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Abstract

This chapter studies the ordinal content of supermodularity on lattices. This chapter is a
generalization of the famous study of binary relations over finite Boolean algebras
obtained by Wong, Yao and Lingras. We study the implications of various types of
supermodularity for preferences over finite lattices. We prove that preferences on a finite
lattice merely respecting the lattice order cannot disentangle these usual economic
assumptions of supermodularity and infinite supermodularity. More precisely, the exis-
tence of a supermodular representation is equivalent to the existence of an infinitely
supermodular representation. In addition, the strict increasingness of a complete preorder
on a finite lattice is equivalent to the existence of a strictly increasing and infinitely
supermodular representation. For wide classes of binary relations, the ordinal contents of
quasisupermodularity, supermodularity and infinite supermodularity are exactly the
same. In the end, we extend our results from finite lattices to infinite lattices.

Keywords: supermodularity, ∞-supermodularity, lattice

JEL Classifications: D11, D12, C65

1. Introduction

The aim of this chapter is mainly twofold. It intends first to emphasize that on finite lattices,

preferences merely respecting the lattice order cannot disentangle the usual economic hypoth-

esis of supermodularity representations from the much stronger ∞� supermodular represen-

tations. Thus, we complement the work of Chambers and Echenique [1, 2] who nicely prove

under the assumption of weak monotonicity that supermodularity is equivalent to the notion

of quasisupermodularity introduced by Milgrom and Shannon [3].

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Second, we aim at offering simple constructive proofs for the existence of ∞-supermodular

representations on finite lattices, hence generalizing to finite lattice the characterization

obtained on finite Boolean Algebras by Wong, Yao and Lingras [4] of complete preorders

representable by belief functions.

It is well known that supermodularity is a concept widely used in relation with economies of

scale. It indicates a synergy relationship of subsystems, so that the marginal returns to the

marginal element are closely related to the size of the existing elements. This creates

nonlinear expectations that could have wide potential applications in social sciences. For

example, we might see their applications in nonlinear pricing models as well as product

bundling models.

This chapter is organized as follows. Section 2 introduces several notions of supermodularity.

Then we propose our main result Theorem 1 over ∞-supermodularity representations and

underline through Proposition 1 that, in a finite lattice, quasisupermodularity is a very

weak assumption, since for weakly increasing preference relations which are complete pre-

orders, it cannot be distinguished from weak quasisupermodularity but also from what we

call strong quasisupermodularity. Section 3 finally shows that complete preorders merely

requiring strong monotonicity for preferences lead to the existence of ∞� supermodular

representations.

2. Infinite Supermodularity

2.1. ∞� supermodularity and preference

Definition 1 Let X; ≤ð Þ be a finite lattice and ⪰ a preference relation ⪰ on X (i.e. a binary relation ⪰

on X with asymmetric part ≻ and symmetric part �).

⪰ is said to be weakly increasing if x ≤ y ) x⪯ y.

⪰ is said to be strictly increasing if it is weakly increasing and x < y ) x≺ y.

⪰ is said to be weakly quasisupermodular if x ∨ y � y ) x ∧ y � x.

⪰ is said to be quasisupermodular if x⪰ x ∧ y ) x ∨ y⪰ y and x≻ x ∧ y ) x ∨ y≻ y.

⪰ is said to be strongly quasisupermodular if x � x ∧ y ) x ∧ z � x ∧ y ∧ z.

Note that what we call strong quasisupermodularity is dual (with ∧ instead of ∨ Þ of what

Chambers and Echenique [1] called modularity, a property referred to as Generalized Kreps by

Epstein and Marinacci [5].

