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Chapter

Convexity, Majorization and Time
Optimal Control of Coupled Spin
Dynamics

Navin Khaneja

Abstract

In this chapter, we study some control problems that derive from time optimal
control of coupled spin dynamics in NMR spectroscopy and quantum information
and computation. Time optimal control helps to minimize relaxation losses. In a two
qubit system, the ability to synthesize, local unitaries, much more rapidly than
evolution of couplings, gives a natural time scale separation in these problems.

The generators of unitary evolution, g, are decomposed into fast generators ¢ (local
Hamiltonians) and slow generators p (couplings) as a Cartan decomposition

g = p @ £. Using this decomposition, we exploit some convexity ideas to completely
characterize the reachable set and time optimal control for these problems.

The main contribution of the chapter is, we carry out a global analysis of

time optimality.

Keywords: Kostant convexity, spin dynamics, Cartan decomposition, Cartan
subalgebra, Weyl group, time optimal control

1. Introduction

A rich class of model control problems arise when one considers dynamics of
two coupled spin 3. The dynamics of two coupled spins, forms the basis for the
field of quantum information processing and computing [1] and is fundamental
in multidimensional NMR spectroscopy [2, 3]. Numerous experiments in NMR
spectroscopy, involve synthesizing unitary transformations [4-6] that require
interaction between the spins (evolution of the coupling Hamiltonian). These
experiments involve transferring, coherence and polarization from one spin to
another and involve evolution of interaction Hamiltonians [2]. Similarly, many
protocols in quantum communication and information processing involve syn-
thesizing entangled states starting from the separable states [1, 7, 8]. This again
requires evolution of interaction Hamiltonians between the qubits.

A typical feature of many of these problems is that evolution of interaction
Hamiltonians takes significantly longer than the time required to generate local
unitary transformations (unitary transformations that effect individual spins
only). In NMR spectroscopy [2, 3], local unitary transformations on spins are
obtained by application of rf-pulses, whose strength may be orders of magni-
tude larger than the couplings between the spins. Given the Schréedinger equa-
tion for unitary evolution
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U=—i|H + Y wH,
i=1

J

u, U(0)=1, (1)

where H, represents a coupling Hamiltonian, and #; are controls that can be
switched on and off. What is the minimum time required to synthesize any unitary
transformation in the coupled spin system, when the control generators H; are local
Hamiltonians and are much stronger than the coupling between the spins (u; can be
made large). Design of time optimal rf-pulse sequences is an important research
subject in NMR spectroscopy and quantum information processing [4, 9-21], as
minimizing the time to execute quantum operations can reduce relaxation losses,
which are always present in an open quantum system [22, 23]. This problem has a
special mathematical structure that helps to characterize all the time optimal tra-
jectories [4]. The special mathematical structure manifested in the coupled two spin
system, motivates a broader study of control systems with the same properties.

The Hamiltonian of a spin j can be written in terms of the generators of rotations
on a two dimensional space and these are the Pauli matrices —io,, — io), — io,, where,

11 0] 1[0 -] 1[0 1 o
=200 17 7215 ol 721 ol

[Um Gy] = 10y, [Gya Gz} = 10y, [627 Gx] = iay: (3)

Note

where [A, B] = AB — BA is the matrix commutator and
02:62:02:1— (4)
The Hamiltonian for a system of two coupled spins takes the general form
Ho =Y a,6a®@1 + X bgl Qop+ 3]0y 064Q0p, (5)

where a, f € {x,y,2}. The Hamiltonians 6,®1 and 1 ®oj are termed local
Hamiltonians and operate on one of the spins. The Hamiltonian

HC 3 Z]aﬂ G(x®6[}3 (6)

is the coupling or interaction Hamiltonian and operates on both the spins.
The following notation is therefore common place in the NMR literature.

I, =0,81 Sp=1 Qop. 7)

The operators I, and Sy commute and therefore exp (—izaaala + ) /]b/;Sﬁ> =

exp (-i%a%) exp (—i%b,@) = <exp <—i§aa0a> ®1 ) (1 ® exp (-i%bﬂaﬁ)
(8)

The unitary transformations of the kind

exp (—i > aaa(,) ® exp (—i > bﬁaﬁ>,
a B
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obtained by evolution of the local Hamiltonians are called local unitary trans-

formations.
The coupling Hamiltonian can be written as

H, = Yol 9)

Written explicitly, some of these matrices take the form

1 0 O 0
110 1 O 0
L = 1 == 10
z 0:Q 210 o -1 0 ( )
0O 0 0 -1
and
1 0 0 O
LS — 0. 1 0O -1 0 O (11)
0 O 0 1

The 15 operators,

—i{I4,Sp, 1S}

for a, p € {x,y,2}, form the basis for the Lie algebra g = su(4), the 4 x 4, trace-
less skew-Hermitian matrices. For the coupled two spins, the generators
—iH,, —iHj €su(4) and the evolution operator U(t) in Eq. (1) is an element of
SU(4), the 4 x 4, unitary matrices of determinant 1.

The Lie algebra g = su(4) has a direct sum decomposition g = p @ £, where

b= —i{l,,S;}, p=—i{LsS;}. (12)

Here ¢ is a subalgebra of g made from local Hamiltonians and p nonlocal Hamil-
tonians. In Eq. (1), we have —iH; € £ and —iH, €, It is easy to verify that

&, €]ce,  [e,p]Cp, [p,p]Cp. (13)

This decomposition of a real semi-simple Lie algebra g = p @ ¢ satisfying (13) is
called the Cartan decomposition of the Lie algebra g [24].

