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Chapter

Convexity, Majorization and Time
Optimal Control of Coupled Spin
Dynamics
Navin Khaneja

Abstract

In this chapter, we study some control problems that derive from time optimal
control of coupled spin dynamics in NMR spectroscopy and quantum information
and computation. Time optimal control helps to minimize relaxation losses. In a two
qubit system, the ability to synthesize, local unitaries, much more rapidly than
evolution of couplings, gives a natural time scale separation in these problems.
The generators of unitary evolution, g, are decomposed into fast generators k (local
Hamiltonians) and slow generators p (couplings) as a Cartan decomposition
g ¼ p⊕ k. Using this decomposition, we exploit some convexity ideas to completely
characterize the reachable set and time optimal control for these problems.
The main contribution of the chapter is, we carry out a global analysis of
time optimality.

Keywords: Kostant convexity, spin dynamics, Cartan decomposition, Cartan
subalgebra, Weyl group, time optimal control

1. Introduction

A rich class of model control problems arise when one considers dynamics of
two coupled spin 1

2. The dynamics of two coupled spins, forms the basis for the
field of quantum information processing and computing [1] and is fundamental
in multidimensional NMR spectroscopy [2, 3]. Numerous experiments in NMR
spectroscopy, involve synthesizing unitary transformations [4–6] that require
interaction between the spins (evolution of the coupling Hamiltonian). These
experiments involve transferring, coherence and polarization from one spin to
another and involve evolution of interaction Hamiltonians [2]. Similarly, many
protocols in quantum communication and information processing involve syn-
thesizing entangled states starting from the separable states [1, 7, 8]. This again
requires evolution of interaction Hamiltonians between the qubits.

A typical feature of many of these problems is that evolution of interaction
Hamiltonians takes significantly longer than the time required to generate local
unitary transformations (unitary transformations that effect individual spins
only). In NMR spectroscopy [2, 3], local unitary transformations on spins are
obtained by application of rf-pulses, whose strength may be orders of magni-
tude larger than the couplings between the spins. Given the Schróedinger equa-
tion for unitary evolution
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_U ¼ �i Hc þ ∑
n

j¼1
ujHj

" #

U, U 0ð Þ ¼ I, (1)

where Hc represents a coupling Hamiltonian, and uj are controls that can be
switched on and off. What is the minimum time required to synthesize any unitary
transformation in the coupled spin system, when the control generators Hj are local
Hamiltonians and are much stronger than the coupling between the spins (uj can be
made large). Design of time optimal rf-pulse sequences is an important research
subject in NMR spectroscopy and quantum information processing [4, 9–21], as
minimizing the time to execute quantum operations can reduce relaxation losses,
which are always present in an open quantum system [22, 23]. This problem has a
special mathematical structure that helps to characterize all the time optimal tra-
jectories [4]. The special mathematical structure manifested in the coupled two spin
system, motivates a broader study of control systems with the same properties.

The Hamiltonian of a spin 1
2 can be written in terms of the generators of rotations

on a two dimensional space and these are the Pauli matrices�iσx, � iσy, � iσz, where,

σz ¼
1
2

1 0

0 �1

� �

; σy ¼
1
2

0 �i

i 0

� �

; σx ¼
1
2

0 1

1 0

� �

: (2)

Note

σx; σy
� �

¼ iσz, σy; σz
� �

¼ iσx, σz; σx½ � ¼ iσy, (3)

where A;B½ � ¼ AB� BA is the matrix commutator and

σ2x ¼ σ2y ¼ σ2z ¼
1

4
, (4)

The Hamiltonian for a system of two coupled spins takes the general form

H0 ¼ ∑ aασα⊗1 þ∑ bβ 1 ⊗σβ þ∑ Jαβ σα⊗σβ, (5)

where α, β∈ x; y; zf g. The Hamiltonians σα⊗1 and 1 ⊗σβ are termed local
Hamiltonians and operate on one of the spins. The Hamiltonian

Hc ¼ ∑ Jαβ σα⊗σβ, (6)

is the coupling or interaction Hamiltonian and operates on both the spins.
The following notation is therefore common place in the NMR literature.

Iα ¼ σα⊗1; Sβ ¼ 1 ⊗σβ: (7)

The operators Iα and Sβ commute and therefore exp �i∑αaαIα þ∑βbβSβ
� �

¼

exp �i∑
α

aαIα

� 	

exp �i∑
β

bβSβ

 !

¼ exp �i∑
α

aασα

� 	

⊗1

� 	

1 ⊗ exp �i∑
β

bβσβ

 !

,

 

(8)

The unitary transformations of the kind

exp �i∑
α

aασα

� 	

⊗ exp �i∑
β

bβσβ

 !

,
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obtained by evolution of the local Hamiltonians are called local unitary trans-
formations.

The coupling Hamiltonian can be written as

Hc ¼ ∑JαβIαSβ: (9)

Written explicitly, some of these matrices take the form

Iz ¼ σz⊗1 ¼
1
2

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

2

6
6
6
4

3

7
7
7
5
: (10)

and

IzSz ¼ σz⊗σz ¼
1
4

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 1

2

6
6
6
4

3

7
7
7
5
: (11)

The 15 operators,

�i Iα; Sβ; IαSβ

 �

,

for α, β∈ x; y; zf g, form the basis for the Lie algebra g ¼ su 4ð Þ, the 4� 4, trace-
less skew-Hermitian matrices. For the coupled two spins, the generators
�iHc, � iHj ∈ su 4ð Þ and the evolution operator U tð Þ in Eq. (1) is an element of
SU 4ð Þ, the 4� 4, unitary matrices of determinant 1.

The Lie algebra g ¼ su 4ð Þ has a direct sum decomposition g ¼ p⊕ k, where

k ¼ �i Iα; Sβ

 �

, p ¼ �i IαSβ

 �

: (12)

Here k is a subalgebra of g made from local Hamiltonians and p nonlocal Hamil-
tonians. In Eq. (1), we have �iHj ∈ k and �iHc ∈ p, It is easy to verify that

k; k½ �⊂k, k; p½ �⊂p, p; p½ �⊂p: (13)

This decomposition of a real semi-simple Lie algebra g ¼ p⊕ k satisfying (13) is
called the Cartan decomposition of the Lie algebra g [24].

This special structure of Cartan decomposition arising in dynamics of two
coupled spins in Eq. (1), motivates study of a broader class of time optimal control
problems.

Consider the following canonical problems. Given the evolution

_U ¼ Xd þ∑
j

uj tð ÞXj

 !

U, U 0ð Þ ¼ 1 , (14)

where U ∈ SU nð Þ, the special Unitary group (determinant 1, n� n matrices U
such that UU′ ¼ 1,

0
is conjugate transpose). Where Xj ∈ k ¼ so nð Þ, skew symmetric

matrices and

3
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Xd ¼ �i

λ1 0 … 0

0 λ2 … 0

⋮ ⋮ ⋱ ⋮

0 0 … λn

2

6
6
6
4

3

7
7
7
5
, ∑λi ¼ 0:

We assume Xj


 �

LA
, the Lie algebra (Xj and its matrix commutators) generated

by generators Xj is all of so nð Þ. We want to find the minimum time to steer this
system between points of interest, assuming no bounds on our controls uj tð Þ. Here
again we have a Cartan decomposition on generators. Given g ¼ su nð Þ, traceless
skew-Hermitian matrices, generators of SU nð Þ, we have g ¼ p⊕ k, where p ¼ �iA,
where A is traceless symmetric and k ¼ so nð Þ. As before, Xd ∈ p and Xj ∈ k. We want

to find time optimal ways to steer this system. We call this SU nð Þ
SO nð Þ problem. For n ¼ 4,

this system models the dynamics of two coupled nuclear spins in NMR spectros-
copy.

