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Abstract

Numerical weather prediction (NWP) is a difficult task in chaotic dynamical regimes
because of the strong sensitivity to initial conditions and physical parameters. As a result,
high numerical accuracy is usually necessary. In this chapter, an accurate and efficient
alternative to the traditional time stepping solution methods is presented; the time-
spectral method. The generalized weighted residual method (GWRM) solves systems of
nonlinear ODEs and PDEs using a spectral representation of time. Not being subject to
CFL-like criteria, the GWRM typically employs time intervals two orders of magnitude
larger than those of time-stepping methods. As an example, efficient solution of the
chaotic Lorenz 1984 equations is demonstrated. The results indicate that the method has
strong potential for NWP. Furthermore, employing spectral representations of physical
parameters and initial values, families of solutions are obtained in a single computation.
Thus, the GWRM is conveniently used for studies of system parameter dependency and
initial condition error growth in NWP.

Keywords: NWP, time-spectral, chaotic, error analysis, initial condition

1. Introduction

Numerical methods are routinely used when modeling complex systems such as meteorolog-

ical and atmospheric systems. These systems can be described by nonlinear ordinary and

partial differential equations. Nonlinear systems in particular, as opposed to linear systems,

constitute specific numerical challenges in terms of processing and memory requirements.
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distribution, and reproduction in any medium, provided the original work is properly cited.



In order to efficiently use the computer’s resources, it is important to choose a suitable numerical

method [1].

Typically, when solving initial value ODEs, it is common practice to use finite difference

methods (FDM) that discretize the temporal domain into finite steps. Information from the

initial state and previously computed steps are used to estimate the solution at a “future”

discrete time step. This is an intuitive and powerful method because we can easily visualize the

cause and effect of each step. However, the problem with these techniques when solving

complex systems is that small temporal steps are required in order for a solution to be found.

In order to acquire a stable solution, the Courant-Friedrichs-Lewy (CFL) condition needs to be

satisfied when employing more accurate, explicit FDM, thus limiting time step length.

Another approach is to use a time-spectral method, which takes a bird’s eye view of the

problem [2–7]. Instead of focusing on small local steps in time, an approximate solution that

could fit the entire temporal domain is postulated. This approximate solution is set in the form

of a finite series of basis functions. Thus, the unknowns of the equations are thereby changed

from the physical variables to the coefficients of the solution ansatz. The procedure allows for

highly accurate and global temporal solutions.

In the following, we will present application of the GWRM [7] to the Lorenz 1984 [8] differen-

tial equations. This is a set of three coupled, nonlinear, and chaotic ODEs, providing a basic

model of the important process of Hadley tropical atmospheric circulation. In Section 2,

Method, we present a short derivation of the GWRM. Section 3 will introduce the Lorenz

equations and how they can be solved by the time-spectral method. In this section, we also

show how the parameter dependence of the solution can be found from a single GWRM

computation. We also show that, similarly, the dependence on initial conditions can be found

from one computation only. A discussion is given in Section 4, followed by conclusion in

Section 5.

2. Method

The time-spectral method employed here is the generalized weighted residual method

(GWRM). The physical equations of this Galerkin method are projected onto a space of

weighted orthogonal basis functions resulting in a set of algebraic equations. The residual of

the differential equation is necessarily zero for the exact solution, thus the numerical method

seeks to solve for the coefficients that minimize the residual in the interval where orthogonality

holds.

In this procedure, all dimensions can be included, thus the term “generalized.” This means

that the dependence on all temporal, spatial, and parameter domains can be included in the

algebraic equations.

A key characteristic of Chebyshev polynomials, and a main reason for choosing them as basis

functions, is their minimax property [9]. This property states that a Chebyshev series of order n

is the best approximation of the same Chebyshev series of order nþ 1. The implication is that
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the highest mode can be neglected without deteriorating the approximate solution. This

enables computation of nonlinear products entirely within spectral space. Actually, all GWRM

numerical computations are carried out in spectral space. In contrast to, for example, Fourier

series, Chebyshev series are also conveniently real. Any type of boundary condition can be

employed, such as Dirichlet, Neumann, and periodic boundary conditions. Finally, Chebyshev

polynomial series are known to converge rapidly when approximating smooth functions.