This special structure of Cartan decomposition arising in dynamics of two
coupled spins in Eq. (1), motivates study of a broader class of time optimal control
problems.

Consider the following canonical problems. Given the evolution

U= (Xd + zuj(t)xj> U, U(0)=1, (14)
j

where U € SU(n), the special Unitary group (determinant 1, # x n matrices U
such that UU =1, " is conjugate transpose). Where X; € ¢ = so(n), skew symmetric
matrices and
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A0 .. 0
0 4 0

Xd = —1 ‘2 > 2/11 =0
0 0 An

We assume {X]} 4> the Lie algebra (X;j and its matrix commutators) generated
by generators X; is all of so(n). We want to find the minimum time to steer this
system between points of interest, assuming no bounds on our controls #;(¢). Here
again we have a Cartan decomposition on generators. Given g = su(n), traceless
skew-Hermitian matrices, generators of SU(n), we have g = p @ ¢, where p = —iA,

where A is traceless symmetric and £ = so(n). As before, X; € p and X; € £. We want

to find time optimal ways to steer this system. We call this gggz; problem. Forn = 4,

this system models the dynamics of two coupled nuclear spins in NMR spectros-
copy.

In general, U is in a compact Lie group G (such as SU(n)), with X, X; in its real
semisimple (no abelian ideals) Lie algebra g and

U= (Xd + zuj(t)xj> U, U(0)=1. (15)
J

Given the Cartan decomposition g = p @ £, where X, €p, {X}}LA =tand
K = exp (¢) (product of exponentials of £) a closed subgroup of G, We want to find
the minimum time to steer this system between points of interest, assuming no
bounds on our controls %;(t). Since {X] } 14 = & any rotation (evolution) in sub-
group K can be synthesized with evolution of X; [25, 26]. Since there are no bounds
on ;(t), this can be done in arbitrarily small time [4]. We call this § problem.

The special structure of this problem helps in complete description of

the reachable set [27]. The elements of the reachable set at time T, takes the form
U(T)e

S=K; exp (T 2 ay, WkXdW]e_l)I<2: (16)
k

where K3, K7, W), € exp (¢), and WkXdW,gl all commute, and a;,>0, Y ), = 1.
This reachable set is formed from evolution of K3, K; and commuting Hamiltonians
Wi X, W, . Unbounded control suggests that K1, K5, W}, can be synthesized in
negligible time.

This reachable set can be understood as follows. The Cartan decomposition of
the Lie algebra g, in Eq. (13) leads to a decomposition of the Lie group G [24]. Inside
p is contained the largest abelian subalgebra, denoted as a. Any X €p is Adg
conjugate to an element of a, i.e. X = Ka;1K ~! for some a; € a.

Then, any arbitrary element of the group G can be written as

G = Kpexp (X) = Ko exp (Adk(a1)) = Ky exp (a1)K>, (17)

for some X € p where K; € K and a1 € a. The first equation is a fact about geo-
desics in G/K space [24], where K = exp (¥) is a closed subgroup of G. Eq. (17) is
called the KAK decomposition [24].

The results in this chapter suggest that K; and K, can be synthesized by
unbounded controls X; in negligible time. The time consuming part of the evolution
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exp (a1) is synthesized by evolution of Hamiltonian X;. Time optimal strategy
suggests evolving X, and its conjugates W, X, W; ' where W, X, W, * all commute.
Written as evolution

G =K1 ][ exp (tWieXaW, ") Ko =K1 [ [ We exp (6Xa)W;," K.
k k

where K31, K, W), take negligible time to synthesize using unbounded controls #;
and time-optimality is characterized by synthesis of commuting Hamiltonians
Wi X W, 1. This characterization of time optimality, involving commuting Hamil-
tonians is derived using convexity ideas [4, 28]. The remaining chapter develops

these notions.
SU(n)
SO(n)

Section 3, we study the general 1% problem. The main contribution of the chapter is,
we carry out a global analysis of time optimality.
Given Lie algebra g, we use killing form (x,y) = tr(ad.ad,) as an inner product

The chapter is organized as follows. In Section 2, we study the

problem. In

on g. When g = su(n), we also use the inner product (x,y) = tr(x'y). We call this
standard inner product.

2. Time optimal control for SU(n)/SO(n) problem

Remark 1. Birkhoff’s convexity states, a real #» x » matrix A is doubly stochastic
(2 Aij = 2, Ajj = 1, for Aj; > 0) if it can be written as convex hull of permutation

matrices P; (only one 1 and everything else zero in every row and column). Given

A4 0 . 0

0 4 .. O _ . .
©eSOm)andX = | . '~ |, wehavediag(0X®") = B diag(X) where

0O 0 ..

diag(X) is a column vector containing diagonal entries of X and B;; = (@,-j)z and
hence }’; B; = 3, B; = 1, making B a doubly stochastic matrix, which can be
written as convex sum of permutations. Therefore B diag(X) = Y,.o:P; diag(X), i.e.
diagonal of a symmetric matrix ©X 0T, lies in convex hull of its eigenvalues and its
permutations. This is called Schur convexity.

Remark 2. G = SU(n) has a closed subgroup K = SO(n) and a Cartan decompo-
sition of its Lie algerbra g = su(n) asg = p @ ¢, for ¢ =so(n) and p = —iA where A is
traceless symmetric and a is maximal abelian subalgebra of p, such that

M ... 0
a=—i|0 - 0|, where )4 = 0. KAK decomposition in Eq. (17) states for
0o 0 21,
UeSU(n), U = 0, exp ()0, where 0,, ®, € SO(n) and
M .. 0
Q=—[{0 -~ 0],
0 0 A,
where ) .4; = 0.
Remark 3. We now give a proof of the reachable set (16), for the gggzg problem.