Definition 2 A function u : X ! R is said to be quasisupermodular if, for any x, y∈X, u xð Þ ≥ u x ∧ yð Þ

implies u x ∨ yð Þ ≥u yð Þ and u xð Þ > u x ∧ yð Þ implies u x ∨ yð Þ > u yð Þ. It is said to be supermodular if, for

any x, y∈X, u x ∧ yð Þ þ u x ∨ yð Þ ≥ u xð Þ þ u yð Þ.1

1

Clearly, u supermodular implies u quasisupermodular.
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Definition 3 ⪰ is said to be supermodular if it allows a supermodular representation u : X ! R, i.e.

there exists u : X ! R supermodular such that: for all x, y∈X, if x⪰ y then u xð Þ ≥u yð Þ and if x≻ y

then u xð Þ > u yð Þ. Furthermore, the representation u is weakly increasing if x ≥ y ) u xð Þ ≥ u yð Þ.

Definition 4 Let X; ≤ð Þ be a finite lattice then v : X ! R is said to be ∞� supermodular if

v ∨
n
k¼1xk

� �

≥

X

∅6¼I⊆ 1;…;nf g

�1ð Þ∣I∣þ1v ∧ xi
i∈ I

� �

, ∀n ≥ 2, xk ∈X, k ¼ 1,…, n

The following simple example illustrates that indeed supermodularity and ∞� supermodularity

are two different notions for weakly increasing functions on a finite lattice X; ≤ð Þ:

Example 5 let S ¼ s1; s2; s3f g and consider X; ≤ð Þ where X consists of the following partitions of S :

X ¼ 0≔ s1f g; s2f g s3f gf g; xi ¼ S\ sif g; sif gf g i ¼ 1; 2; 3; 1≔ s1; s2; s3f gf g

and ≤ is defined by x ≤ y if partition y is a refinement of partition x: It is straightforward to see that

xi ∧ xj ¼ 0 and xi ∨ xj ¼ 1 for i 6¼ j: Furthermore let u : X ! R be defined by u 0ð Þ ¼ 0, u xið Þ ¼ 1,

∀1 ≤ i ≤ 3 and u 1ð Þ ¼ 2, clearly u is supermodular but not ∞�supermodular as just proved now. In

actual fact, for a function v : X ! R defined by v 0ð Þ ¼ 0, v xið Þ ¼ 1, ∀i ¼ 1; 2; 3, then v is

∞�supermodular if and only if v 1ð Þ ≥ 3.

Chambers and Echenique [2] have shown that a preference relation ⪰ on a lattice has a weakly

increasing supermodular representation if and only if it has a weakly increasing and

quasisupermodular representation. Now, we show that this is also equivalent to ⪰ allowing a

weakly increasing ∞� supermodular representation.

Theorem 1: A binary relation ⪰ on X has a weakly increasing and quasisupermodular repre-

sentation if and only if it has a weakly increasing and ∞� supermodular representation.

Proof. If part: Since an ∞� supermodular representation is always super modular, the if part is

immediate.

Only if: This part of the proof is highly inspired by the paper of David Kreps, A representation

theorem for preference for flexibility, and especially by the proof of Lemma 3, p.572.

From Theorem 1 of Chambers and Echenique [2], we know that there is a weakly increasing

supermodular u : X ! R which represents ⪰.

Let R be the total preorder induced on X by u, i.e. xRy ⇔ u xð Þ ≥u yð Þ. Let P be the asymmetric

part of R. Clearly, R agrees with ⪰ , i.e. x⪰ y ) xRy and x≻ y ) xPy. Therefore, the proof will

be complete if one shows that R can be represented by a ∞-supermodular function v which, by

construction, will be necessarily weakly increasing.

Henceforth, to simplify the exposition, we will abuse of notation, letting R be denoted again by

⪰. Note that this new⪰ is again monotone, i.e. x ≥ y ) x⪰ y, since x ≥ y ) u xð Þ ≥u yð Þ.

Let x
�
denote the equivalence class of any x∈X: There is a finite number of equivalence classes,

x
�
n ≻…≻ x

�
1. Note that since u is supermodular: x≻ x ∧ y ) x ∨ y≻ y. This will be very useful later

on. At last, for any x∈X, define x
≤

¼ y∈X j y ≤ xf g. The following lemma will be crucial [8, 9].
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Lemma 1. For any x∈X, there exists a unique x∗ ∈X such that x
≤

∩ x
�
¼ y∈X j x∗ ≤ y ≤ xf g.