2.1. Generalized weighted residual method

Consider the following set of differential equations,

∂u

∂t
� F u½ � ¼ s, (1)

where u t; x;pð Þ is the unknown variable with a temporal, spatial, and parameter dependence.

F is a linear or nonlinear operator, and s is a source term. The GWRM solution ansatz takes the

form, in the case of a singular physical dimension and one parameter,

u t; x; pð Þ ≈U τ; ξ;Pð Þ ¼
X0
K

k¼0

X0
L

l¼0

X0
M

m¼0

aklmTk τð ÞTl ξð ÞTm Pð Þ: (2)

Here, Tn xð Þ ¼ cos narccos xð Þð Þ is the Chebyshev polynomial of the first kind, aklm are coeffi-

cients, and the prime (
0
) denotes that the first term of each summation should be multiplied by

1=2. Since Chebyshev polynomials are orthogonal in the interval �1; 1½ �, variable transforma-

tions are applied for general intervals,

τ ¼
t� At

Bt
, ξ ¼

x� Ax

Bx
, P ¼

p� Ap

Bp
, (3)

where Az ¼ z1 þ z0ð Þ=2 and Bz ¼ z1 � z0ð Þ=2, z being the variable t, x, and p with their respec-

tive upper and lower bounds. The Picard integral is then applied to (1), after which the

residual of the differential equation is formed,

R ¼ u t; x; pð Þ � u t0; x; pð Þ þ

ðt

t0

F u½ � þ sð Þdt0
� �

: (4)

The residual is multiplied by weighted Chebyshev polynomials and then integrated over the

computational domain, whereafter it is set to zero. The equation takes the form

ðp1

p0

ðx1

x0

ðt1

t0

RTq τð ÞTr ξð ÞTs Pð Þwtwxwpdtdxdp ¼ 0, (5)

where the Chebyshev weight is wζ ¼ 1� ζ
2

� ��1=2
, ζ being the transform variables τ, ξ, and P.

Eq. (5) has the form of an integral minimum in calculus of variation, which states that if R is

smooth and differentiable, and the basis functions and weights are nonzero, then R will be

minimized in the domain [10].
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Continuing, we expand Eq. (5),
ðp1

p0

ðx1

x0

ðt1

t0

u t; x; pð Þ � u t0; x; pð Þ þ

ðt

t0

F u½ � þ sð Þdt0
� �� �

Tq τð ÞTr ξð ÞTs Pð Þwtwxwpdtdxdp ¼ 0, (6)

yielding the following relations for each term of (6):

ðp1

p0

ðx1

x0

ðt1

t0

u t; x; pð ÞTq τð ÞTr ξð ÞTs Pð Þwtwxwpdtdxdp ¼ BtBxBp
π

2

� 	3
aqrs (7)

ðp1

p0

ðx1

x0

ðt1

t0

u t0; x; pð ÞTq τð ÞTr ξð ÞTs Pð Þwtwxwpdtdxdp ¼ BtBxBp
π

2

� 	2
πδq0brs (8)

ðp1

p0

ðx1

x0

ðt1

t0

ðt

t0

F u½ �dt0
0


 �

Tq τð ÞTr ξð ÞTs Pð Þwtwxwpdtdxdp ¼ BtBxBp
π

2

� 	3
Aqrs (9)

ðp1

p0

ðx1

x0

ðt1

t0

ðt

t0

sdt0

 �

Tq τð ÞTr ξð ÞTs Pð Þwtwxwpdtdxdp ¼ BtBxBp
π

2

� 	3
Sqrs: (10)

where
ðt

t0

F u½ �dt0 ≈
X0
K

k¼0

X0
L

l¼0

X0
M

m¼0

AklmTk τð ÞTl ξð ÞTm Pð Þ, (11)

and
ðt

t0

sdt0 ≈
X0
K

k¼0

X0
L

l¼0

X0
M

m¼0

SklmTk τð ÞTl ξð ÞTm Pð Þ: (12)

Combining Eqs. (7a)–(7d), we obtain the final set of algebraic equations

aqrs ¼ 2δq0brs þ Aqrs þ Sqrs (13)

where aqrs are the solution coefficients, δq0 is the Kronecker delta function, brs represents the

initial conditions, Aqrs is the spectral representation of the time-integrated linear or nonlinear

operator F, and Sqrs represents the time-integrated source term. Eq. (10) is here defined for the

truncated domain 0 ≤ q ≤K, whereas strictly the time integration renders K þ 1 terms. For the

spatial domain, we have 0 ≤ r ≤ LBC, where LBC ¼ L�NBC, with NBC representing the total

number of boundary conditions for this spatial dimension. Boundary condition equations are

thus added to (10) for problems including spatial derivatives. Here, we will be solving a set of

time-dependent ODEs, thus only initial conditions are required to find a unique solution.