Let U(z) € SU(n) be a solution to the differential Eq. (14)
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U= (Xd + Zu,-Xi> U, U0 =1.
To understand the reachable set of this system we make a change of coordinates
P(t) = K (t)U(t), where, K = (Y u;X;)K. Then

P(t) = Ad[(’(t) (Xd)P(t), Ad]{(Xd) — KXK L.
If we understand reachable set of P(t), then the reachable set in Eq. (14) is easily

derived.
Theorem 1. Let P(¢t) € SU(n) be a solution to the differential equation

P = Ady)(X4)P,

M40 .. 0
10 4 .. O

and K(t)€SO(n)and X, = —i| .~ |.The elements of the reachable
0 O An

set at time T, take the form K; exp (—iuT)K,, where Ky, K, € SO(n) and u<4 (u lies

in convex hull of 1 and its permutations), where A = (11, ..., 4,) .
Proof. As a first step, discretize the evolution of P(t), as piecewise constant
evolution, over steps of size 7. The total evolution is then

P, = H exp (Ady, (X,)7), (18)

Fort e[(n — 1)r,nt|, choose small step A, such that ¢ + A<nz, then
P(t+ A) = exp (Ady(X,)A)P(2).

exp (i) 0 0 0
0 exp (i) O 0
By KAK, P(t) =K K,,
y (£) = Ky 0 0 0 2
0 0 0 exp(ig,)

LR

where K3, K, € SO(n). To begin with, assume eigenvalues (]bj — ¢y, # nn, where n is

an integer. When we take a small step of size A, P(¢) changes to P(t + A) as K3, K5, A
change to

Ki(t+A) = exp (QA)Ky, Ki(t+ A) = exp (A)Ky, At + A) = exp (aA)A,

where, Q;, Q,etandaca. Let Q¢ + A) = K1(t + A)A(¢ + A)K,(¢ + A), which
can be written as

Q(t + A) = exp (U A)Ky exp (aA)A exp (A)K,. (19)

Q(t+A) = exp (A) exp (K1aK;A) exp (K1AQA K 1A)P(t). (20)
Observe

P(t+ A) = exp (Adx(X,)A)P(t). (21)

We equate P(¢ + A) and Q(t + A) to first order in A. This gives,
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Adg(X,) = Q1 + KiaK; + KLAQAK 4. (22)

Multiplying both sides with K, (-)K; gives

Adp(Xa) = Q@ +a + AQA . (23)
where, K = K;K and Q; = K QK.
We evaluate AQ,AY, for Q; €s0(n).

{AQA™} = exp {i(gy, — d1)}( Q) = cos (¢, — dy) () +isin (dy, — ) (Qa)y, - (24)

~~

Shi Ry

such that S is skew symmetric and R is traceless symmetric matrix with iR € p.
Note iRLa and onto a', by appropriate choice of Q.
Given Ad1—< (X4) €p, we decompose it as

Ad—(X,) = P(AdF(Xd)> + Adg(Xg)" = Q) +a+AQA,

K
Moo 0
with P denoting the projectionontoa (a=—i| 0 . 0 |, where X .4, =0.)
0 0 A

w.r.t to standard inner product and Adg (X,)™ to the orthogonal component. In
Eq. (24), ¢, — ¢ # 0, x, we can solve for (Q,),, such that iR = AdF(Xd)l. This

gives Q. Leta = P(AdI?(Xd)) and choose Q] = AdF(X,,l)l —AQAT = -Set.

With this choice of Qy, &, and a, P(t + A) and Q (¢ + A) are matched to first
order in A and

P(t+A)—Q(t+ A) = o(A?).

Consider the case, when A is degenerate. Let,

A, 0 .. 0
0 A, .. O

Y R (25)
0 0 A,

where A, is n;, fold degenerate (modulo sign) described by 7, x n; block.
WLOG, we arrange

(26)

I 0
Ay, = exp (igy,) { }

O _sts '

Consider the decomposition

Ad(Xg) = P(AdF(Xd)> + Adz(Xa)",

where P denotes projection onto 7;, x n;, blocks in Eq. (25) and AdK(Xd)l, the

orthogonal complement.
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X1 X1 .. X X1 0 .. 0
P }(.21 X.zz in _ 0 X.zz 0 ’ (27)
X X e X 0 0 . X,
where Xj; are blocks.
Then we write
Qt + A) = exp (A)K; exp (P(AdF(Xd)A»A exp (A)K>. (28)

where in Eq. (24) we can solve for (Q,),, such that iR = AdI_< (X,)". This gives
Q. Choose, Ad(Xa)" — AQAT = Q| ¥, this gives Q1 = K1Q;K;. Again

P(t+A) — Q(r + A) = 0(A?). We write Eq. (28) slightly differently.
Let H; be a rotation formed from block diagonal matrix

® 0 .. O
0 O .. 0

Hi=|. 27 | (29)
0 0 .. 06,

where 0y, is 7;, x n;, sub-block in SO(n). Hy = exp (k1) is chosen such that

H,P (AdF(Xd)>H1 —a

is a diagonal matrix. Let H, = exp (A_lhlA ), where £, is skew symmetric, such
N——

hy
that
66 0 .. O 6, 0 .. 0
el =0 2 0L 6o
0 O 0, 0 0 én
where

O, O, is ny, x ny, sub-block in so(ny), related by (see 26)

rXr

~ =N

. 01 O | . 01 —0n
Or = A A, O = gt g |0k { ' } (31)
—V1 22 912 922
~

§XS§

Note H,P(Ad)(X,))H; = a lies in convex hull of eigenvalues of X,. This is true if
we look at the diagonal of H ;Ad1<(Xd)H 1, it follows from Schur Convexity. The
diagonal of H,Adj,(X,;)" Hy is zero as its inner product

tr(alH’lAdk(Xd)lH1> - w(HlalH’lAdk(Xd)l) —0.
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as Hya1H, has block diagonal form which is perpendicular to Ady(X,)*. There-
fore diagonal of H,P(Ad),(X,;))H; is same as diagonal of H,;Ady (X )H;.
Now using H1AH), = A, from 28, we have