Proof. Let us first show uniqueness. Suppose that x∗ and y∗ satisfy the property of Lemma 1.

Then, x∗ ≤ y∗ and y∗ ≤ x∗ so x∗ ¼ y∗.

Since x
�
is finite, there exists at least one minimal element for ≤ in x

≤

∩ x
�
, which is denoted by x∗.

The proof will be completed if we show that x
≤

∩ x
�
¼ y∈X j x∗ ≤ y ≤ xf g.

Note that y∈X j x∗ ≤ y ≤ xf g⊆ x
≤

∩ x
�
. Actually, if y∈X and x∗ ≤ y ≤ x, then weak increasingness

of ⪰ implies x⪰ y⪰ x∗, hence y � x since x � x∗.

It remains to prove that x
≤

∩ x
�
⊆ y∈X j x∗ ≤ y ≤ xf g, or, equally, that y∈X, y ≤ x, y � x implies

y ≥ x∗. So let us show that if y∈X, y ≤ x, y � x, then not(y ≥ x∗) is impossible.

If not (y ≥ x∗), then x∗ > x∗ ∧ y. Actually, one has always x∗ ≥ x∗ ∧ y and y ≥ x∗ ∧ y, so if x∗ ¼ x∗ ∧ y,

then we would get y ≥ x∗, a contradiction.

Let us see now that, from the definition of x∗, x∗ > x∗ ∧ y implies x∗ ≻ x∗ ∧ y. Actually, if

x∗ ∧ y⪰ x∗, since x∗ ≥ x∗ ∧ y and ⪰ is monotone, it turns out that x∗ ⪰ x∗ ∧ y⪰ x∗, which entails

x∗ ∧ y � x∗. Therefore, x∗ ∧ y∈ x
�
, but, since x∗ > x∗ ∧ y, this contradicts the fact that x∗ is a

minimal element of x
�
for ≤ .

So x∗ ≻ x∗ ∧ y and, by supermodularity, x∗ ∨ y≻ y. But y ≤ x and x∗ ≤ x, hence x∗ ∨ y ≤ x. So, by

monotonicity, x⪰ x∗ ∨ y≻ y � x. Therefore, x≻ x, a contradiction, which completes the proof of

Lemma 1. ■

We can now turn to finishing the proof of Theorem 1. We intend to define, for any y∈X,

n yð Þ∈Rþ in a consistent way such that the function v, defined by v xð Þ ¼
P

y ≤ xn yð Þ for any

x∈X, represents ⪰.

Let 0X be the minimal element of X for ≤ . Since x ≥ 0X for any x∈X and x ≥ 0X implies x⪰ 0X,

one has x
�
1 ¼ 0

�

X. For any y∈ x
�
1, let n yð Þ ¼ 0. Therefore, for any x∈ x

�
1, v xð Þ ¼

P

y ≤ xn yð Þ ¼ 0.

Let us now show by induction that the n yð Þ‘s can be defined in such a way that there exists α1 ¼

0< α2 <…< αi <…< αn, satisfying v xð Þ ¼ αi, ∀x∈ x
�
i and n yð Þ≥0 ∀y∈X, y ≤ x where x∈ x

�
i.

This is true for x
�
1. Suppose that this has been done up to i� 1, 1 ≤ i� 1 ≤n� 1 and let us prove

the result for index i.

Let x
�
i ¼ y1;…; yj;…; ym

n o

. Let us first show that we can suitably obtain vðy∗j Þ ¼ αi > αi�1, for

1 ≤ j ≤m. Note that v y∗j

� �

¼ n y∗j

� �

þ
P

y<y∗
j
n yð Þ.