Finally, it holds that 0 ≤ s ≤M.

Eq. (10) can be solved iteratively with a suitable root solver. Here, we use the semi-implicit root

solver (SIR) [11] because it shows superior global stability compared to the Newton method

(NM) with line-search while still maintaining a fast convergence.

For more details regarding GWRM basics, please see references [7, 12].
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3. The GWRM, exemplified by the Lorenz 1984 equations

The Lorenz 1984 model is a set of three nonlinear ordinary differential equations that features

chaotic behavior similar to that of meteorological systems [8]. It is consequently one of the

simplest models of Hadley circulation due to the substantial amount of approximations pos-

tulated in order to arrive at this low order model. Thus, whereas the Lorenz 1984 model is not

an accurate NWP model, it allows for a rigorous numerical analysis of simple, yet nonlinear

chaotic behavior. This is the reason for employing them in the present work. The equations are

dX

dt
¼ �Y2

� Z2
� αXþ αQ,

dY

dt
¼ XY� βXZ� YþW,

dZ

dt
¼ βXYþ XY� Z:

(14)

For a more exhaustive description of the model, see [8]. Suffice it to say the variables X, Y, and

Z represent certain meteorological systems such as wind currents and large-scale eddies. The

coefficients α, β, Q, and W are chosen within certain limits to act as damping, coupling, and

amplification of the physical processes of the system.

Lorenz, in his 1984 article, posed the question, “What can such a simple model possibly tell us

about the real atmosphere?”. His answer was that postulating certain hypothesis about the

behavior of the real atmosphere, we can strengthen the reasoning behind the hypothesis

qualitatively by the help of these models. However, that is not what we are concerned with

here, but rather the model is used as a test to show how different numerical methods handle

chaotic behavior. Furthermore, the model is useful to develop new techniques that can analyze

such quantities as error growth, parameter uncertainties, and variable perturbations in a more

efficient way.

3.1. Time intervals

The GWRM is a global method where a finite number of Chebyshev modes are used to

represent the physics in a given temporal domain. Instead of using a large number of

Chebyshev modes to obtain a single solution for the entire temporal domain, it is more

efficient to split the domain into smaller subintervals, so that lesser Chebyshev modes can be

used in each interval.

For controlling and maintaining the same numerical accuracy within each time interval, an

automatic time-adaptive algorithm is employed. Time-adaptive techniques are easily

implemented with Chebyshev polynomials. Since the absolute value of the Chebyshev coeffi-

cients decrease with increasing modes for well-resolved functions, the ratio of the absolute

values of the highest modes to those of the lowest modes (see Eq. (12)) gives a direct estimate

of how “good” the solution is. Thus, it holds that (for the example that (10) represents an ODE)
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RK ¼
∣aK∣þ ∣aK�1∣

∣a0∣þ ∣a1∣
! 0, K ! ∞ (15)

where ak, k ¼ 0::K, are the Chebyshev coefficients with K as the highest mode. By requiring

that RK < e, where ε is a stipulated accuracy, the time subintervals to achieve this accuracy are

automatically computed. We have found it efficient to use a balanced algorithm that tries to

expand the time interval at about every 10th time interval by a factor 1.5, and that halves the

interval whenever e accuracy could not be achieved.

An interesting and useful property of Chebyshev polynomials is Tk 1ð Þ ¼ 1, so that

u t1ð Þ ≈
X0
K

k¼0

akTk 1ð Þ ¼
X0
K

k¼0

ak: (16)

Thus, the exact solution at the end state u t1ð Þ can be approximated by a sum of the Chebyshev

coefficients. Eq. (13) conveniently allows for the previous end conditions, represented as

Chebyshev coefficients, to be applied as initial conditions for the next interval. All computa-

tions of a series of connected intervals are thus calculated in spectral space. A GWRM time-

interval pseudocode is provided in Appendix A. Only one domain, the temporal, is presented

for the sake of clarity.