Q(t+ A) = exp (UA)K; exp (P(AdF(Xd)A))HlAH; exp (LAK,.  (32)
Q(t + A) = exp (QA)K1H; exp (aA)AH] exp (Q,A)K;. (33)
where the above expression can be written as
Q(t+A) = exp (A) exp (K1HiaH;K;A) exp (K1AQA K 1A)P(¢).
where Q;, Hy, a, 5, are chosen such that
(Qq + K1HiaH K + KIAQAK 1) = Adg(X,).
(@ + HiaH; + AQA') = Ad(X).
Q(t+ A) — P(t + A) = o(A%)P(2).
Q(t+A) = (I+0(A%)P(t+A).

Q(t+A)Q(t +A) = (I+0(A%))P(t + A)PT(t + A) (I +0(A?))
=P(t+ A)PT(t + A)[I+0(A%)].

exp (i2¢,) 0 0
0 2
Pt + A)PT(t + A) = Ky . exp (i242) KT,
0 0 .. exp(i2¢,)

Let F = P(t + A)PT(t + A) and G = Q(t + A)QT (T + A) we relate the eigen-
values, of F and G. Given F, G, as above, with |F — G| =< ¢, and a ordered set of
exp (12¢,)
exp (i2¢,)

exp (i2¢,)
spondence) of eigenvalues of G, such that [A(F) — A(G)|<e.
Choose an ordering of 1(G) call y that minimizes |A(F) — A(G)|.
F = U;D(4)U; and G = U,D(u)U,, where D(J) is diagonal with diagonal as 4, let
U = U,U,,

eigenvalues of F, denote A(F) = , there exists an ordering (corre-

F =G’ = [D(2) = UD()U |” = P + |uf* — r(D(A) UDW)U" + (UD()U) D(2)),
By Schur convexity,
or(D() UD()U + (UD()U') D(3)) = Zai (A Pilu) + Pil) 2),

where P; are permutations. Therefore |F — G|*>|A — u|*.
Therefore,

2(QQT(t+ A)) = A(PPT(t + A)) +o(A?).
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The difference

0(4%) = exp (@ + KiHhaH K, + KiAQA K 1)A)

J

exp (Adg (X))
— exp (A) exp (K1HiaH,K;A) exp (K1AQAK 1A),

is regulated by size of €,, which is bounded by |Q,| = %, where
i~
sin (([)i - q’)j) is smallest non-zero difference. A is chosen small enough such that

lo(A%)]<eA.

For each point ¢ € [0, T, we choose an open nghd N(¢) = (¢ — N;,t + N;), such
that o, (A?)<eA for A€N(t). N(t) forms a cover of [0, T|. We can choose a finite
subcover centered at ty, ..., t, (see Figure 1A). Consider trajectory at points
P(ty), ..., ..P(t,). Let t; ;11 be the point in intersection of N(t;) and N(¢;;1). Let
A =t i1 —tiand A4 = tiy1 —tji11. We consider points

P(t;), P(tiy1), P(t;,i11)s Q(ti + A ) R Q(t,-+1 — Aijrl) as shown in Figure 1B.

Qiy Qiya)-
Then we get the following recursive relations.

Qi1 Qi) = exp (24 Af) A(PiP]) (34)
MPasaPly) =A%) +o((87)) (35)

M Qi Q) = APssaPlis) +o((8a)7) (36)
exp (~248711) A(PisaPl) = 4(Quin)-Qla ) (37)

where a;” and a;_; correspond to 4 in Eq. (33) and lie in the convex hull of the
eigenvalues X;.
Adding the above equations,

M(PiaPl) = exp (0(A%)) exp (2(a A +ai58750) A(PP).  (38)
A(P,PY) = exp (To(A?))exp (2zajA,.+ - aiHAiH> A(P1PD). (39)
=T i

where 0(A?) in Eq. (38) is diagonal.

A(P,P) = exp (To(A?)) exp <2T2akPk(/1)> A(P1PT) = exp (3o(A?))exp (2uT) A(P1P]),
N—_—— k

N—_——
=T =T
(40)
where y<Aand P; = I.
1
P, =Kiexp | = Yo(A%) | exp(uT) Ko. (41)
2%/—/

=T

Note, |P, — Ky exp (uT)K,| = o(¢). This implies that P, belongs to the compact
set K1 exp (uT)K3, else it has minimum distance from this compact set and by

10
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making A — 0 and hence ¢ — 0, we can make this arbitrarily small. In Eq. (18),
P, — P(T) as7 — 0. Hence P(T) belongs to compact set Ky exp (uT)K>. q.e.d.