Since by monotonicity y < y∗j implies y⪯ y∗j , hence y⪯ xi, it comes from the definition of y∗j that

y≺ xi. Therefore, at step i,
P

y<y∗
j
n yð Þ is already defined, so since there is a finite number of y∗j ‘s,

one can choose αi such that αi > αi�1 and such that nðy∗j Þ ¼ αi �
P

y<y∗
j
n yð Þ be positive. For

such an αi, we consequently get vðy∗j Þ ¼ αi > αi�1.
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It thus remains to see that we can choose suitably the n :ð Þ values of the remaining y‘s satisfying

y ≤ x for x∈ x
�
i. So for any given yj, j ¼ 1…m, we need to show that it is possible to get vðyjÞ ¼ αi,

where vðyjÞ ¼
P

y ≤ yj
n yð Þ. Let y be such that y ≤ yj, then by monotonicity y⪯ yj. If y � yj, then

y∗j ≤ y ≤ yj, and if y≺ yj, then necessarily y < yj and, therefore, by definition of y∗j , necessarily

y < y∗j , indeed y < y∗j implies y < yj. So yf , y ≤ yjg ¼ yf , y < y∗j g∪ y∗j

n o

∪ yf , y∗j < y ≤ yjg. Since

any y such that y∗j < y ≤ yj has not yet been attributed a value n :ð Þ, we can state n yð Þ ¼ 0 for

such y‘s. It comes that vðyjÞ ¼ nðy∗j Þ þ
P

y<y∗
j
n yð Þ, that is vðyjÞ ¼ αi.

So finally we get n zð Þ‘s satisfying the required condition of representation: x⪰ y ⇔
P

z ≤ xn zð Þ ≥
P

z ≤ yn zð Þ with n zð Þ ≥ 0, ∀z∈X. It remains to show that v defined this way is indeed

∞-supermodular. While we might involve Möbius inversion as in the seminal book of Rota [6]),

we choose for sake of self completion to propose the following direct proof. Let xk ∈X,

k ¼ 1,…, n, n ≥ 2, and let us prove that

v ∨
n
k¼1xk

� �

≥

X

∅ 6¼I⊆ 1;…;nf g

�1ð Þ∣I∣þ1v ∧ xi
i∈ I

� �

For x∈X, let I xð Þ ¼ kj 1 ≤ k ≤ n; x ≤ xkf g, then:

X

∅6¼I⊆ 1;…;nf g

�1ð Þ∣I∣þ1v ∧ xi
i∈ I

� �

¼

¼
X

∅6¼I⊆ 1;…;nf g

�1ð Þ∣I∣þ1
X

x ≤ ∧ xi
i∈ I

n xð Þ

¼
X

I xð Þ6¼∅

n xð Þ
X

∅6¼I⊆ I xð Þ

�1ð Þ∣I∣þ1

¼
X

I xð Þ6¼∅

n xð Þ �1ð Þ
X

I⊆ I xð Þ

�1ð Þ∣I∣ � �1ð Þ∣∅∣

2

4

3

5

¼
X

I xð Þ6¼∅

n xð Þ

But
X

I xð Þ6¼∅

n xð Þ ≤
X

x ≤ ∨
k∈ 1;::;mf g

xk

n xð Þ ¼ v ∨
n
k¼1xk

� �

since n xð Þ ≥ 0 ∀x∈X.

Hence, v is an ∞� supermodular and weakly increasing by construction. ■

The following corollary shows that, as soon as the binary relation ⪰ on X is a complete

preorder, that is, reflexive, transitive and complete (i.e. ∀ x; yð Þ∈X2, x⪰ y or y⪰ x or both),

one can obtain a much more general result.

Corollary 1: For a complete preorder ⪰ on a lattice X; ≤ð Þ, the following assertions are

equivalent:
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i. ⪰ is weakly increasing and quasisupermodular.

ii. ⪰ has a weakly increasing and quasisupermodular representation.

iii. ⪰ has a weakly increasing and ∞� supermodular representation.