In general, U is in a compact Lie group G (such as SU nð Þ), with Xd, Xj in its real
semisimple (no abelian ideals) Lie algebra g and

_U ¼ Xd þ∑
j

uj tð ÞXj

 !

U, U 0ð Þ ¼ 1 : (15)

Given the Cartan decomposition g ¼ p⊕ k, where Xd ∈ p, Xj


 �

LA
¼ k and

K ¼ exp kð Þ (product of exponentials of k) a closed subgroup of G, We want to find
the minimum time to steer this system between points of interest, assuming no
bounds on our controls uj tð Þ. Since Xj


 �

LA
¼ k, any rotation (evolution) in sub-

group K can be synthesized with evolution of Xj [25, 26]. Since there are no bounds
on uj tð Þ, this can be done in arbitrarily small time [4]. We call this G

K problem.
The special structure of this problem helps in complete description of

the reachable set [27]. The elements of the reachable set at time T, takes the form
U Tð Þ∈

S ¼ K1 exp T∑
k

αk WkXdW
�1
k

� 	

K2, (16)

where K1, K2,Wk ∈ exp kð Þ, and WkXdW
�1
k all commute, and αk>0, ∑αk ¼ 1.

This reachable set is formed from evolution of K1, K2 and commuting Hamiltonians
WkXdW

�1
k . Unbounded control suggests that K1, K2,Wk can be synthesized in

negligible time.
This reachable set can be understood as follows. The Cartan decomposition of

the Lie algebra g, in Eq. (13) leads to a decomposition of the Lie group G [24]. Inside
p is contained the largest abelian subalgebra, denoted as a. Any X ∈ p is AdK
conjugate to an element of a, i.e. X ¼ Ka1K

�1 for some a1 ∈ a.
Then, any arbitrary element of the group G can be written as

G ¼ K0 exp Xð Þ ¼ K0 exp AdK a1ð Þð Þ ¼ K1 exp a1ð ÞK2, (17)

for some X ∈ p where Ki ∈K and a1 ∈ a. The first equation is a fact about geo-
desics in G=K space [24], where K ¼ exp kð Þ is a closed subgroup of G. Eq. (17) is
called the KAK decomposition [24].

The results in this chapter suggest that K1 and K2 can be synthesized by
unbounded controls Xi in negligible time. The time consuming part of the evolution

4
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exp a1ð Þ is synthesized by evolution of Hamiltonian Xd. Time optimal strategy
suggests evolving Xd and its conjugates WkXdW

�1
k where WkXdW

�1
k all commute.

Written as evolution

G ¼ K1

Y

k

exp tkWkXdW
�1
k

� 

K2 ¼ K1

Y

k

Wk exp tkXdð ÞW�1
k K2:

where K1, K2,Wk take negligible time to synthesize using unbounded controls ui
and time-optimality is characterized by synthesis of commuting Hamiltonians
WkXdW

�1
k . This characterization of time optimality, involving commuting Hamil-

tonians is derived using convexity ideas [4, 28]. The remaining chapter develops
these notions.

The chapter is organized as follows. In Section 2, we study the SU nð Þ
SO nð Þ problem. In

Section 3, we study the general GK problem. The main contribution of the chapter is,
we carry out a global analysis of time optimality.

Given Lie algebra g, we use killing form x; yh i ¼ tr adxady
� 


as an inner product
on g. When g ¼ su nð Þ, we also use the inner product x; yh i ¼ tr x′y

� 

. We call this

standard inner product.

2. Time optimal control for SU nð Þ=SO nð Þ problem

Remark 1. Birkhoff’s convexity states, a real n� n matrix A is doubly stochastic
(∑i Aij ¼ ∑j Aij ¼ 1, for Aij ≥0) if it can be written as convex hull of permutation
matrices Pi (only one 1 and everything else zero in every row and column). Given

Θ∈ SO nð Þ and X ¼

λ1 0 … 0

0 λ2 … 0

⋮ ⋮ ⋱ ⋮

0 0 … λn

2

6
6
6
4

3

7
7
7
5
, we have diag ΘXΘT

� 

¼ B diag Xð Þ where

diag Xð Þ is a column vector containing diagonal entries of X and Bij ¼ Θij

� 
2 and
hence ∑i Bij ¼ ∑j Bij ¼ 1, making B a doubly stochastic matrix, which can be
written as convex sum of permutations. Therefore B diag Xð Þ ¼ ∑iαiPi diag Xð Þ, i.e.
diagonal of a symmetric matrix ΘXΘT, lies in convex hull of its eigenvalues and its
permutations. This is called Schur convexity.

Remark 2. G ¼ SU nð Þ has a closed subgroup K ¼ SO nð Þ and a Cartan decompo-
sition of its Lie algerbra g ¼ su nð Þ as g ¼ p⊕ k, for k ¼ so nð Þ and p ¼ �iA where A is
traceless symmetric and a is maximal abelian subalgebra of p, such that

a ¼ �i

λ1 … 0

0 ⋱ 0

0 0 λn

2

6
4

3

7
5, where ∑iλi ¼ 0. KAK decomposition in Eq. (17) states for

U ∈ SU nð Þ, U ¼ Θ1 exp Ωð ÞΘ2 where Θ1,Θ2 ∈ SO nð Þ and

Ω ¼ �i

λ1 … 0

0 ⋱ 0

0 0 λn

2

6
4

3

7
5,

where ∑iλi ¼ 0.

Remark 3. We now give a proof of the reachable set (16), for the SU nð Þ
SO nð Þ problem.

Let U tð Þ∈ SU nð Þ be a solution to the differential Eq. (14)

5
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_U ¼ Xd þ∑
i

uiXi

� 	

U, U 0ð Þ ¼ I:

To understand the reachable set of this system we make a change of coordinates
P tð Þ ¼ K′ tð ÞU tð Þ, where, _K ¼ ∑iuiXi

� 

K. Then

_P tð Þ ¼ AdK′ tð Þ Xdð ÞP tð Þ, AdK Xdð Þ ¼ KXK�1:

If we understand reachable set of P tð Þ, then the reachable set in Eq. (14) is easily
derived.

Theorem 1. Let P tð Þ∈ SU nð Þ be a solution to the differential equation

_P ¼ AdK tð Þ Xdð ÞP,

and K tð Þ∈ SO nð Þ and Xd ¼ �i

λ1 0 … 0

0 λ2 … 0

⋮ ⋮ ⋱ ⋮

0 0 λn

2

6
6
6
4

3

7
7
7
5
. The elements of the reachable

set at time T, take the form K1 exp �iμTð ÞK2, where K1, K2 ∈ SO nð Þ and μ≺λ (μ lies
in convex hull of λ and its permutations), where λ ¼ λ1;…; λnð Þ′.

Proof. As a first step, discretize the evolution of P tð Þ, as piecewise constant
evolution, over steps of size τ. The total evolution is then

Pn ¼
Y

i

exp Adki Xdð Þτð Þ, (18)

For t∈ n� 1ð Þτ; nτ½ �, choose small step Δ, such that tþ Δ<nτ, then
P tþ Δð Þ ¼ exp AdK Xdð ÞΔð ÞP tð Þ.