Corollary 1. Let U(t) € SU(n) be a solution to the differential equation

U= (Xd + ZuiX,-> U,

where {X;}, 4, the Lie algebra generated by X;, is so(z) and

&40 .. 0
40 4 .. O )
Xg=—i| . 7 . |.Theelements of reachable set at time T, takes the form
0 0 .. 4

U(T) €Ky exp (—iuT)K,, where K1, K, € SO(n) and u<A1, where 4 = (14, ..., 4,) and
the set S = K; exp (—iuT)K; belongs to the closure of reachable set.
Proof. Let V(t) = K (t)U(t), where, K = (X,u;X;)K. Then

V(t) = Adg (Xa)V(2).
From Theorem 1, we have V(T) € Ky exp (—iuT)K;. Therefore
U(T) e Ky exp (—iuT)K;. Given

U = Ky exp (—iuT)K; = K exp (—i Y aP; (/1)T> K>
j

=K1 [ exp (-it;Xa)Kj, Xt =T.
j

We can synthesize K; in negligible time, therefore |U(T) — U|<e, for any desired
e. Hence U is in closure of reachable set. q.e.d.

Remark 4. We now show how Remark 2 and Theorem 1 can be mapped to
results on decomposition and reachable set for coupled spins/qubits. Consider the
transformation

| T
W = exp (—lﬂIySy) exp <_ZEIZ>

Qi+

A N
i Lti,i+1/ti+1/ P Pi i1 P

an

Figure 1.
A. Collection of overlapping neighborhoods forming the finite subcover. B. Depiction of P;, P11, Q;y, Q;_,
P i1 as in proof of Theorem 1.

11
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The transformation maps the algebra ¢ = su(2) x su(2) = {I,,S,} to &, = s0(4),
four dimensional skew symmetric matrices, i.e., Adw (£) = &. The transformation
maps p = {I,Ss} to p; = —iA, where A is traceless symmetric and maps

a= —i{IxSx,IySy,IZSZ} toa; = —i{— %“‘ , %,IZSZ}, space of diagonal matrices in p;,

such that a, IS, + a,1,S, + a.I.S; gets mapped to the four vector (the diagonal)
(/117/127135/14> - (ay +az —ayx,ax + ay — Qy, _(ax + ay + ﬂz),dx +a; — ay)-

Corollary 2. Canonical decomposition. Given the decomposition of SU(4)
from Remark 2, we can write

Moo O
U=-exp(Q)exp|—i|0 - 0 exp (2),
0 0 A4

where Q;, Q; €s50(4). We write above as

U = exp (Q1) exp <—i(— %Sz + %Iz + azIzSz>) exp (£),

Multiplying both sides with W' (.)W gives
W UW = K exp (—iaxlSx + a,L,S, + a,1,S:) Ko,

where K1, K, €SU(2) x SU(2) local unitaries and we can rotate to a,>a,>|a.|.

Corollary 3. Digonalization. Given —iH, = i}, ] ,s1.Sp, there exists a local
unitary K such that

K(—iH)K = —i(axLSy + ayL,S, + a.L.S;), ax>a,>|as|.
Note W(—iH,)W € p,. Then choose ® €SO(n) such that
OW(—iH, )W ® = —i(—%S, + 21, + a.1,S.) and hence
(W' exp (Q)W) (—iH,)(W exp (QW') = —i(axlcSe + a,L,S, + a.1.S,).
where K = W exp (Q)W is a local unitary. We can rotate to ensure ax>ay>|a,|.
Corollary 4. Given the evolution of coupled qubits U = —i (HC + Z]u]H]> U, we

can diagonalize H, = Zaﬂ]aﬂlaSﬁ by local unitary X; = K 'H.K = a, IS, + a,1,S,+
a;1.S;, ay>a,>|az|, which we write as triple (a,4,,4;). From this, there are 24

triples obtained by permuting and changing sign of any two by local unitary.
Then U(T) €S where

S = I(l exp (TZai(ai,Io,',ci))Kz, (X,'>0 Z(Xi =1.

Furthermore S belongs to the closure of the reachable set. Alternate description
of Sis

U = Ky exp (—i(aleSx + LS, + 71.S:) ) Ko, a>p2lyl,

a=a,Tanda+pf+y=(ax+a, ta,)T.
Proof. Let V(t) = K (£)U(t), where K = (—izjquj)K. Then

12
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V(1) = Ady y (~iX)V(2).
Consider the product

V = H exp (Ad[(i(—iXd)At)

where K; € SU(2)®SU(2) and X; = a, Sk + a,L,S, + a.I.S;, where a,>a,>|a,|.
Then,

WVW =[] exp (AdWKin (—z'WXdW’)At>

Observe WK;W €S0(4) and WX,W = diag(41, 4, ..., 44). Then using results
from Theorem 1, we have

WVW' =]y exp (~iu)], =J; exp (-izajl’j(ﬂ)>]z: J1 ], €80(4),  u=<aT
Jj
Multiplying both sides with W'(-)W, we get
V= I<1 exp (TZ(Z,‘(&Q,Z’);‘,Q))I(L (1,'>0 Zai =1.

which we can write as

V = Ky exp (—i(alSy + pI,S, +71.S;) ) Ko, a=f>lyl,

where using u<AT, we get,

a+ﬂ—y£(ax—|—ay—az)T (42)
a=a,T (43)
a+pf+y=(ax+a, +a,)T. (44)

Furthermore U = KV. Hence the proof. q.e.d.

3. Time optimal control for G/K problem

Remark 5. Stabilizer: Let g = p @ ¢ be Cartan decomposition of real semisimple
Lie algebra g and a € p be its Cartan subalgebra. Let a € a. ad> : p — p is symmetric
in basis orthonormal wrt to the killing form. We can diagonalize adﬁ. Let Y; be

eigenvectors with nonzero (negative) eigenvalues —/112. Let X; = [“f”], 4;>0.

ﬂda<Y,') = /L'Xi, ada(Xi) = —/1,'Yi.