The pseudocode shows the following: the algebraic equations are collected in a vector ϕ, along

with the initial conditions in the first element of the vector. The time domain is divided into

subintervals in which the ϕ equations are solved by SIR. The initial condition is equal to the

end-state of the previous solution, see (13). If the convergence parameter “conv” of the solution

is larger than the pre-set minimum error, then the current subinterval is halved and the ϕ

equations are solved by SIR. On the other hand, if the “conv” convergence criterion is satisfied,

the algorithm immediately proceeds to solve the next time interval, the length of which is

increased by a factor 1.5 typically every 10th interval. This procedure is done until the entire

temporal domain is solved for. When all coefficients are solved for, the semianalytical solution

ansatz is easily computed.

3.2. Parameter dependency

Instruments are continually measuring the weather’s temperature, wind speeds, and topolog-

ical height and width to name a few parameters. However, the measurement devices cannot, at

present, give a global coverage. Thus, meteorological parameters are approximate and inter-

polated.

The meteorological parameters are represented in the Lorenz model by α, β, Q, and W . The

uncertainty of the measured parameters will inevitably lower the confidence of the solution,

specifically important in weather prediction.

When studying parameter dependencies, the GWRM enables an interesting solution. Instead

of assigning the parameter a single value, we can introduce a spectrum of values. Thus, we

introduce a parameter dimension. This technique was first presented in [7], where it was
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applied to the viscosity parameter in the 1D nonlinear Burger equation. Later, it was applied to

a two-dimensional magnetohydrodynamic problem in the paper by Riva et al. [13].

For the Lorenz ODEs, where we have temporal and parameter dependencies, the solution

ansatz then takes the form,

u t;αð Þ ≈U τ;Pð Þ ¼
X0
K

k¼0

X0
M

m¼0

akmTk τð ÞTm Pð Þ: (17)

In Eq. (14), a single parameter has been included; however, the procedure can be expanded to

any number of parameters. The impact of the parameter α from the Lorenz equation (11) on

the X variable is demonstrated in Figure 1. The result from a single GWRM computation is

displayed, using the ansatz (14). It can be seen that varying α with the other parameters of

Eq. (11) held fixed, the solution is strongly dependent on α for longer times. For lower values of

α, the solution becomes more stable and fluctuates with a higher frequency than for higher

values of α.

It is of interest to provide a quantitative measure of the effect of α on the solution. One

approach would be to compare the deviations from a “base” run for different values of α. For

simplicity, however, we have chosen to monitor the standard deviations as a measure of the

deflection from the average value in the entire parameter interval. Standard deviations can be

computed from the semianalytical solutions with the formula

Figure 1. GWRM solution X t;αð Þ showing the parameter α dependency (interval [0.2, 0.3]) on variable X in the time

interval t∈ 0; 5½ �. The Lorenz parameters used are β ¼ 4:0, Q ¼ 8:0, and W ¼ 1:0. GWRM parameters used are M ¼ 8 and

K ¼ 8.

Spectral Representation of Time and Physical Parameters in Numerical Weather Prediction
http://dx.doi.org/10.5772/intechopen.80351

77



σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 Ui �U

� �2

N � 1

s

, (18)

where Ui is the GWRM solution for a specific value of the parameter. The evaluations have

been carried out at N parameter points i at a time of interest. The parameter interval averaged

solution is denoted by U. A table is presented below where comparisons are made with a base

run with specified parameter values α∗, β∗, Q∗, and W∗. The solution at t ¼ 1:0 is used.

Average values U and standard deviations σ, representing the entire parameter interval are

also given.

The standard deviations are supplied with indices to indicate the chosen parameter and

variable for analysis. For example, σα,x states that α is the parameter domain and the standard

deviation of X is being analyzed. One parameter at a time has been varied by �20%, while the

others are kept constant.