By KAK, P tð Þ ¼ K1

exp iϕ1ð Þ 0 0 0

0 exp iϕ2ð Þ 0 0

0 0 ⋱ 0

0 0 0 exp iϕnð Þ

2

6
6
6
6
4

3

7
7
7
7
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A

K2,

where K1, K2 ∈ SO nð Þ. To begin with, assume eigenvalues ϕj � ϕk 6¼ nπ, where n is
an integer. When we take a small step of size Δ, P tð Þ changes to P tþ Δð Þ as K1, K2, A
change to

K1 tþ Δð Þ ¼ exp Ω1Δð ÞK1, K2 tþ Δð Þ ¼ exp Ω2Δð ÞK2, A tþ Δð Þ ¼ exp aΔð ÞA,

where, Ω1, Ω2 ∈ k and a∈ a. Let Q tþ Δð Þ ¼ K1 tþ Δð ÞA tþ Δð ÞK2 tþ Δð Þ, which
can be written as

Q tþ Δð Þ ¼ exp Ω1Δð ÞK1 exp aΔð ÞA exp Ω2Δð ÞK2: (19)

Q tþ Δð Þ ¼ exp Ω1Δð Þ exp K1aK
′

1Δ
� 


exp K1AΩ2A
′K′

1Δ
� 


P tð Þ: (20)

Observe

P tþ Δð Þ ¼ exp AdK Xdð ÞΔð ÞP tð Þ: (21)

We equate P tþ Δð Þ and Q tþ Δð Þ to first order in Δ. This gives,

6
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AdK Xdð Þ ¼ Ω1 þ K1aK
′

1 þ K1AΩ2A
′K′

1: (22)

Multiplying both sides with K′

1 �ð ÞK1 gives

Ad
K

Xdð Þ ¼ Ω
′

1 þ aþ AΩ2A
′: (23)

where, K ¼ K′

1K and Ω
′

1 ¼ K′
ΩK.

We evaluate AΩ2A
†, for Ω2 ∈ so nð Þ.

AΩ2A
†


 �

kl
¼ exp i ϕk � ϕlð Þf g Ω2ð Þkl ¼ cos ϕk � ϕlð Þ Ω2ð Þkl

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Skl

þi sin ϕk � ϕlð Þ Ω2ð Þkl
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Rkl

: (24)

such that S is skew symmetric and R is traceless symmetric matrix with iR∈ p.
Note iR⊥a and onto a⊥, by appropriate choice of Ω2.

Given Ad
K

Xdð Þ∈ p, we decompose it as

Ad
K

Xdð Þ ¼ P Ad
K

Xdð Þ
� �

þ Ad
K

Xdð Þ⊥ ¼ Ω
′

1 þ aþ AΩ2A
′,

with P denoting the projection onto a (a ¼ �i

λ1 … 0

0 ⋱ 0

0 0 λn

2

6
4

3

7
5, where ∑iλi ¼ 0.)

w.r.t to standard inner product and Ad
K

Xdð Þ⊥ to the orthogonal component. In

Eq. (24), ϕk � ϕl 6¼ 0, π, we can solve for Ω2ð Þkl such that iR ¼ Ad
K

Xdð Þ⊥. This

gives Ω2. Let a ¼ P Ad
K

Xdð Þ
� �

and choose Ω′

1 ¼ Ad
K

Xdð Þ⊥ � AΩ2A
† ¼ �S∈ k.

With this choice of Ω1,Ω2 and a, P tþ Δð Þ and Q tþ Δð Þ are matched to first
order in Δ and

P tþ Δð Þ �Q tþ Δð Þ ¼ o Δ
2� 

:

Consider the case, when A is degenerate. Let,

A ¼

A1 0 … 0

0 A2 … 0

⋮ ⋮ ⋱ ⋮

0 0 An

2

6
6
6
4

3

7
7
7
5
, (25)

where Ak is nk fold degenerate (modulo sign) described by nk � nk block.
WLOG, we arrange

Ak ¼ exp iϕkð Þ
Ir�r 0

0 �Is�s

� �

: (26)

Consider the decomposition

Ad
K

Xdð Þ ¼ P Ad
K

Xdð Þ
� �

þ Ad
K

Xdð Þ⊥,

where P denotes projection onto nk � nk blocks in Eq. (25) and AdK Xdð Þ⊥, the
orthogonal complement.

7
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P

X11 X12 … X1n

X21 X22 … X2n

⋮ ⋮ ⋱ ⋮

Xn1 Xn2 … Xnn

2

6
6
6
4

3

7
7
7
5

0

B
B
B
@

1

C
C
C
A

¼

X11 0 … 0

0 X22 … 0

⋮ ⋮ ⋱ ⋮

0 0 … Xnn

2

6
6
6
4

3

7
7
7
5
, (27)

where Xij are blocks.
Then we write

Q tþ Δð Þ ¼ exp Ω1Δð ÞK1 exp P Ad
K

Xdð ÞΔ
� �� �

A exp Ω2Δð ÞK2: (28)

where in Eq. (24) we can solve for Ω2ð Þkl such that iR ¼ Ad
K

Xdð Þ⊥. This gives

Ω2. Choose, AdK Xdð Þ⊥ � AΩ2A
† ¼ Ω

′

1 ∈ k, this gives Ω1 ¼ K1Ω
′

1K
′

1. Again

P tþ Δð Þ �Q tþ Δð Þ ¼ o Δ
2

� 

: We write Eq. (28) slightly differently.

Let H1 be a rotation formed from block diagonal matrix

H1 ¼

Θ1 0 … 0

0 Θ2 … 0

⋮ ⋮ ⋱ ⋮

0 0 … Θn

2

6
6
6
4

3

7
7
7
5
, (29)

where Θk is nk � nk sub-block in SO nkð Þ. H1 ¼ exp h1ð Þ is chosen such that

H′

1P Ad
K

Xdð Þ
� �

H1 ¼ a

is a diagonal matrix. Let H2 ¼ exp ðA�1h1A
|fflfflfflffl{zfflfflfflffl}

h2

Þ, where h2 is skew symmetric, such

that

h1 ¼

θ1 0 … 0

0 θ2 … 0

⋮ ⋮ ⋱ ⋮

0 0 … θn

2

6
6
6
4

3

7
7
7
5
, h2 ¼

θ̂1 0 … 0

0 θ̂2 … 0

⋮ ⋮ ⋱ ⋮

0 0 … θ̂n

2

6
6
6
4

3

7
7
7
5
, (30)

where
θk, θ̂k is nk � nk sub-block in so nkð Þ, related by (see 26)

θ̂k ¼ Ak′θkAk, θk ¼
θ11
z}|{
r�r

θ12

�θ
†
12 θ22

|{z}

s�s

2

6
6
4

3

7
7
5
, θ̂k ¼

θ11 �θ12

θ
†
12 θ22

� �

(31)

Note H′

1P Adk Xdð Þð ÞH1 ¼ a lies in convex hull of eigenvalues of Xd. This is true if
we look at the diagonal of H′

1AdK Xdð ÞH1, it follows from Schur Convexity. The
diagonal of H′

1Adk Xdð Þ⊥H1 is zero as its inner product

tr a1H
′

1Adk Xdð Þ⊥H1

� �

¼ tr H1a1H
′

1Adk Xdð Þ⊥
� �

¼ 0:

8

Applied Modern Control



as H1a1H
′

1 has block diagonal form which is perpendicular to Adk Xdð Þ⊥. There-
fore diagonal of H′

1P Adk Xdð Þð ÞH1 is same as diagonal of H′

1AdK Xdð ÞH1.
Now using H1AH

†
2 ¼ A, from 28, we have

Q tþ Δð Þ ¼ exp Ω1Δð ÞK1 exp P Ad
K

Xdð ÞΔ
� �� �

H1AH
†
2 exp Ω2Δð ÞK2: (32)