X; are independent, as Y o;X; = 0 implies — > @;4;Y; = 0. Since Y; are indepen-
dent, X; are independent. Given X 1X;, then [2,X] = 0, otherwise we can decom-
pose it in eigenvectors of adﬁ, ie., [a,X] =Y, ma; + Zjﬂij, where a; are zero
eigenvectors ofadi. Since 0 = <X[a[a,X]> = —||[a, X]|I?, which means [z, X] = 0.
This is a contradiction. Y; are orthogonal, implies X; are orthogonal,

13
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([a,Yi][a,Y;]) = ([a [a,Yi]Y;) = 27(Y;Y;) = 0. Let & € t satisfy [a, t&] = 0. Then
to = {Xi}". )
Y, denote eigenvectors that have 4; as non-zero integral multiples of z. X, are ad,

related to Y,. We now reserve Y; for non-zero eigenvectors that are not integral
multiples of 7.
Let

f: {ﬂi}@?p h :EO @Xl‘:
5(1., X, k; where k; forms a basis of £y, forms a basis of £. Let A = exp (a).
ARA T = A (ZiaiXi + Zlalf{l + Zjajkj)A_, where k € ¢
AkA™! = >ail cos (4)X; — sin (4)Y;] + 2, £ alf(l + Zjajkj

The range of A(-)A™" in p, is perpendicular to f. Given Y € p such that Y € §*. The
norm || X|| of X €¢, such that p part of AXAA}p = Y satisfies

Y]]

X = .
Xl sin /g

(45)

where 42 is the smallest nonzero eigenvalue of —ad> such that /, is not an integral
multiple of 7.

A%k A7 stabilizes h € ¢ and fep. If k €, is stabilized by AZ(')A_Z, A = nm, ie.,

k € b. This means b is an subalgebra, as the Lie bracket of [y,z] €t fory,z €l is
stabilized by A*(-)A 2.

Let H = exp (h), be an integral manifold of f. Let H € K be the solution to
A’HA > =H or A’H — HA? = 0. H is closed, H € H. We show that H is a mani-
fold. Given element Hy € H € K, where K is closed, we have a exp (B}) nghd of Ho,
in exp (Bs) ball nghd of Hy, which is one to one. For x EBE,

A% exp (x)A™? = exp (x), implies,

A? exp (Z aXi + Y X+ Zyjk])HoA_z = exp (Z a; cos (24;)X; — sin (24,)Y;
i I j i

+ 25X+ Z}’jkj>Ho = exp <Z aXi + Y BX) + Z?’jkj>Ho,
1 ; i I F

then by one to one property of exp (Bs), we get @; = 0 and x € ). Therefore
exp <B2>H0 is a nghd of Hy.
Given a sequence H; € exp (h) converging to Hy, for n large enough
H, € exp <BZ>H o- Then Hy is in invariant manifold exp (h). Hence exp (h) is closed

and hence compact.

Let y €, then there exists a s € h) such that exp (ho)y exp (—ho) € a. We maxi-
mize the function (a,, exp (h)y exp (h)), over the compact group exp (h), for regular
element a, € a and (., .) is the killing form. At the maxima, we have atz = 0,

%(ar, exp (hit)(exp (ho)y exp (—ho)) exp (—hit)) = 0.
(@r, [h1exp (ho)y exp (—ho)]) = —(h1, [a, exp (ho)y exp (—ho)]),

14
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if exp (ho)yexp (—ho) # a, then [a,, exp (ho)yexp (—ho)] €®. The bracket
[a,, exp (ho)yexp (—ho)]is Ad,» invariant and, hence, belongs to . We can choose
h1 so that gradient is not zero. Hence exp (ho)y exp (—ho) € a. For z € p such that
z €f*, we have exp (ho)zexp (—ho) € at.

(a, exp (ho)zexp (—ho)) = (exp (—ho)aexp (ho),2z) =0,

as exp (—ho)aexp (ho) is Ad 42 invariant, hence exp (—ho)aexp (ho) €f. In
above, we worked with killing form. For g = su(n), we may use standard inner
product.

Remark 6. Kostant’s convexity: [28] Given the decomposition g = p @ ¢, let
acp and X € a,. Let W; € exp (£) such that W;XW; € a are distinct, Weyl points.
Then projection (w.r.t killing form) of Adk(X) on a lies in convex hull of these Weyl
points. The C be the convex hull and let projection P(Adk (X)) lie outside this Hull.
Then there is a separating hyperplane a, such that (Adg(X),a)<(C,a). W.L.O.G we
can take a to be a regular element. We minimize (Adk(X),a), with choice of K and
find that minimum happens when [Adk(X),a] = 0, i.e. Adg(X) is a Weyl point.
Hence P(Adk (X)) € X,a:W;XW; !, for a;>0 and Y,;a; = 1. The result is true with a
projection w.r.t inner product that satisfies (x, [y,z]) = ([x,y],2]), like standard inner
product on g = su(n).

Theorem 2 Given a compact Lie group G and Lie algebra g. Consider
the Cartan decomposition of a real semisimple Lie algebra g = p @ £. Given the
control system

X = Adg(Xa)X, P(0) =1

where X,; € a, the Cartan subalgebra a €p and K(¢) € exp ¥, a closed subgroup of
G. The end point

P(T) = Ky exp (T T aW; (Xd)>K2,

where K1, K; € exp (¢) and W;(X,) € a are Weyl points, ;>0 and ) ;a; = 1.
Proof. As in proof of Theorem 1, we define
P(t+ A) = exp (Adkg(X;)A)P(t) = exp (Adk(Xs)A)K1 exp (a)K>

and show that

exp (Adk(X4)A)K1AK, = K, exp (agA + CA*)AK), = K, exp (a +aoA + CA*)K,, (46)

where for K = K; 'K,

Adz(X) = P(AdF(Xd)> +Ad(Xa)".
—_———
where P is projection w.r.t killing form and a € f, the centralizer in p as defined
in Remark 5, CA? €f is a second order term that can be made small by choosing A.
K,, Kj, € exp (¢).

