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Chapter

Recent Advances about Local Gene 
Delivery by Ultrasound
Zhiyi Chen, Meng Du and Fei Yan

Abstract

Gene therapy has been widely explored as a pharmacological approach, with 
a great potential to treat various diseases. Generally, many diseases have definite 
lesion’s site, especially for tumors. This feature results in a great demand on the 
delivery of therapeutic gene to the local lesion’s site. Ultrasound combined with 
microbubbles provides a promising platform to deliver gene in a spatiotemporally 
controlled way. Ultrasound beam can be positioned and targeted onto the deep-
seated lesion’s site of diseases by an external mobile transducer. Microbubbles can 
serve as vehicles for carrying genetic cargo and can be destructed by ultrasound, 
resulting in the local release of genetic payload. Meanwhile, sonoporation effect 
will occur upon which the bubbles are exposed to the appropriate ultrasonic energy, 
producing the transient small holes on the adjacent cell membrane and thus increas-
ing the vascular and cellular permeability. In this chapter, we will review the recent 
advances about local gene delivery by ultrasound.

Keywords: ultrasound, gene therapy, microbubbles, sonoporation

1. Introduction

Gene therapy, designed to deliver nucleic acid into cells to compensate for 
abnormal genes, is now considered a promising treatment option for some human 
diseases [1]. With the development of modern medicine and precise medicine, 
there is an increasing trend to change the traditional gene delivery mode into local 
gene delivery. At present, there are mainly two gene delivery approaches, virus-
mediated transfection and nonvirus-mediated transfection [2]. The former method 
has high-transfection efficiency, but the preparation procedure of recombinant 
viruses is sophisticated, and their clinical application is restricted due to biosafety 
concerns [3]. Nonviral vector approaches, such as liposome-mediated methods 
and electroporation techniques, are relatively safe. However, poor targeting and 
low-transfection efficiencies limit their widespread use [4]. It is a current research 
hotspot to look for an effective and safe method to mediate gene delivery for 
biomedical application.

Ultrasound is a widely used diagnostic technique in clinic, which possesses 
the advantages of safety, real-time monitoring, and low cost. Recently, with the 
development of ultrasound contrast agents, ultrasound has evolved from a diag-
nostic tool to a treatment application for delivering locally therapeutic substances 
into the lesion’s sites. Ultrasound-targeted microbubble destruction (UTMD) 
provides a promising platform to deliver genes in a spatiotemporally controlled way. 
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Microbubbles can serve as vehicles for carrying genetic cargo and can be destructed 
by ultrasound, resulting in the local release of genetic payload. Meanwhile, sono-
poration effect will occur upon which the bubbles are exposed to the appropriate 
ultrasonic energy, producing the transient small holes on the adjacent cell mem-
brane and thus increasing the vascular and cellular permeability Figure 1. In this 
chapter, we will briefly introduce the mechanism and review the recent advances 
about local gene delivery by ultrasound.

2. Mechanism of ultrasound-mediated gene transfection

2.1 Sonoporation

When ultrasound is irradiated locally with certain energy, the cavitation nuclei, 
such as ultrasound contrast agents and bubbles, could alternately occur expansion, 
contraction, splitting, fusion, and even rupture. This physical process is called 
cavitation effect. Accompanied by the cavitation effect, acoustic microstreaming, 
micro-jet, high temperature, and shockwave will occur in the medium, resulting in 
the formation of some temporary, reversible pores on the cell membrane, which is 
sonoporation [6, 7]. Generally, it is an accepted notion that the sonoporation from 
cavitation effect allows genes and drugs to enter cells [8].

There are a large number of studies, which have confirmed that sonoporation 
can increase the efficiency of gene delivery through enhancing the permeability of 
the cell membrane [9–12]. The number of pores, having a high impact on the gene 
delivery efficiency, can be affected by a lot of factors, such as acoustic pressure, 
irradiation duration time, and pulse repetition frequency [13–15]. Sonoporation 
pores trend to be larger along with the increase of acoustic pressure and irradiation 
time, which also enhance gene transfection efficiency [16]. However, excessive 
acoustic pressure or ultrasonic duration may reduce cell viability and even cause 
cell death, vascular rupture, and other side effects [17–19]. Therefore, to achieve a 

Figure 1. 
Schematic model of ultrasound-mediated gene delivery. Bioeffect produced by ultrasound and microbubble 
interaction could enhance the permeability of vascular and promote the accumulation of gene (green) in tissue. 
(Quoted from: Sirsi and Borden [5]).
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high gene transfection efficiency and remain a cell viability as much as possible, it is 
important to optimize ultrasound irradiation parameters during gene transfection.

2.2 Endocytosis

In addition to sonoporation, cavitation effect can change the cell membrane 
structure through microstreaming and shear force. The mechanical force may cause 
cytoskeleton rearrangement and regulate various downstream cellular signaling 
pathways, helping the endocytosis of genetic cargo [20, 21]. Generally, there are 
three forms of endocytosis, including macropinocytosis, clathrin-mediated endo-
cytosis, and caveolae-mediated endocytosis [22]. After ultrasound irradiation, the 
reactive oxygen species are produced to stimulate the calcium influx and induce 
the occurrence of endocytosis [23]. In addition, cavitation effect and shear force 
induced by ultrasound can change cell structure and influence endocytosis through 
mechanosensors and signaling cascade [24]. Meijering et al. demonstrated that 
endocytosis was involved in the uptake of the macromolecular substances, while 
small molecules enter cells mainly through the pores of the membrane surface [25].

