 −0.263 0.308

C → G → T → C 4.5 4.5 1.8 3.1 0.0 0.0 0.0 0.0 0.0 0.0 3.6 0.0 0.0 0.0 0.0 6.9 0.0 0.335 0.189

C → T → G → C 7.9 0.0 2.2 4.8 3.8 12.0 2.3 0.0 30.0 0.0 0.0 0.0 0.0 0.0 7.0 40.2 6.6 0.833 0.000

A → C → G → T → A 8.8 0.0 2.2 1.4 6.6 7.4 0.0 0.0 24.2 0.0 0.0 0.0 0.0 4.4 6.0 10.1 0.0 0.571 0.017

A → C → T → G → A 5.4 2.5 4.1 0.0 0.0 8.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.2 12.8 0.0 0.765 0.000

A → G → C → T → A 4.5 0.0 4.7 0.0 3.1 0.0 2.1 4.4 19.3 0.0 9.3 9.2 0.0 0.0 7.5 0.0 0.0 −0.077 0.768

A → G → T → C → A 9.4 0.0 0.0 0.0 3.2 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 5.1 3.4 6.7 2.5 0.155 0.551
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Transformation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 r P

A → T → C → G → A 2.9 0.0 0.0 3.6 7.8 0.0 0.0 1.2 0.0 0.0 0.0 10.4 8.8 1.7 0.0 0.0 0.0 −0.255 0.323

A → T → G → C → A 14.6 0.0 0.0 0.0 9.1 0.0 2.7 0.0 16.9 0.0 0.0 0.0 0.0 2.9 8.6 13.3 0.0 0.767 0.000

r 0.535 0.142 0.269 0.289 0.063 −0.017 0.21 −0.276 0.678 0.03 0.087 −0.156 0.393 0.294 0.586 0.752 0.522

P 0.008 0.519 0.215 0.182 0.776 0.939 0.337 0.203 0.000 0.892 0.693 0.477 0.064 0.174 0.003 0.000 0.011

Columns 1–17 areas in Table 2. r and P (last two columns and last two rows, respectively) indicate linear Pearson correlation coefficients between coverages across 
mitogenomic region/swinger transformations, comparing data in Tables 2 and 3 by rows and columns, respectively.

Table 3. Percentage coverage of mitogenomic regions by swinger RNAs from analyses of complete human transcriptomic data [39].
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Most correlations are positive along both genewise (columns) and transformation-wise (rows) 

analyses when comparing Tables 2 and 3 (last rows and last columns in Table 3). Focusing on 

transformations and comparing coverages across genes for each transformation, correlations 

are positive between Tables 2 and 3 for 19 among 23 transformations (P = 0.00065, one-tailed 
sign test) with 10 correlations statistically significant at P < 0.05. Analyses at the gene level 
across transformations detect 14 among 17 positive correlations (P = 0.003, one-tailed sign 
test), and six correlations at the gene level have P < 0.05 (one-tailed).

Across genes, at the transformation level, the strongest correlation was observed for trans-

formation C ↔ T (Figure 2) with Pearson r = 0.869 and one-tailed P = 0.0000029. Across trans-

formations, at the gene level, the strongest correlation was observed for the gene ND6 with 

Pearson r = 0.752 and one-tailed P = 0.000017 with highest coverage at C ↔ T transformation 

in both datasets (Tables 2 and 3). In order to test whether swinger coverage has more transfor-

mation than gene-specific effect, we calculated the combined P value using Fisher’s method to 
combine P values, for the 23 swinger transformations and, separately, for the 17 mitogenome 

regions. The method sums -2xln(Pi) where i ranges from 1 to k (k = 23 for transformations 
and k = 17 for genome regions/genes). This yield combined P = 5.7 × 10−21 for transformations 

and combined P = 1.93 × 10−7 for genes. This indicates a 3× stronger effect of transformation 

Figure 2. Percentage coverage of C ↔ T-transformed swinger RNAs across genes in this study as a function of their 

coverages in previously analysed data [39]. ND6 has the highest coverage among all transformations. Data from Tables 

2 and 3.
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across genes on coverage than a gene-specific effect across transformations. Hence, the most 
important unknown factor determines transformations. The genome region that is swinger-
transcribed is important but secondary.

4. General conclusion

We find high reproducibility in swinger RNA coverage for the human mitogenome when com-

paring two independent transcriptomic datasets produced by Illumina sequencing. Positive 

correlations occur at each gene and transformation levels, reaffirming the reproducibility of 
the results, but are stronger at the transformation than gene level. The reproducibility of the 

swinger transcriptome in the giant virus Mimivirus and the ability to predict swinger RNA 

abundances from mathematical symmetry and error correcting principles [31, 50] together 

with present results from mitochondrial transcriptomes hint that swinger polymerizations 

are a universal phenomenon.
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