Proof. (i) ) (iii): Starting the proof of only if of Theorem 1 at the point where we were

considering the finite equivalent classes of X for � gives the result, taking into account the fact

that by hypothesis ⪰ is monotone, or, in other words, weakly increasing, and that ⪰

quasisupermodular implies: x≻ x ∧ y ) x ∨ y≻ y. (iii) ) (ii) is immediate. (ii) ) (i): Let u be a

weakly increasing and quasisupermodular representation of ⪰. Let x ≥ y, then u weakly

increasing implies u xð Þ ≥ u yð Þ and u representation of the complete preorder ⪰ implies x⪰ y,

therefore ⪰ is weakly increasing. It remains to prove that ⪰ is quasisupermodular. Since ⪰ is

weakly increasing and since x ≥ x ∧ y and x ∨ y ≥ y, one gets x⪰ x ∧ y and x ∨ y⪰ y so indeed

x⪰ x ∧ y ) x ∨ y⪰ y. Let us now show x≻ x ∧ y ) x ∨ y≻ y: x≻ x ∧ y and u represents ⪰ implies

u xð Þ > u x ∧ yð Þ, u quasisupermodular then implies u x ∨ yð Þ > u yð Þ, and u represents the com-

plete preorder ≽ finally implies x ∨ y≻ y, which completes the proof of the corollary. ■

Remark and example: The following example illustrates that indeed even a complete preorder

⪰ on a finite lattice X; ≤ð Þmay possess both a weakly increasing super modular representation

which is not ∞� supermodular and also a weakly increasing ∞� supermodular representation.

Consider a finite set S ¼ s1; s2; s3; s4f g and the finite lattice X; ≤ð Þ ¼ P Sð Þ;⊆ð Þ. Let u : X ! R be

defined by u ∅ð Þ ¼ 0 ¼ u xð Þ if the cardinal of x, denoted ∣x∣, equals 1, u xð Þ ¼ 1
6 if ∣x∣ ¼ 2, u xð Þ ¼ 1

3

if ∣x∣ ¼ 3 and u xð Þ ¼ 1 if ∣x∣ ¼ 4.

As proved in Chateauneuf and Jaffray [7] in Example 4, u is supermodular but not ∞�

supermodular. Let⪰ be the complete preorder on X; ≤ð Þ defined by x⪰y ⇔ u xð Þ ≥ u yð Þ. Clearly,

u is a weakly increasing supermodular representation of ⪰ which is not ∞� supermodular.

Hence, ⪰ has a weakly increasing and quasisupermodular representation, and therefore from

Corollary 1⪰ has a weakly increasing and ∞� supermodular representation.

For instance, setting n ∅ð Þ ¼ 0, n yð Þ ¼ 0 if ∣y∣ ∈ 1; 3; 4f g and n yð Þ ¼ 1
6 if ∣y∣ ¼ 2, defining v xð Þ

¼
P

y ≤ xn yð Þ does the job, since v ∅ð Þ ¼ v xð Þ ¼ 0 if ∣x∣ ¼ 1, v xð Þ ¼ 1
6 if ∣x∣ ¼ 2, v xð Þ ¼ 3

6 if ∣x∣ ¼ 3

and v xð Þ ¼ 1 if ∣x∣ ¼ 4. Hence, v is a weakly increasing and∞� supermodular representation of⪰.

2.2. Weak quasisupermodularity, quasisupermodularity and strong quasisupermodularity

Now we show, for a weakly increasing complete preorder ⪰ on a finite lattice X; ≤ð Þ, the

equivalence of the different notions of quasisupermodularity defined in Definition 1.

Proposition 1: Let X; ≤ð Þ be a finite lattice, if ⪰ is a weakly increasing complete preorder, then

the following statements are equivalent.

1. ⪰ is weakly quasisupermodular.

2. ⪰ is quasisupermodular.

3. ⪰ is strongly quasisupermodular.
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Proof. (2) ) (1): We need to show x ∨ y � y ) x ∧ y � x, ∀x, y∈X: Suppose not, then by

monotonicity, we must have x≻ x ∧ y, quasisupermodularity implies x ∨ y≻ y, a contradiction.