Parameter dependency example, using a single GWRM computation t ¼ 1:0, K ¼ 8, M ¼ 8

GWRM sol. X 1;P∗ð Þ ¼ 1:311 Y 1;P∗ð Þ ¼ �0:046 Z 1;P∗ð Þ ¼ 1:541

α ¼ 0:2; 0:3½ �, α∗ ¼ 0:25

U � σ X� σα,x Y � σα,y Z� σα,z

1:307� 0:079 �0:061� 0:353 1:498� 0:073

β ¼ 3:2; 4:8½ �, β∗ ¼ 4:0

U � σ X� σβ,x Y � σβ,y Z� σβ,z

1:322� 0:068 �0:036� 0:584 1:401� 0:128

Q ¼ 6:4; 9:6½ �, Q∗ ¼ 8:0

U � σ X� σQ,x Y � σQ,y Z� σQ,z

1:308� 0:096 �0:071� 0:414 1:482� 0:087

W ¼ 0:8; 1:2½ �, W∗ ¼ 1:0

U � σ X� σW,x Y � σW,y Z� σW,z

1:310� 0:010 �0:044� 0:110 1:536� 0:015

It is immediately seen that the Y variable is strongly affected by changes in all parameter

values, whereas the X and Z solutions are more robust.

3.3. Initial condition uncertainty

Meteorological models generally include time-dependent PDEs and ODEs that require initial

conditions as starting points. In mathematical terms, initial conditions are required to close the

system of equations. If we are interested in computing a family of scenarios employing

different initial conditions, the standard approach to determine the final states is to restart the

computations from scratch, using a new initial condition each time.
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Time-spectral methods offer a more convenient approach. Similarly, as when we computed

parameter dependency in a single GWRM computation in the previous section, we will now

study the effect of a spectrum of initial values on the solution of Eq. (11), employing a single

GWRM computation.

Initial condition dependency example, using a single GWRM computation t ¼ 1:0, K ¼ 8, M ¼ 8

GWRM sol. X 1;P∗ð Þ ¼ 1:311 Y 1;P∗ð Þ ¼ �0:046 Z 1;P∗ð Þ ¼ 1:541

X 0;Pð Þ∈ 0:768; 1:152½ �, X∗ ¼ 0:96

U � σ X� σx,x Y � σx,y Z� σx,z

1:306� 0:079 �0:047� 0:205 1:521� 0:087

Y 0;Pð Þ∈ �1:32;�0:88½ �, Y∗ ¼ �1:1

U � σ X� σy,x Y � σy,y Z� σy,z

1:319� 0:156 �0:021� 0:440 1:460� 0:092

Z 0;Pð Þ∈ 0:4; 0:6½ �, Z∗ ¼ 0:5

U � σ X� σz,x Y � σz,y Z� σz,z

1:309� 0:008 �0:041� 0:132 1:535� 0:008

An interesting, albeit challenging, feature of meteorological models is the inherent uncertainty

of the initial conditions. As a result, how certain can we be of our numerical results? To be able

to predict a chaotic system with absolute precision, one would need infinitely accurate

Figure 2. GWRM solution X t;Pð Þ of the Lorenz equations in the time interval t∈ 0; 5½ �, where P is the initial condition

parameter varying in the interval 0:768; 1:152½ �. The Lorenz parameters used are α ¼ 0:25, β ¼ 4:0, Q ¼ 8:0, and W ¼ 1:0.

GWRM parameters used; M ¼ 8 and K ¼ 8.
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measuring devices, computer, and numerical method. Since none of these are granted, error

growth analysis is important to gauge how far into the future we can be confident of our

predictions.

A classical error growth analysis employed for the Lorenz equations (11) would be the follow-

ing. A base scenario Uk,1 (where }k} denotes the variable) with initial conditions

v ¼< X 0ð Þ, Y 0ð Þ, Z 0ð Þ >¼< 0:96, � 1:10; 0:50 > with a time window of t∈ 0; 50½ � is solved for.

Subsequently, a number of perturbed scenarios N are solved, denoted with superscript 0ð Þ,

where the initial conditions are perturbed an amount δ, taking values < 0:001, for example.

The error growth is then computed with the formula,

Ek tð Þ ¼
1

N

X

N

n¼2

U0
k,n �Uk,1

� 	2
, k ¼ 1, 2, and 3: (19)

Thus, in this traditional analysis, a large number of computations are needed, where the ODEs

are solved for different perturbed initial conditions.