Q tþ Δð Þ ¼ exp Ω1Δð ÞK1H1 exp aΔð ÞAH†
2 exp Ω2Δð ÞK2: (33)

where the above expression can be written as

Q tþ Δð Þ ¼ exp Ω1Δð Þ exp K1H1aH
′

1K
′

1Δ
� 


exp K1AΩ2A
′K′

1Δ
� 


P tð Þ:

where Ω1, H1, a,Ω2, are chosen such that

Ω1 þ K1H1aH
′

1K
′

1 þ K1AΩ2A
′K′

1
� 


¼ AdK Xdð Þ:

Ω
′

1 þH1aH
′

1 þ AΩ2A
′

� 

¼ Ad

K
Xdð Þ:

Q tþ Δð Þ � P tþ Δð Þ ¼ o Δ
2� 

P tð Þ:

Q tþ Δð Þ ¼ I þ o Δ
2� 
� 


P tþ Δð Þ:

Q tþ Δð ÞQ tþ Δð ÞT ¼ I þ o Δ
2� 
� 


P tþ Δð ÞPT tþ Δð Þ I þ o Δ
2� 
� 


¼ P tþ Δð ÞPT tþ Δð Þ I þ o Δ
2� 
� �

:

P tþ Δð ÞPT tþ Δð Þ ¼ K1

exp i2ϕ1ð Þ 0 … 0

0 exp i2ϕ2ð Þ … 0

⋮ ⋮ ⋱ ⋮

0 0 … exp i2ϕnð Þ

2

6
6
6
4

3

7
7
7
5
KT

1 :

Let F ¼ P tþ Δð ÞPT tþ Δð Þ and G ¼ Q tþ Δð ÞQT T þ Δð Þ we relate the eigen-
values, of F and G. Given F,G, as above, with ∣F � G∣# ε, and a ordered set of

eigenvalues of F, denote λ Fð Þ ¼

exp i2ϕ1ð Þ

exp i2ϕ2ð Þ

⋮

exp i2ϕnð Þ

2

6
6
6
4

3

7
7
7
5
, there exists an ordering (corre-

spondence) of eigenvalues of G, such that ∣λ Fð Þ � λ Gð Þ∣<ε.
Choose an ordering of λ Gð Þ call μ that minimizes ∣λ Fð Þ � λ Gð Þ∣.
F ¼ U1D λð ÞU′

1 and G ¼ U2D μð ÞU2′ , where D λð Þ is diagonal with diagonal as λ, let
U ¼ U′

1U2,

F �Gj j2 ¼ D λð Þ � UD μð ÞU′
�
�

�
�
2
¼ λj j2 þ μj j2 � tr D λð Þ′UD μð ÞU′ þ UD μð ÞUð Þ′D λð Þ

� �

,

By Schur convexity,

tr D λð Þ′UD μð ÞU′ þ UD μð ÞU′
� 
′

D λð Þ
� �

¼ ∑
i

αi λ′Pi μð Þ þ Pi μð Þ′λ
� �

,

where Pi are permutations. Therefore F � Gj j2> λ� μj j2.
Therefore,

λ QQT tþ Δð Þ
� 


¼ λ PPT tþ Δð Þ
� 


þ o Δ
2� 

:
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The difference

o Δ
2� 


¼ exp Ω1 þ K1H1aH
′

1K
′

1 þ K1AΩ2A
′K′

1
� 


Δ
� 


|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

exp AdK Xdð ÞΔð Þ

� exp Ω1Δð Þ exp K1H1aH
′

1K
′

1Δ
� 


exp K1AΩ2A
′K′

1Δ
� 


,

is regulated by size of Ω2, which is bounded by ∣Ω2∣#
∥Xd∥

sin ϕi�ϕjð Þ
, where

sin ϕi � ϕj

� �

is smallest non-zero difference. Δ is chosen small enough such that

∣o Δ
2

� 

∣<εΔ.

For each point t∈ 0;T½ �, we choose an open nghd N tð Þ ¼ t�Nt; tþNtð Þ, such
that ot Δ

2
� 


<εΔ for Δ∈N tð Þ. N tð Þ forms a cover of 0;T½ �. We can choose a finite
subcover centered at t1,…, tn (see Figure 1A). Consider trajectory at points
P t1ð Þ,…,…P tnð Þ. Let ti, iþ1 be the point in intersection of N tið Þ and N tiþ1ð Þ. Let
Δ

þ
i ¼ ti, iþ1 � ti and Δ

�
iþ1 ¼ tiþ1 � ti, iþ1. We consider points

P tið Þ, P tiþ1ð Þ, P ti, iþ1ð Þ, Q ti þ Δ
þ
i

� 


|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Q iþ

, Q tiþ1 � Δ
�
iþ1

� 


|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Q iþ1ð Þ�

as shown in Figure 1B.

Then we get the following recursive relations.

λ Q iþQ
T
iþ

� 

¼ exp 2aþi Δ

þ
i

� 

λ PiP

T
i

� 

(34)

λ Pi, iþ1P
T
i, iþ1

� 

¼ λ Q iþQ

T
iþ

� 

þ o Δ

þ
i

� 
2
� �

(35)

λ Q iþ1ð Þ�Q
T
iþ1ð Þ�

� �

¼ λ Pi, iþ1P
T
i, iþ1

� 

þ o Δ

�
iþ1

� 
2
� �

(36)

exp �2a�iþ1Δ
�
iþ1

� 

λ Piþ1P

T
iþ1

� 

¼ λ Q iþ1ð Þ�Q

T
iþ1ð Þ�

� �

(37)

where aþi and a�iþ1 correspond to a in Eq. (33) and lie in the convex hull of the
eigenvalues Xd.

Adding the above equations,

λ Piþ1P
T
iþ1

� 

¼ exp o Δ

2� 
� 

exp 2 aþi Δ

þ
i þ a�iþ1Δ

�
iþ1

� 

λ PiP

†
i

� 

:

�
(38)

λ PnP
T
n

� 

¼ exp ð∑o Δ

2� 


|fflfflfflffl{zfflfflfflffl}

# εT

Þ exp 2∑
i

aþi Δ
þ
i þ a�iþ1Δ

�
iþ1

� 	

λ P1P
T
1

� 

: (39)

where o Δ
2

� 

in Eq. (38) is diagonal.

λ PnP
T
n

� 

¼ exp ð∑o Δ

2� 


|fflfflfflffl{zfflfflfflffl}

# εT

Þ exp 2T∑
k

αkPk λð Þ

� 	

λ P1P
T
1

� 

¼ exp ð∑o Δ

2� 


|fflfflfflffl{zfflfflfflffl}

# εT

Þ exp 2μTð Þ λ P1P
T
1

� 

,

(40)

where μ≺λ and P1 ¼ I.

Pn ¼ K1 exp
1
2
∑o Δ

2� 


|fflfflfflffl{zfflfflfflffl}

# εT

0

B
@

1

C
A exp μTð Þ K2: (41)

Note, ∣Pn � K1 exp μTð ÞK2∣ ¼ o εð Þ. This implies that Pn belongs to the compact
set K1 exp μTð ÞK2, else it has minimum distance from this compact set and by
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making Δ ! 0 and hence ε ! 0, we can make this arbitrarily small. In Eq. (18),
Pn ! P Tð Þ as τ ! 0. Hence P Tð Þ belongs to compact set K1 exp μTð ÞK2. q.e.d.