(1)) (3): Suppose x ∧ y � x, we need to show that x ∧ z � x ∧ y ∧ z: Since x ≥ x ∧ yð Þ ∨ x ∧ zð Þ, thus

if x ∧ y � x, then x ∧ y⪰ x ∧ yð Þ ∨ x ∧ zð Þ, hence x ∧ y � x ∧ yð Þ ∨ x ∧ zð Þ. By weak quasisupermo-

dularity, we have x ∧ yð Þ ∧ x ∧ zð Þ � x ∧ z, i.e. x ∧ yð Þ ∧ z � x ∧ z: (3) ) (2): We need to show that

x⪰ x ∧ y ) x ∨ y⪰ y and x≻ x ∧ y ) x ∨ y≻ y: Since ⪰ is weakly increasing it is clear that

x⪰ x ∧ y ) x ∨ y⪰ y is always true. Now we prove the second statement: x≻ x ∧ y ) x ∨ y≻ y:

First, ⪰ is weakly increasing implies x ∨ y⪰ y, thus if it is not x ∨ y≻ y then it must be the case

that x ∨ y � y ¼ x ∨ yð Þ ∧ y, strong quasisupermodularity implies x ¼ x ∨ yð Þ ∧ x � x ∨ yð Þ ∧

y ∧ x ¼ y ∧ x, which says x � y ∧ x contradicting x≻ x ∧ y: ■

Thus, we have shown that, for a weakly increasing complete preorder ⪰ over a finite lattice

X; ≤ð Þ, Weakquasisupermodularity ⇔ quasisupermodularity⇔ strong quasisupermodularity.

3. ∞-Supermodular representation for strictly monotone preference on a

lattice

Definition 6 A function f : X ! R is strictly increasing if x < y ) f xð Þ < f yð Þ:

Theorem 2 below shows that if the preference relation ⪰ on X; ≤ð Þ i a complete preorder, then

strict monotonicity of ⪰ is not only necessary but also sufficient in order to get a strictly

increasing ∞� supermodular function u representing ⪰. Moreover, the proof offers a simple

constructive way to build such a representation.

Theorem 2: Let ⪰ be a complete preorder on X; ≤ð Þ, then the following statements are

equivalent:

i. ⪰ is strictly increasing.

ii. ⪰ has a strictly increasing and quasisupermodular representation.

iii. ⪰ has a strictly increasing and ∞� supermodular representation.

Proof. (i) ) (iii): Let x
�
denote the equivalence class of x∈X for �, and let us consider the finite

number of equivalence classes x
�
1 ≺…≺ x

�
i ≺…≺ x

�
n. As in the proof of Theorem 1, it is enough

to show that there exist n zð Þ ≥ 0 ∀z∈X such that, setting u xð Þ ¼
P

z ≤ xn zð Þ ∀x∈X, one gets x⪰ y

if and only if u xð Þ ≥u yð Þ. Actually, such an uwill indeed represent ⪰ and be ∞� supermodular.

Moreover, since ⪰ is strictly increasing, x < y implies x≺ y and we will get x < y implies

u xð Þ < u yð Þ so u will be strictly increasing. So let us define inductively the n zð Þ‘s in order that

the function u defined by u xð Þ ¼
P

z ≤ xn zð Þ ∀x∈X represents ⪰.

Let 0X stands for the minimal element in X. Note that x
�
1 ¼ 0Xf g. Actually, ∀x∈X, x ≥ 0X, so if

x ¼ 0X, indeed x � 0X by reflexivity of ⪰, and if x > 0X, then x≻ 0X since ⪰ is strictly increas-

ing. It turns out that, letting n 0Xð Þ ¼ α1 ≥ 0 (eventually α1 > 0), one gets u xð Þ ¼ α1 ∀x∈ x
�
1.
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Let us now consider x
�
2. For any x∈X, z < x implies z≺ x by strict monotonicity of⪰. So for any

given x∈ x
�
2, one gets z < x if and only if z ¼ 0X. Actually: z < x ) z≺ x2 ) z∈ x

�
1 ) z ¼ 0X

and, conversely, given 0X ≺ x, 0X ¼ x is impossible, and, since 0X ≤ x, one gets 0X < x. Therefore,

defining n xð Þ ¼ β1 > 0 ∀x∈ x
�
2, one gets for x∈ x

�
2 that u xð Þ ¼

P
z ≤ xn zð Þ ¼ α2 > α1 where

α2 ¼ α1 þ β1.