To show Eq. (46), we show there exists K /1', K, ex such that
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exp (ki) exp (Adl—(.(Xd)A> exp (ARSA™') = exp (aoA + CA?), (47)
Ky K4

where Ki and K7 are constructed by a iterative procedure as described in the
proof below.

Given X and Y as N x N matrices, considered elements of a matrix Lie algebra g,
we have,

n-1 71V/51 ' \Sn
log (eXeY) | (X—l— Y) _z z (_1) _ [X Y. XY ]
n>0 n l=i=n Z

, (48)

(r; + si)r1ls1l.r,ls,!
i—1

where 7; + 5;>0.
We bound the largest element (absolute value) of log (¢Xe”) — (X +Y), denoted
as |log (¢¥e¥) — (X +Y)|,, given |X|y<A and |Y|,<boA¥, where k>1, A<1, boA<1.

1 IN. 2 ”b An-i—k—l
| log (¢¥e") — (X + Y)‘0 = Y NboeA**1 + ¥ ;( ) no (49)
n=1 n>1
= NboeAH! + (Ne)’hoAMH1 (1 + 2NE2A + ...) (50)
Nez)zboAkJrl ~
< NboeA*t! (— < MbyA*? 51
¢RI T ONgA 0 G

where 2NA<1 and MA<1.

Given decomposition of g = p @ ¢, p.L¢ with respect to the negative definite
killing form B(X,Y) = tr(adxady). Furthermore there is decomposition of
p=a@at.

Given

Ug = exp (ﬂoA +boA + CoA),
where ag € a, bo € at and ¢ €€, such that |ao|, + [bo|y + |colo<1, which we just

abbreviate as ag + bo + cg<1 (we follow this convention below).
We describe an iterative procedure

U, =1I;_, exp (—cA) Ug IT,_, exp (—bA), (52)

where ¢, €t and b, € at, such that the limit

n— oo U, = exp (aoA + CA?), (53)

where ag, C € a.

Uy = exp (—coA) exp (aoA + boA + coA) exp (—boA)
= exp (aoA + boA + cy A?) exp (—boA)
= exp (aoA + by A> + cy A?)
= exp ((a1 +b1+c1)A)

Note b} and ¢( are elements of g and need not be contained in a' and &.
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Where, using bound in ¢) = Mcg, which gives ag + by + c)A =ag + bo + co.
Using the bound again, we obtain, b < Mby. We can decompose, (bj + ¢4)A, into
subspaces a§ + by + ¢1, where a§ =M(bo + cb)A, b1 =M(by + co)A and
c1 =M(bo + ¢o)A, where —B(X,X) = Apax|X |2, where |X]| is Frobenius norm and
—B(X,X)2Amin|X|*. Let M = Nfnax,

This gives, a§ =M (bo + c5)A, b1 =M(bo + c4)A and ¢; = M(bo + ¢h)A. This gives

a1=adoy —I—MM(IOO —l—Co)A 2 SMM(bo —l—Co)A 1 SMM([OO —l—Co)A

For 4AMMA<1, we have, a; + by +c1 = ag + bo + co. Continuing and using

(be + c) = 2MMA (b1 + ce_1) = (2MMA)"* (bo + co).
Similarly,

~ k
’“k — ak*1|0 = (ZMMA) (b() + CO)

Note, (ak, by, cr) is a Cauchy sequences which converges to (4., 0, 0), where

© 2MMA (b
[ae — a0l = (bo +co) X (ZMMA)k = (bo + co) =CA,

k=1 1—2MMA
where C = 4MM (bg + co).
The above exercise was illustrative. Now we use an iterative procedure as above

to show Eq. (47).
Writing
Adge(X) = P(Adgp (X)) +Adge(Xa)"

~~
ao bO

where a¢ € f and by € f*, consider again the iterations

Uo = exp (—CoA) exp (agA + boA) exp (—boA +coA)
= exp (—CoA) exp (aoA +ToA + by A?)
= exp (aoA + by A> + cy A?)
= exp (a1A + b1A + c1A)

We refer to Remark 5, Eq. (45). Given boA € p such that boA € f*. If
AR'A’" = —boA + oA, then ||k'|| = h||boA|| (killing norm).

Co €8, is bounded ¢ = Mhb,, where M as before converts between two different
norms. Using bounds derived above by = M(Mh + 1)bg, and ¢ < MMhb,,
2M (Mh + 1)A<1, we obtain.

which gives ag +byA + o =ao + by (M(Mh +1)A + Mh) = 1. For appropriate
M, we have

’

M
3 (bo + CQ)A

a1 =ag +

’

M
b1§ 3 (bo —|—Co)A

!’

1= 3 (l’)o —|—Co)A

we obtain

17
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ar+b1+c1=ag —l-M'(bo —l—Co)ASﬂo +bo +co

where A is chosen small.

U, = exp (—((31 + E1>A) exp (dlA +b1A + ClA) exp (—blA + ElA)

exp (—(c1 +7¢1)A) exp (alA + (1 +c1)A+ b{Az)
exp (a1 + b{A* + ¢{A?)