Corollary 1. Let U tð Þ∈ SU nð Þ be a solution to the differential equation

_U ¼ Xd þ∑
i

uiXi

� 	

U,

where Xif gLA, the Lie algebra generated by Xi, is so nð Þ and

Xd ¼ �i

λ1 0 … 0

0 λ2 … 0

⋮ ⋮ ⋱ ⋮

0 0 … λn

2

6
6
6
4

3

7
7
7
5
. The elements of reachable set at time T, takes the form

U Tð Þ∈K1 exp �iμTð ÞK2, where K1, K2 ∈ SO nð Þ and μ≺λ, where λ ¼ λ1;…; λnð Þ′ and
the set S ¼ K1 exp �iμTð ÞK2 belongs to the closure of reachable set.

Proof. Let V tð Þ ¼ K′ tð ÞU tð Þ, where, _K ¼ ∑iuiXi

� 

K. Then

_V tð Þ ¼ AdK′ tð Þ Xdð ÞV tð Þ:

From Theorem 1, we have V Tð Þ∈K1 exp �iμTð ÞK2. Therefore
U Tð Þ∈K1 exp �iμTð ÞK2. Given

U ¼ K1 exp �iμTð ÞK2 ¼ K1 exp �i∑
j

αjPj λð ÞT

 !

K2

¼ K1

Y

j

exp �itjXd

� 

Kj, ∑tj ¼ T:

We can synthesize Kj in negligible time, therefore ∣U Tð Þ � U∣<ε, for any desired
ε. Hence U is in closure of reachable set. q.e.d.

Remark 4. We now show how Remark 2 and Theorem 1 can be mapped to
results on decomposition and reachable set for coupled spins/qubits. Consider the
transformation

W ¼ exp �iπIySy
� 


exp �i
π

2
Iz

� �

Figure 1.
A. Collection of overlapping neighborhoods forming the finite subcover. B. Depiction of Pi, Piþ1, Q iþ, Q i�,
Pi, iþ1 as in proof of Theorem 1.
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The transformation maps the algebra k ¼ su 2ð Þ � su 2ð Þ ¼ Iα; Sαf g to k1 ¼ so 4ð Þ,
four dimensional skew symmetric matrices, i.e., AdW kð Þ ¼ k1. The transformation
maps p ¼ IαSβ


 �
to p1 ¼ �iA, where A is traceless symmetric and maps

a ¼ �i IxSx; IySy; IzSz

 �

to a1 ¼ �i � Sz
2 ;

Iz
2 ; IzSz


 �
, space of diagonal matrices in p1,

such that axIxSx þ ayIySy þ azIzSz gets mapped to the four vector (the diagonal)
λ1; λ2; λ3; λ4ð Þ ¼ ay þ az � ax; ax þ ay � az;� ax þ ay þ az

� 

; ax þ az � ay

� 

.

Corollary 2. Canonical decomposition. Given the decomposition of SU(4)
from Remark 2, we can write

U ¼ exp Ω1ð Þ exp �i

λ1 … 0

0 ⋱ 0

0 0 λ4

2

6
4

3

7
5

0

B
@

1

C
A exp Ω2ð Þ,

where Ω1,Ω2 ∈ so 4ð Þ. We write above as

U ¼ exp Ω1ð Þ exp �i �
ax
2
Sz þ

ay
2
Iz þ azIzSz

� �� �

exp Ω2ð Þ,

Multiplying both sides with W ′ :ð ÞW gives

W ′UW ¼ K1 exp �iaxIxSx þ ayIySy þ azIzSz
� 


K2,

where K1, K2 ∈ SU 2ð Þ � SU 2ð Þ local unitaries and we can rotate to ax≥ay≥∣az∣.

Corollary 3. Digonalization. Given �iHc ¼ �i∑αβJαβIαSβ, there exists a local
unitary K such that

K �iHcð ÞK′ ¼ �i axIxSx þ ayIySy þ azIzSz
� 


, ax≥ay≥∣az∣:

Note W �iHcð ÞW ′ ∈ p1. Then choose Θ∈ SO nð Þ such that
ΘW �iHcð ÞW ′

Θ
′ ¼ �i � ax

2 Sz þ
ay
2 Iz þ azIzSz

� 

and hence

W ′ exp Ωð ÞW
� 


�iHcð Þ W exp Ωð ÞW ′
� 
′

¼ �i axIxSx þ ayIySy þ azIzSz
� 


:

where K ¼ W ′ exp Ωð ÞW is a local unitary. We can rotate to ensure ax≥ay≥∣az∣.

Corollary 4. Given the evolution of coupled qubits _U ¼ �i Hc þ∑jujHj

� �

U, we

can diagonalize Hc ¼ ∑αβJαβIαSβ by local unitary Xd ¼ K′HcK ¼ axIxSx þ ayIySyþ

azIzSz, ax≥ay≥∣az∣, which we write as triple ax; ay; az
� 


. From this, there are 24
triples obtained by permuting and changing sign of any two by local unitary.
Then U Tð Þ∈ S where

S ¼ K1 exp T∑
i

αi ai; bi; cið Þ

� 	

K2, αi>0 ∑
i

αi ¼ 1:

Furthermore S belongs to the closure of the reachable set. Alternate description
of S is

U ¼ K1 exp �i αIxSx þ βIySy þ γIzSz
� 
� 


K2, α≥β≥∣γ∣,

α# axT and αþ β � γ# ax þ ay � az
� 


T.

Proof. Let V tð Þ ¼ K′ tð ÞU tð Þ, where _K ¼ �i∑jujXj

� �

K. Then
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_V tð Þ ¼ AdK′ tð Þ �iXdð ÞV tð Þ:

Consider the product

V ¼
Y

i

exp AdKi
�iXdð ÞΔtð Þ

where Ki ∈ SU 2ð Þ⊗SU 2ð Þ and Xd ¼ axIxSx þ ayIySy þ azIzSz, where ax≥ay≥∣az∣.
Then,

WVW ′ ¼
Y

i

exp AdWKiW
′ �iWXdW

′
� 


Δt
� �

Observe WKiW
′ ∈ SO 4ð Þ and WXdW

′ ¼ diag λ1; λ2;…; λ4ð Þ. Then using results
from Theorem 1, we have

WVW ′ ¼ J1 exp �iμð ÞJ2 ¼ J1 exp �i∑
j

αjPj λð Þ

 !

J2, J1, J2 ∈ SO 4ð Þ, μ≺λT

Multiplying both sides with W ′ �ð ÞW, we get

V ¼ K1 exp T∑
i

αi ai; bi; cið Þ

� 	

K2, αi>0 ∑
i

αi ¼ 1:

which we can write as

V ¼ K1 exp �i αIxSx þ βIySy þ γIzSz
� 
� 


K2, α≥β≥∣γ∣,

where using μ≺λT, we get,

αþ β � γ# ax þ ay � az
� 


T (42)

α# axT (43)

αþ β þ γ# ax þ ay þ az
� 


T: (44)

Furthermore U ¼ KV. Hence the proof. q.e.d.