We suggest another approach. By use of an ansatz of the type (14), a spectrum of initial

conditions is allowed in a single computation. In the table above, results are presented for

three cases where Eq. (11) has been solved to time t ¼ 1:0. For the three cases, the base initial

conditions X∗, Y∗, and Z∗ as well as intervals for X 0;Pð Þ, Y 0;Pð Þ, and Z 0;Pð Þ are shown. Also,

results for the base initial conditions at t ¼ 1 are provided. For the solutions, where the initial

Figure 3. This figure shows the result of simultaneously varying the initial conditions of all the variables X, Y, and Z. The

plot is of the GWRM solution X t; δð Þ in the time interval t∈ 0; 5½ �, where δ is the perturbation parameter with interval

�0:1; 0:1½ � applied to the initial condition X0 0; δð Þ. The Lorenz parameters used are α ¼ 0:25, β ¼ 4:0, Q ¼ 8:0, and

W ¼ 1:0. GWRM parameters used are M ¼ 8 and K ¼ 8.
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conditions are allowed to vary in an interval, both averages over the interval are shown as well

as corresponding standard deviations. The analysis shows that the Y variable value at t ¼ 1 is

strongly dependent on the initial condition. In Figure 2, the time and initial condition depen-

dence of the X variable is shown in a 3D diagram. Here, the run time has been extended to t ¼ 5.

It would also be of interest to study the effect of allowing the initial conditions for all variables

X∗, Y∗, and Z∗ to vary simultaneously. In order to accomplish this in a single GWRM run, the

natural thing to do would be to extend the ansatz (14) to include three parameters,

corresponding to the different initial conditions. Instead, we have chosen a simpler approach.

Figure 4. Comparison of error growth for (a) X and (b) Y (16) for the ICPD and PI schemes, applied to the Lorenz

equation (11). (Solid) ICPD computation requiring tCPU ¼ 2:7 min and (dashed) PI computation requiring

tCPU ¼ 12:7 min. The Lorenz parameters used are α ¼ 0:25, β ¼ 4:0, Q ¼ 8:0, and W ¼ 1:0. GWRM parameters used are

K ¼ 8 and M ¼ 4.
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We let X0 0; δð Þ ¼ X∗ þ δ, Y0 0; δð Þ ¼ Y∗ þ δ, and Z0 0; δð Þ ¼ Z∗ þ δ, where the perturbation δ is a

single parameter that is applied to all three variables. An example computation is shown in

Figure 3. The X variable here features a quite a different time evolution than in Figure 2, where

only the X variable initial condition was perturbed.

In the table below, initial condition interval average values, as well as standard deviations, are

provided for all the variables X, Y, and Z for a run extending to t ¼ 20.

Initial condition dependency example, using a single GWRM computation t ¼ 20, K ¼ 8, M ¼ 8, δ < 0:001

GWRM sol. X 20; 0ð Þ ¼ 1:779 Y 20; 0ð Þ ¼ 0:483 Z 20; 0ð Þ ¼ �0:167

U � σ X� σx Y � σy Z� σz

1:787� 0:063 0:460� 0:062 �0:099� 0:226

Returning to error growth analysis as suggested by Eq. (16), reliable results can be computed if

a sufficiently large domain has been spanned by the perturbed initial conditions. We have

compared the classical approach of perturbed iterations (PI) with the new initial condition

parameter dependency (ICPD) technique in Figure 4a and b. Of particular interest is the

potential gain in CPU time, using the ICPD.

It is found that the ICPD technique with K ¼ 8 and M ¼ 4 achieves the same result of error

growth as the PI scheme. The ICPD scheme computed the error growth in tCPU ¼ 2:7 min as

compared to the PI scheme which required tCPU ¼ 12:7 min. Thus, a near fivefold increase in

efficiency was obtained for this relatively simple case.

Numerically, Figure 4a is based on N ¼ 250 runs with the PI scheme, whereas Figure 4b was

computed in a single run, where N ¼ 1000 different initial condition values was used.