Consider now x
�
3. The same reasoning as before shows that for any x∈ x

�
3, zf , z ≤ xg ¼ xf g∪

zf , z < xg and z < x implies z≺ x3. Since the x‘s belonging to x
�
3 are finite, let x∈ x

�
3 be such that

P
z<xn zð Þ ¼ max

x∈x
�

3

P
z<xn zð Þ. Note that this quantity is well defined since n zð Þ has already

been defined for z≺ x3. Choose n xð Þ ¼ β xð Þ > 0 sufficiently great in order that α3 ≔ n xð Þþ
P

z<xn zð Þ > α2. Choose now the remaining n xð Þ‘s where x∈ x
�
3 such that n xð Þ þ

P
z<xn zð Þ ¼

α3. Then, necessarily n xð Þ ≥ n xð Þ > 0. So we get u xð Þ ¼
P

z ≤ xn zð Þ ¼ α3 ∀x∈ x3.

Indeed, this process applies step by step along increasing rank of the classes, and thus gives the

searched for result.

(iii) ) (ii) is immediate. (ii) ) (i) is immediate since x < y ) u xð Þ < u yð Þ ) x≺ y because u

represents the complete preorder. ■

As an immediate consequence, we obtain a stronger form of Corollary 5 of Chambers and

Echenique [2].

Corollary 2 Let X; ≤ð Þ be a finite lattice. If a binary relation ⪰ on X has a strictly increasing

representation, then it has a strictly increasing supermodular representation and even a strictly

increasing ∞� supermodular representation.

Proof. Let u be a strictly increasing representation of ⪰ and define the complete preorder R on

X by xRy ⇔ u xð Þ ≥u yð Þ. Then, x > y ) u xð Þ > u yð Þ ) xRy and not(yRx). Hence, R is a strictly

increasing complete preorder on X; ≤ð Þ. From Theorem 2, R, hence ⪰, has a strictly increasing

∞� supermodular representation and, therefore, has a strictly increasing supermodular repre-

sentation. This indeed implies that ⪰ has a supermodular representation as it is proved in

Corollary 5 of Chambers and Echenique [2]. ■

4. Extensions to infinite lattices

We shall extend our major result to infinite lattices.

First it should noted that when we consider infinite lattices, we would need a separability in

order represent the given preference. The following is a counter example.

Example 7 Let L be the standard Borel σ�algebra on 0; 1½ �, μ xð Þ the std. Lebesgue measure, ν xð Þ be a

distribution that with mass points on all the rational numbers of 0; 1½ �. We define an order on L to be

x < y if μ xð Þ < μ yð Þ or μ xð Þ ¼ μ yð Þ, and ν xð Þ < ν yð Þ:Clearly this is the induced lexicographic order

on L. It is well known that the lexicographic order is not separable and does not allow a representation,

thus the defined order would not allow any representation.
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Definition 8 A preference ≼ on X; ≤ð Þ is said to be lower finitely separable if there is a countable set C

such that 1. C ∩ xjx≼ yf g is finite for all y∈X, and 2. ∀x≺ y, C ∩ zjx≺ z≼ y½ � 6¼ ∅.

A differential operator on a ordered lattice can be introduced in the following manner.

Definition 9 The difference operator on lattice X; ≤ð Þ is defined recursively as ∇0f xð Þ ¼ f xð Þ,

∇a1 f xð Þ ¼ f xð Þ � f x ∧ a1ð Þ,…,∇a1 ,…,ak f xð Þ ¼ ∇ak∇a1,…,ak�1
f xð Þ

¼ f xð Þ �
X

f x ∧ aið Þ þ ,…, þ �1ð Þkf x ∧ a1 ∧ ;…; ∧ akð Þ:

The following proposition is well known for supermodular functions on finite lattices, one can

see for example the work by J. P. Barthelemy (2000) p. 199–200.