3. Time optimal control for G=K problem

Remark 5. Stabilizer: Let g ¼ p⊕ k be Cartan decomposition of real semisimple
Lie algebra g and a∈ p be its Cartan subalgebra. Let a∈ a. ad2a : p ! p is symmetric
in basis orthonormal wrt to the killing form. We can diagonalize ad2a. Let Y i be

eigenvectors with nonzero (negative) eigenvalues �λ2i . Let Xi ¼
a;Y i½ �
λi

, λi>0.

ada Y ið Þ ¼ λiXi, ada Xið Þ ¼ �λiY i:

Xi are independent, as ∑αiXi ¼ 0 implies �∑αiλiY i ¼ 0. Since Y i are indepen-
dent, Xi are independent. Given X⊥Xi, then a;X½ � ¼ 0, otherwise we can decom-
pose it in eigenvectors of ad2a, i.e., a;X½ � ¼ ∑iαiai þ∑jβjY j, where ai are zero

eigenvectors of ad2a. Since 0 ¼ X a a;X½ �½ i ¼ �∥ a;X½ �∥2
�

, which means a;X½ � ¼ 0.
This is a contradiction. Y i are orthogonal, implies Xi are orthogonal,
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a;Y i½ � a;Y j

� �� �
¼ a, a;Y i½ �Y j

� �
¼ λ2i Y iY j

� �
¼ 0

�
. Let k0 ∈ k satisfy a; k0½ � ¼ 0. Then

k0 ¼ Xif g⊥.
~Y i denote eigenvectors that have λi as non-zero integral multiples of π. ~Xi are ada

related to ~Y i. We now reserve Y i for non-zero eigenvectors that are not integral
multiples of π.

Let

f ¼ aif g⊕ ~Y i, h ¼ k0 ⊕ ~Xi,

~Xi, Xl, kj where kj forms a basis of k0, forms a basis of k. Let A ¼ exp að Þ.

AkA�1 ¼ A ∑iαiXi þ∑lαl
~Xl þ∑jαjkj

� �

A�, where k∈ k

AkA�1 ¼ ∑iαi cos λið ÞXi � sin λið ÞY i½ � þ∑l � αl ~Xl þ∑jαjkj

The range of A �ð ÞA�1 in p, is perpendicular to f. Given Y ∈ p such that Y ∈ f⊥. The
norm ∥X∥ of X ∈ k, such that p part of AXA�1

�
�
p
¼ Y satisfies

∥X∥#
∥Y∥

sin λs
: (45)

where λ2s is the smallest nonzero eigenvalue of�ad2a such that λs is not an integral
multiple of π.

A2kA�2 stabilizes h∈ k and f∈ p. If k∈ k, is stabilized by A2 �ð ÞA�2, λi ¼ nπ, i.e.,
k∈ h. This means h is an subalgebra, as the Lie bracket of y; z½ �∈ k for y, z∈ h is
stabilized by A2 �ð ÞA�2.

Let H ¼ exp hð Þ, be an integral manifold of h. Let ~H ∈K be the solution to
A2 ~HA�2 ¼ ~H or A2 ~H � ~HA�2 ¼ 0. ~H is closed, H∈ ~H. We show that ~H is a mani-
fold. Given element H0 ∈ ~H ∈K, where K is closed, we have a exp Bk

δ

� 

nghd of H0,

in exp Bδð Þ ball nghd of H0, which is one to one. For x∈Bk
δ,

A2 exp xð ÞA�2 ¼ exp xð Þ, implies,

A2 exp ∑
i

αiXi þ∑
l

βl
~X l þ∑

j

γjkj

 !

H0A
�2 ¼ exp ∑

i

αi cos 2λið ÞXi � sin 2λið ÞY i

�

þ∑
l

βl
~X l þ∑

j

γjkj

!

H0 ¼ exp ∑
i

αiXi þ∑
l

βl
~X l þ∑

j

γjkj

 !

H0,

then by one to one property of exp Bδð Þ, we get αi ¼ 0 and x∈ h. Therefore

exp Bh
δ

� �

H0 is a nghd of H0.

Given a sequence Hi ∈ exp hð Þ converging to H0, for n large enough

Hn ∈ exp Bh
δ

� �

H0. Then H0 is in invariant manifold exp hð Þ. Hence exp hð Þ is closed

and hence compact.
Let y∈ f, then there exists a h0 ∈ h such that exp h0ð Þy exp �h0ð Þ∈ a. We maxi-

mize the function ar; exp hð Þy exp hð Þh i, over the compact group exp hð Þ, for regular
element ar ∈ a and :; :h i is the killing form. At the maxima, we have at t ¼ 0,
d
dt ar; exp h1tð Þ exp h0ð Þy exp �h0ð Þð Þ exp �h1tð Þh i ¼ 0.

ar; h1 exp h0ð Þy exp �h0ð Þ½ �h i ¼ � h1; ar exp h0ð Þy exp �h0ð Þ½ �h i,
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if exp h0ð Þy exp �h0ð Þ 6¼ a, then ar; exp h0ð Þy exp �h0ð Þ½ �∈ k. The bracket
ar; exp h0ð Þy exp �h0ð Þ½ � is AdA2 invariant and, hence, belongs to h. We can choose
h1 so that gradient is not zero. Hence exp h0ð Þy exp �h0ð Þ∈ a. For z∈ p such that
z∈ f⊥, we have exp h0ð Þz exp �h0ð Þ∈ a⊥.

a; exp h0ð Þz exp �h0ð Þh i ¼ exp �h0ð Þa exp h0ð Þ; zh i ¼ 0,

as exp �h0ð Þa exp h0ð Þ is AdA2 invariant, hence exp �h0ð Þa exp h0ð Þ∈ f. In
above, we worked with killing form. For g ¼ su nð Þ, we may use standard inner
product.

Remark 6. Kostant’s convexity: [28] Given the decomposition g ¼ p⊕ k, let
a⊂p and X ∈ a,. Let W i ∈ exp kð Þ such that W iXW i ∈ a are distinct, Weyl points.
Then projection (w.r.t killing form) of AdK Xð Þ on a lies in convex hull of theseWeyl
points. The C be the convex hull and let projection P AdK Xð Þð Þ lie outside this Hull.
Then there is a separating hyperplane a, such that AdK Xð Þ; ah i< C; ah i. W.L.O.G we
can take a to be a regular element. We minimize AdK Xð Þ; ah i, with choice of K and
find that minimum happens when AdK Xð Þ; a½ � ¼ 0, i.e. AdK Xð Þ is a Weyl point.
Hence P AdK Xð Þð Þ∈∑iαiW iXW

�1
i , for αi>0 and ∑iαi ¼ 1. The result is true with a

projection w.r.t inner product that satisfies x; y; z½ �h i ¼ x; y½ �; zh �i, like standard inner
product on g ¼ su nð Þ.

Theorem 2 Given a compact Lie group G and Lie algebra g. Consider
the Cartan decomposition of a real semisimple Lie algebra g ¼ p⊕ k. Given the
control system

_X ¼ AdK tð Þ Xdð ÞX, P 0ð Þ ¼ 1

where Xd ∈ a, the Cartan subalgebra a∈ p and K tð Þ∈ exp k, a closed subgroup of
G. The end point

P Tð Þ ¼ K1 exp T∑
i

αiW i Xdð Þ

� 	

K2,

where K1, K2 ∈ exp kð Þ and W i Xdð Þ∈ a are Weyl points, αi>0 and ∑iαi ¼ 1.
Proof. As in proof of Theorem 1, we define

P tþ Δð Þ ¼ exp AdK Xdð ÞΔð ÞP tð Þ ¼ exp AdK Xdð ÞΔð ÞK1 exp að ÞK2

and show that

exp AdK Xdð ÞΔð ÞK1AK2 ¼ Ka exp a0Δþ CΔ2� 

AKb ¼ Ka exp aþ a0Δþ CΔ2� 


Kb, (46)

where for K ¼ K�1
1 K,

Ad
K

Xdð Þ ¼ P Ad
K

Xdð Þ
� �

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

a0

þAd
K

Xdð Þ⊥:

where P is projection w.r.t killing form and a0 ∈ f, the centralizer in p as defined
in Remark 5, CΔ2 ∈ f is a second order term that can be made small by choosing Δ.
Ka, Kb ∈ exp kð Þ.