4. Discussion

Is it more efficient to solve a system of differential equations using a spectral representation of

the parameter domain instead of solving the system multiple times with different parameter

values? Some points related to this discussion are that for the ICPD approach, using the

GWRM,

• the parameter dependencies can easily be analyzed since GWRM solutions are analytical

• the time-spectral method is a high-order method, leading to high accuracy solutions

• all parameters in an interval are included, whereas certain regions of critical parameter

dependence could be missed out with traditional PI methods

• the parameter domain can be split into intervals, that can be solved for separately, poten-

tially spanning a larger parameter space more efficiently

In this chapter, a univariate analysis has been performed; however, a multivariate analysis can

also be implemented in the same manor. It should be noted, however, that the more parame-

ters introduced in the analysis, the more Chebyshev modes need to be solved for, which results

in larger matrices and memory demands.
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It is also of interest to address the accuracy of the present computations. The ICPD with K ¼ 8

and M ¼ 4 did not achieve high accuracy of the exact solution at the end time t ¼ 50 as can be

seen in Figure 5. To be more precise, the solution at higher times (� t > 25) does not represent

the real dynamics because the introduced error has grown to an extent where the real solution

is lost (see Figure 5). For long run times, the effect of uncertain initial conditions is muddled by

the effect of numerical inaccuracy. On top of this, the introduction of the parameter dimension

itself in the ansatz (14) is a source for inaccuracy, since the GWRM algorithm has to handle a

larger set of Chebyshev polynomials in this case. The argument could be made that if a lower

order (e.g., fourth order) solution ansatz cannot accurately represent the parameter “physics,”

then the solution exhibits no predictive power if the prediction horizon has been exceeded. How

could then the error growth be more accurately represented? The parameter Chebyshev

coefficient could perhaps be increased, or the parameter domain could be split into intervals.

These are interesting questions for future studies of ICPD methods related to NWP modeling.

5. Conclusion

Spectral methods have a long history when applied to the spatial domain in PDE modeling.

The time-spectral method GWRM, demonstrated here, provides similar accuracy for the tem-

poral domain. High-order methods, like the GWRM, may achieve resolutions much higher

than that of finite difference methods for similar amount of work. Furthermore, when applied

to meteorological systems, the time-spectral method can accurately and efficiently compute the

physics in all spatial, temporal, and parameter domains.

A recent study, comparing the time-spectral method GWRM with commonly used time-

stepping methods such as Runge-Kutta and other, high-order implicit methods, was carried

out in [1]. Since then, the GWRM numerical algorithms have been further streamlined; see for

example [14]. Moreover, it has been found that the Jacobian of the algebraic system of equa-

tions (10) need only be computed once by including the time interval length analytically. Thus,

Figure 5. Density plot of X t; δð Þ in the time interval t∈ 0; 50½ �, where δ is perturbation parameter with interval

�0:001; 0:001½ � applied to the initial condition X0 0; δð Þ. GWRM parameters used; K ¼ 8 and M ¼ 4.
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during the computations, the new time interval length can be substituted into the Jacobian

before use. This decreases the computation time from tCPU ¼ 17:9 min to tCPU ¼ 12:7 min,

roughly 30%, for 250 perturbed scenarios with K ¼ 8 and t∈ 0; 50½ �.

We have, in this chapter, also presented a new approach to error analysis using the initial condition

parameter dependency (ICPD) technique, that is, by spectral representation of the parameter

domain. In a single computation, the same error growth was reproduced as for the classical case

(where a large number of runs were carried out for different initial conditions), with a computa-

tional time of tCPU ¼ 2:7 min. This amounts to a near fivefold gain in CPU time efficiency.

Finally, it was shown that the ICPD technique is also successfully applicable for determining

the effect of perturbed physical variables on the solution. In one GWRM computation only, it

was found that the solutions to the Lorenz 1984 equations sensitively depend on the system

parameter α.

A. Pseudo-code

Algorithm 1. GWRM time Intervals.

1: procedure

2: ϕ Ak Algebraic equations

3: ϕ 0½ �  A0 þ 2:0 � IC Apply initial condition IC

4: tacc  0

5: j 1

6: if tacc > Time them

7: conv 1.

8: while conv > rel:error do

9: if j > 1 them

10: ϕ 0½ �  A0 þ 2:0 xj�1 0½ �=2þ xj�1 1½ � þ…þ xj�1 K½ �
�

.

11: xj  SIR ϕ
�

.

12: conv jx K½ �j þ jx K � 1½ �jð Þ= jx 0½ �j þ jx 1½ �jð Þ.

13: if conv < rel:error them

14: ak  xk Save solution

15: else

16: Δt Δt=2

17: tacc  tacc þ Δt

18: if modp j; 10ð Þ ¼ 0 them

19: Δt 1:5Δt

20: j jþ 1
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