Proposition 10 an increasing function is ∞-supermodular if and only if ∇a1,…,ak f xð Þ ≥ 0,

∀a1,…ak, k ¼ 1, 2, :…∣X∣� 2.

Now we are ready to extend our result that strictly increasing preference must allow strictly

increasing ∞-supermodular representation on any infinite lattices with lower finite separability.

Proposition 11 Let X; ≤ð Þ be a lattice with lower finite separability then the following two statements

are equivalent.

i. ⪰ is a strictly increasing preference relation.

ii. There exists an strictly increasing ∞� supermodular f representing ⪰.

Proof. Recall that a subset C is said to separate ≽ if ∀x≺ y, ∃c∈C such that x≼ c≼ y.

Let C ¼ c0 ≺ c1 ≺…≺ cm…f g be a chain relative to ≽ separating the preference ≽, since ≽ is

strictly increasing, we know that C will also separate the lattice order ≥ : Denote x∗ the

maximal element of c∈Cjc≼ xf g: It is well defined due to lower finiteness.

Given any weight function assigned to the separating chain wðÞ : C ! R, Denote
Ð

y

x

w cð Þdc ¼

P

x≺ c≼ y w cð Þ, if x≺ y, and ¼ 0 otherwise.

Clearly given any positive function w cð Þ : C ! Rþþ, the function f xð Þ ¼
Ð

x

c0

w cð Þdc represents ≽:

Nowwe claim that we can properly choose w cð Þ in such a way that f xð Þ ¼
Ð

x

c0

w cð Þdc is infinitely

supermodular.

Actually, we choose w c0ð Þ > 0, and w cð Þ ≥ 2∣X∣ w c0ð Þ þ
Ð

c

c0

w sð Þds

" #

, note this this is possible

because X; ≤ð Þ is a finite lattice.

We claim if we choose w cð Þ as in above then f xð Þ ¼
Ð

x

c0

w cð Þdcwill infinitely supermodular.
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In fact, the first difference: ∇yf xð Þ ¼ f xð Þ � f x ∧ yð Þ ¼

ðx

x ∧ y

w cð Þdc > 0 if x ∧ y≺ x, and ¼ 0 other-

wise.

∇y,zf xð Þ ¼ f xð Þ � f x ∧ yð Þ � f x ∧ zð Þ � f x ∧ z ∧ yð Þ½ �

¼

ðx

x ∧ y

w cð Þdc�

ðx ∧ z

x ∧ y ∧ z

w cð Þdc > 0

if y ∧ x≺ x or z ∧ x≺ x by our choice of w cð Þ, and ¼ 0 otherwise.

It can be easily checked that if there is some ai ∧ x≽x, ∇a1 , ::,ak f xð Þ ¼ 0, if not, then ai ∧ x≺ x

∀i ¼ 1, 2, ::, k

∇a1, ::ak f xð Þ ¼ f xð Þ �
X
i

f x ∧ aið Þ þ ::þ �1ð Þkf x ∧ a1 ∧ :: ∧ amð Þ

≥ w x∗ð Þ � 2∣X∣
ðx∗

c0

w cð Þdc ≥ 0

This completes the proof. ■

5. Conclusion

In this chapter, we have explored the ordinal content of supermodularity on lattices.We studied the

implications of various types of supermodularity for preferences over lattices. Especially we show

that preferences on a lattice merely respecting the lattice order cannot disentangle these usual

economic assumptions of supermodularity and infinite supermodularity. In addition, the strict

increasingness of a complete preorder on a lattice is equivalent to the existence of a strictly increasing

and infinitely supermodular representation. For wide classes of binary relations, the ordinal con-

tents of quasisupermodularity, supermodularity and infinite supermodularity are exactly the same.
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