To show Eq. (46), we show there exists K′

1′ , K2′
′ ∈K such that
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exp k″1ð Þ
|fflfflfflfflffl{zfflfflfflfflffl}

K″1

exp Ad
K

Xdð ÞΔ
� �

exp Ak″2A
�1� 


|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

K″2

¼ exp a0Δþ CΔ2� 

, (47)

where K″1 and K″2 are constructed by a iterative procedure as described in the
proof below.

Given X and Y as N �N matrices, considered elements of a matrix Lie algebra g,
we have,

log eXeY
� 


� X þ Yð Þ ¼ ∑
n>0

�1ð Þn�1

n
∑

1# i# n

Xr1Y s1…XrnY sn½ �

∑
n

i¼1
ri þ sið Þr1!s1!…rn!sn!

, (48)

where ri þ si>0.
We bound the largest element (absolute value) of log eXeY

� 

� X þ Yð Þ, denoted

as log eXeY
� 


� X þ Yð Þ
�
�

�
�
0, given Xj j0<Δ and Yj j0<b0Δ

k, where k≥1, Δ<1, b0Δ<1.

log eXeY
� 


� X þ Yð Þ
�
�

�
�
0# ∑

n¼1
Nb0eΔ

kþ1 þ ∑
n>1

1
n

2Ne2
� 
n

b0Δ
nþk�1

n
(49)

#Nb0eΔ
kþ1 þ Ne2

� 
2
b0Δ

kþ1 1þ 2Ne2Δþ…
� 


(50)

#Nb0eΔ
kþ1 þ

Ne2
� 
2

b0Δ
kþ1

1� 2Ne2Δ
# ~Mb0Δ

kþ1 (51)

where 2NΔ<1 and ~MΔ<1.
Given decomposition of g ¼ p⊕ k, p⊥k with respect to the negative definite

killing form B X;Yð Þ ¼ tr adXadYð Þ. Furthermore there is decomposition of
p ¼ a⊕ a⊥.

Given

U0 ¼ exp a0Δþ b0Δþ c0Δð Þ,

where a0 ∈ a, b0 ∈ a⊥ and c0 ∈ k, such that a0j j0 þ b0j j0 þ c0j j0<1, which we just
abbreviate as a0 þ b0 þ c0<1 (we follow this convention below).

We describe an iterative procedure

Un ¼ Π
n
k¼1 exp �ckΔð Þ U0 Π

n
k¼0 exp �bkΔð Þ, (52)

where ck ∈ k and bk ∈ a⊥, such that the limit

n ! ∞ Un ¼ exp a0Δþ CΔ2� 

, (53)

where a0, C∈ a.

U1 ¼ exp �c0Δð Þ exp a0Δþ b0Δþ c0Δð Þ exp �b0Δð Þ

¼ exp a0Δþ b0Δþ c0′Δ
2� 


exp �b0Δð Þ

¼ exp a0Δþ b0′Δ
2 þ c0′Δ

2� 


¼ exp a1 þ b1 þ c1ð ÞΔð Þ

Note b′0 and c′0 are elements of g and need not be contained in a⊥ and k.
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Where, using bound in c′0# ~Mc0, which gives a0 þ b0 þ c′0Δ# a0 þ b0 þ c0.
Using the bound again, we obtain, b′0# ~Mb0. We can decompose, b′0 þ c′0ð ÞΔ, into
subspaces a″0 þ b1 þ c1, where a″0#M b′0 þ c′0ð ÞΔ, b1#M b′0 þ c′0ð ÞΔ and
c1#M b′0 þ c′0ð ÞΔ, where �B X;Xð Þ# λmax Xj j2, where ∣X∣ is Frobenius norm and
�B X;Xð Þ≥λmin Xj j2. Let M ¼ Nλmax

λmin
.

This gives, a″0#M b′0 þ c′0ð ÞΔ, b1#M b′0 þ c′0ð ÞΔ and c1#M b′0 þ c′0ð ÞΔ. This gives

a1# a0 þ ~MM b0 þ c0ð ÞΔ b1# ~MM b0 þ c0ð ÞΔ c1# ~MM b0 þ c0ð ÞΔ

For 4 ~MMΔ<1, we have, a1 þ b1 þ c1# a0 þ b0 þ c0. Continuing and using

bk þ ckð Þ# 2 ~MMΔ bk�1 þ ck�1ð Þ# 2 ~MMΔ
� 
k

b0 þ c0ð Þ.
Similarly,

ak � ak�1j j0# 2 ~MMΔ
� 
k

b0 þ c0ð Þ

Note, ak; bk; ckð Þ is a Cauchy sequences which converges to a∞;0;0ð Þ, where

a∞ � a0j j0# b0 þ c0ð Þ ∑
∞

k¼1
2 ~MMΔ
� 
k

#
2M ~MΔ b0 þ c0ð Þ

1� 2 ~MMΔ
#CΔ,

where C ¼ 4 ~MM b0 þ c0ð Þ.
The above exercise was illustrative. Now we use an iterative procedure as above

to show Eq. (47).
Writing

Ad
K

Xdð Þ ¼ P Ad
K

Xdð Þ
� �

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

a0

þAd
K

Xdð Þ⊥

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

b0

,

where a0 ∈ f and b0 ∈ f⊥, consider again the iterations

U0 ¼ exp �c0Δð Þ exp a0Δþ b0Δð Þ exp �b0Δþ c0Δð Þ

¼ exp �c0Δð Þ exp a0Δþ c0Δþ b0′Δ
2� 


¼ exp a0Δþ b0′Δ
2 þ c0′Δ

2� 


¼ exp a1Δþ b1Δþ c1Δð Þ

We refer to Remark 5, Eq. (45). Given b0Δ∈ p such that b0Δ∈ f⊥. If
Ak′A′ ¼ �b0Δþ c0Δ, then ∥k′∥# h∥b0Δ∥ (killing norm).

c0 ∈ k, is bounded c0#Mhb0, where M as before converts between two different
norms. Using bounds derived above b′0# ~M Mhþ 1ð Þb0, and c′0# ~MMhb0,
2 ~M Mhþ 1ð ÞΔ<1, we obtain.

which gives a0 þ b′0Δþ c0# a0 þ b0 ~M Mhþ 1ð ÞΔþMhÞ# 1
�

. For appropriate
M′, we have

a1# a0 þ
M′

3
b0 þ c0ð ÞΔ

b1#
M′

3
b0 þ c0ð ÞΔ

c1#
M′

3
b0 þ c0ð ÞΔ

we obtain
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a1 þ b1 þ c1# a0 þM′ b0 þ c0ð ÞΔ# a0 þ b0 þ c0

where Δ is chosen small.

U1 ¼ exp � c1 þ c1ð ÞΔð Þ exp a1Δþ b1Δþ c1Δð Þ exp �b1Δþ c1Δð Þ

¼ exp � c1 þ c1ð ÞΔð Þ exp a1Δþ c1 þ c1ð ÞΔþ b′1Δ
2� 


¼ exp a1Δþ b′1Δ
2 þ c′1Δ

2� 


¼ exp a2Δþ b2Δþ c2Δð Þ

where c1 ∈ k, such that c1#Mhb1.
where, using bounds derived above b′1# ~M Mhþ 1ð Þb1, and c′1# ~M Mhb1 þ c1ð Þ,

where using the bound 2 ~M Mhþ 1ð ÞΔ<1, we obtain
which gives a1 þ b′1Δþ c1 þ c1ð Þ# a1 þ 1þMhð Þb1 þ c1ð Þ# a0 þ b0 þ c0.