= exp (azA + b A + CzA)
where ¢ € &, such that ¢; = Mhb;.

where, using bounds derived above b{ <M (Mh + 1)by, and ¢{ =M (Mhby + c1),
where using the bound 2M (M#h + 1)A<1, we obtain

which gives a1 + biA + (c1+¢1) =a1+ (1 +Mh)by +¢1) <ao + bo + co.
We can decompose, (b1 + ¢{)A?, into subspaces (“/1’ + by + cz> A, where

' =M(b{ + c1)A, by =M(b{ + ¢{)A and ¢c; = M(b{ + ¢{)A, where M as before con-
verts between two different norms.

This gives
a)=aq+ 4MM2h(b1 + C1)A bz = 4MM21’Z (l’)1 + Cl)A )= 4MM2h<b1 + Cl)A

For x = SMMZhA<%, we have, a; + by, + ¢, =a1 + (bl + 61) =ag+bo + co,

Using (by, + c1,) =x(bp_1 + cp_1) =x*(bo + o).
Similarly,

lar — ap_1]y =x*(bo + co)

Note, (ar, by, cr) is a Cauchy sequences which converges to (4., 0,0), where

)

b
e — agly =x(bo +co) Y xF = *(bo + o) =CA,
k=0 1-x

where C = 16MM?h (bo +c¢o).

The above iterative procedure generates ki and k; in Eq. (47), such that

exp ((KiAdg(X4)K1)A) = exp (—k{) exp (aoA + CA*) exp (—AkSA’)

where agA + CA% e f. By using a stabilizer Hy, H,, we can rotate them to a such
that

exp (Adk (X;)A)K1AK, = K, Hy exp (abA + C'A?)AH,K,

such that Hl_1 (aOA + CAZ)Hl =abA +C'A?isin aand af = P(Hl_laoHl) is pro-
jection onto a such that

P(H{'aoH1) = Y Wi (Xy).
k
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This follows because the orthogonal part of Ad1—< (X4) to f written as Adl? (X)*

remains orthogonal of f
<H’1Ad1<(Xd)lH, a> - <AdK(Xd)L,HaH*1> - <AdK(Xd)l, a”> =0

(a” €f), remains orthogonal to a. Therefore
P(H; 'aoHy) = P(Hy ' Adg(Xa)H ) = Wi (Xa).

exp (Adk (X;)A)K1AK, = K, exp (a +ag A + C A%)K),.

Lemma 1 Given P = Ky exp (a + a1A) K, = Kz exp (b — b1A) K4, where
S— ——— S— ———

Aq Ay
a, b, a1, b1 € a. We can express

exp (b) = K, exp (a + a1A + W(b1)A)K,

where W(b1) is Weyl element of b;. Furthermore

exp (b +bA) =K, exp (a +a1A + W(b1)A + W(b2)A)K, .

Proof. Note, A, = K5 'PK,?, commutes with b;. This implies

A, =K exp (a + a1A)K commutes with b;. This implies A2b1A£1 = b4, i.e.,
K exp (a + a1A)Adg (b1) exp (—(a + alA))f(’ = b1, which implies that Adk (b,) €.
Recall, from Remark 5,

exp (a + a1A)Adk (b1) exp (—(a + a1A)) = %ck(Yk cos (A ) + X sin (4 ))-

This implies ) ¢ sin (4)X) = 0, implying 4, = nx. Therefore,
exp (2(&1 + 611A)>Ad}<(b1) exp (—2(61 + alA)) = Ad[((b1>.

We have shown existence of H; such that H1Adg (b1)H{ lea, using Hy, H; as
before,

k exp (ﬂ + 0!1A)I< exp (l’)lA) = kHz exp (ﬂ + ﬂllA)Hl exp (Ad[((l’)l)A)I(
=K, exp (a +a1A + W(b1)A)K),.

Applying the theorem again to
K,exp (a + a1A +W(b1)A)Kj exp (boA) = K, exp (a + a1A + W(b1)A + W (b)) A)K)yr.

Lemma 2 Given P; = K;A'K), = K} exp (a')K5, we have P; ;.1 = exp (H; A])P;,
and P; ;1 = exp (—H; ;A7 ;)Pis1, where H = Ady,(X,). From above we can
express

Py i1 =K, exp (ai +alt Al +abt (A;)2>K;',+.
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where 4" and 4" are first and second order increments to ; in the positive
direction. The remaining notation is self-explanatory.

I <ai+1 _ (1+1) A (1+1) (A1+1) )KZ(;‘H)*‘
exp (a'1) = Ky exp <ai +ait A+ ait (Ait)z " W< ()= Ai+1 ( 1)- (A1) >)K2.
(1) = Ait+1 ( D= (Ai+1 (i+1)— i+1 (i+1)— i+1)2
W(af ™ a4 ol (A7) = (W (al 7)) At 4 P (W (af7) ) (A1)

= % Wi (X) A" +0 <(Ai—+l)2>

where, &', a’, 2, € a.
Using Lemma 1 and 2, we can express

P,(T) =K exp (a,) exp K, = Ky exp (ZW( DA +W(a ) z+1> exp | Yo(A?) | K>
—_———

=T

Letting ¢ go to 0, we have

P(T)_Klexp(TZa, (X ))K2

Hence the proof of theorem. q.e.d.

4, Conclusion

In this chapter, we studied some control problems that derive from time
optimal control of coupled spin dynamics in NMR spectroscopy and quantum
information and computation. We saw how dynamics was decomposed into fast
generators £ (local Hamiltonians) and slow generators p (couplings) as a Cartan
decomposition g = p @ £. Using this decomposition, we used some convexity ideas
to completely characterize the reachable set and time optimal control for these
problems.
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