We can decompose, b′1 þ c′1ð ÞΔ2, into subspaces a′1′ þ b2 þ c2
� �

Δ, where

a″1#M b′1 þ c′1ð ÞΔ, b2#M b′1 þ c′1ð ÞΔ and c2#M b′1 þ c′1ð ÞΔ, where M as before con-
verts between two different norms.

This gives

a2# a1 þ 4 ~MM2h b1 þ c1ð ÞΔ b2#4 ~MM2h b1 þ c1ð ÞΔ c2#4 ~MM2h b1 þ c1ð ÞΔ

For x ¼ 8 ~MM2hΔ< 2
3, we have, a2 þ b2 þ c2# a1 þ b1 þ c1ð Þ# a0 þ b0 þ c0,

Using bk þ ckð Þ# x bk�1 þ ck�1ð Þ# xk b0 þ c0ð Þ.
Similarly,

ak � ak�1j j0# xk b0 þ c0ð Þ

Note, ak; bk; ckð Þ is a Cauchy sequences which converges to a∞;0;0ð Þ, where

a∞ � a0j j0# x b0 þ c0ð Þ ∑
∞

k¼0
xk#

x b0 þ c0ð Þ

1� x
#CΔ,

where C ¼ 16 ~MM2h b0 þ c0ð Þ.
The above iterative procedure generates k′1 and k″2 in Eq. (47), such that

exp K′1AdK Xdð ÞK1ð ÞΔð Þ ¼ exp �k″1ð Þ exp a0Δþ CΔ2� 

exp �Ak″2A′ð Þ:

where a0Δþ CΔ2 ∈ f. By using a stabilizer H1, H2, we can rotate them to a such
that

exp AdK Xdð ÞΔð ÞK1AK2 ¼ KaH1 exp a′0Δþ C′Δ2� 

AH2Kb

such that H�1
1 a0Δþ CΔ2
� 


H1 ¼ a′0Δþ C′Δ2 is in a and a′0 ¼ P H�1
1 a0H1

� 

is pro-

jection onto a such that

P H�1
1 a0H1

� 

¼ ∑

k

αkWk Xdð Þ:
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This follows because the orthogonal part of Ad
K

Xdð Þ to f written as Ad
K

Xdð Þ⊥

remains orthogonal of f

H�1AdK Xdð Þ⊥H; a
D E

¼ AdK Xdð Þ⊥;HaH�1
D E

¼ AdK Xdð Þ⊥; a0′
D E

¼ 0

(a″∈ f), remains orthogonal to a. Therefore

P H�1
1 a0H1

� 

¼ P H�1

1 Ad
K

Xdð ÞH1

� �

¼ ∑kαkWk Xdð Þ.

exp AdK Xdð ÞΔð ÞK1AK2 ¼ Ka exp aþ a0′Δþ C′
Δ

2� 

Kb:

Lemma 1 Given P ¼ K1 exp aþ a1Δð Þ
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

A1

K2 ¼ K3 exp b� b1Δð Þ
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

A2

K4, where

a, b, a1, b1 ∈ a. We can express

exp bð Þ ¼ Ka exp aþ a1ΔþW b1ð ÞΔð ÞKb,

where W b1ð Þ is Weyl element of b1. Furthermore

exp bþ b2Δð Þ ¼ Ka′ ′ exp aþ a1ΔþW b1ð ÞΔþW b2ð ÞΔð ÞK
b′

′ :

Proof. Note, A2 ¼ K�1
3 PK�1

4 , commutes with b1. This implies
A2 ¼ ~K exp aþ a1Δð ÞK commutes with b1. This implies A2b1A

�1
2 ¼ b1, i.e.,

~K exp aþ a1Δð ÞAdK b1ð Þ exp � aþ a1Δð Þð Þ~K 0 ¼ b1, which implies that AdK b1ð Þ∈ f.
Recall, from Remark 5,

exp aþ a1Δð ÞAdK b1ð Þ exp � aþ a1Δð Þð Þ ¼ ∑
k

ck Yk cos λkð Þ þ Xk sin λkð Þð Þ:

This implies ∑kck sin λkð ÞXk ¼ 0, implying λk ¼ nπ. Therefore,

exp 2 aþ a1Δð Þð ÞAdK b1ð Þ exp �2 aþ a1Δð Þð Þ ¼ AdK b1ð Þ:

We have shown existence of H1 such that H1AdK b1ð ÞH�1
1 ∈ a, using H1, H2 as

before,

~K exp aþ a1Δð ÞK exp b1Δð Þ ¼ ~KH2 exp aþ a1Δð ÞH1 exp AdK b1ð ÞΔð ÞK

¼ Ka exp aþ a1ΔþW b1ð ÞΔð ÞKb:

Applying the theorem again to

Ka exp aþ a1ΔþW b1ð ÞΔð ÞKb exp b2Δð Þ ¼ Ka″ exp aþ a1ΔþW b1ð ÞΔþW b2ð ÞΔð ÞKb″:

Lemma 2 Given Pi ¼ Ki
1A

iKi
2 ¼ Ki

1 exp ai
� 


Ki
2, we have Pi, iþ1 ¼ exp Hþ

i Δ
þ
i

� 

Pi,

and Pi, iþ1 ¼ exp �H�
iþ1Δ

�
iþ1

� 

Piþ1, where Hþ

i ¼ AdKi
Xdð Þ. From above we can

express

Pi, iþ1 ¼ Kiþ
a exp ai þ aiþ1 Δ

i
þ þ aiþ2 Δ

i
þ

� 
2
� �

Kiþ
b :
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where aiþ1 and aiþ2 are first and second order increments to ai in the positive
direction. The remaining notation is self-explanatory.

Pi, iþ1 ¼ K iþ1ð Þ�
a exp aiþ1 � a

iþ1ð Þ�
1 Δ

iþ1
� � a

iþ1ð Þ�
2 Δ

iþ1
�

� 
2
� �

K
iþ1ð Þ�
b :

exp aiþ1� 

¼ K1 exp ai þ aiþ1 Δ

i
þ þ aiþ2 Δ

i
þ

� 
2
þW a

iþ1ð Þ�
1 Δ

iþ1
� þ a

iþ1ð Þ�
2 Δ

iþ1
�

� 
2
� �� �

K2:

W a
iþ1ð Þ�
1 Δ

iþ1
� þ a

iþ1ð Þ�
2 Δ

iþ1
�

� 
2
� �

¼ P W a
iþ1ð Þ�
1

� �� �

Δ
iþ1
� þ P W a

iþ1ð Þ�
2

� �� �

Δ
iþ1
�

� 
2

¼ ∑
k

αkWk Xdð ÞΔiþ1
� þ o Δ

iþ1
�

� 
2
� �

where, ai, ai1, a
i
2 ∈ a.

Using Lemma 1 and 2, we can express

Pn Tð Þ ¼ K1 exp anð Þ expK2 ¼ K1 exp ∑
i

W aþi
� 


Δ
þ
i þW a�iþ1

� 

Δ

�
iþ1

� 	

exp ∑o Δ
2� 


|fflfflfflffl{zfflfflfflffl}

# εT

0

B
@

1

C
AK2

Letting ε go to 0, we have

Pn Tð Þ ¼ K1 exp T∑
i

αiW i Xdð Þ

� 	

K2:

Hence the proof of theorem. q.e.d.

4. Conclusion

In this chapter, we studied some control problems that derive from time
optimal control of coupled spin dynamics in NMR spectroscopy and quantum
information and computation. We saw how dynamics was decomposed into fast
generators k (local Hamiltonians) and slow generators p (couplings) as a Cartan
decomposition g ¼ p⊕ k. Using this decomposition, we used some convexity ideas
to completely characterize the reachable set and time optimal control for these
problems.
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