2.3 Sonoprinting

Recently, Cock et al. put forward a new viewpoint on the mechanism of 
ultrasound-mediated gene delivery [26]. By using the real-time scanning confocal 
microscopy, they found that nanoparticle-loaded microbubbles could deposit the 
nanoparticles in patches onto the cell membrane during ultrasound irradiation and 
promote the particles that enter cell through the fluidity of the membrane. In their 
opinion, this method, termed sonoprinting, is neither the traditional sonoporation 
nor the material swallowing. The underlying mechanisms still need to be explored.

3. Type of ultrasound contrast agents as gene vector

Genes administrated by the intravenous route are easily be degraded. 
Conventionally, genes such as plasmids, mRNA, siRNA, and miRNA need to be 
protected from degradation by extracellular and intracellular barriers Figure 2.  
The ideal gene vectors should have the following characteristics: (1) safe and 
nontoxic, long cycle time in vivo, protecting the nucleic acid molecules from being 
destroyed by extracellular nucleic acid enzymes; (2) possessing the characteristics 
of a targeting ability and delivering the gene to target tissue or target cells; (3) high 
gene-carrying capacity; (4) promoting the gene to enter cytoplasmic or nucleus 
and stable expressing; (5) ensuring the controllability of gene function; and (6) 
noninvasive evaluation of gene delivery effectiveness. In the field of ultrasound-
mediated gene delivery, many ultrasound contrast agents, including microbubbles, 
nanobubbles, nanodroplets, and some nanoparticles, are being developed into gene 
vectors in gene delivery mediated by ultrasound.

The gene vector may help them to avoid degradation by extracellular and intra-
cellular barriers, including serum endonucleases, immune detection, and endosome 
(Quoted from: Yin et al. [2]).

3.1 Microbubbles

Microbubbles are small, gas-filled microspheres with the particle size of 1–3 μm. 
As gene vectors, they not only can protect the genes from nucleic acid enzyme 
degradation and from reticuloendothelial system clearance but may also enhance 
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their local delivery through active and passive targeting. Traditional membrane 
materials consist of microbubbles, which include albumin, lipid, polymers, and 
surfactants. Different shell compositions have various characteristics. Albumin is 
commonly used in the preparation of commercial ultrasound contrast agents, but it 
is susceptible to degeneration due to temperature change. In addition, it is expensive 
and easy to cause immune response. The synthetic phospholipids are good and 
biocompatible, but their half life is short in vivo. Polymers are slightly inferior in 
biocompatibility, but it possesses better stability.

It has been proved that the application of ultrasound combined with commercial 
microbubbles and gene mixture could regulate gene expression and achieve thera-
peutic effect [27–30]. Wang et al. compared the effect of gene delivery by three 
kinds of typical commercial microbubbles—Optison, Sonovue, and Levovist. The 
mixture of microbubbles and plasmid DNA encoding green fluorescent protein 
was injected into tibialis anterior muscle of mice. After ultrasound irradiation, 

Figure 2. 
Schematic model of transfection process of genes in carriers.
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the number of GFP-positive fibers was significantly increased in Optison- and 
Sonovue-treated groups, proving the efficiency of gene transfection by ultrasound 
combined with commercial microbubbles [31]. However, DNA is anionic molecules, 
and most microbubbles are negatively charged on the surface, which bring some 
difficulty for the formation of DNA/microbubble complexes. In order to address 
this issue, some cationic microbubbles are developed and applied as gene vector to 
enhance the gene-carrying capacity [32–37]. Wang et al. evaluated the difference 
of gene transfection rate between cationic microbubbles and neutral microbubbles 
in combination with ultrasound. Their results demonstrated that the expression 
of reporter gene in cationic microbubble group was 20-fold higher in vitro and 
3-fold higher in tumor model than neutral bubbles [34]. Recently, Wei et al. applied 
Targesphere, a kind of commercial cationic microbubbles, as short hairpin (shRNA) 
vector for connective tissue growth factor (CTGF). It was showed that the expres-
sion of CTGF was decreased in renal fibrosis mouse model after ultrasound irradia-
tion, which proved the great potential in gene delivery mediated by ultrasound 
combined with cationic microbubbles [38].

3.2 Nanoparticle, nanodroplet, and nanobubble

Nanoscale ultrasound contrast agents, with the particle size from 100 to 
600 nm, are also developed in the recent years. Compared with traditional 
microbubbles, nanoscale contrast agents have smaller size and stronger penetrat-
ing ability. In addition, nanoscale contrast agents possess greater gene-carrying 
capacity due to their larger surface area. Common nanoscale ultrasound con-
trast agents include nanobubbles, solid nanoparticles, and liquid fluorocarbon 
nanoparticles. Most of the shell membrane of nanobubbles are lipid or polymer, 
and the core could be gas or liquid. Nanobubbles can cross through the blood 
vessels and aggregate in the tumors through the enhanced permeability and 
retention (EPR) effect [39]. It was proved that nanobubbles could achieve ideal 
gene transfection efficiency when combined with ultrasound [40, 41]. Horie et al. 
applied ultrasound combined with nanobubbles mediating tumor necrosis factor 
(TNF-α) DNA delivery to treat tumor-bearing mice and resulted in the decrease 
of the tumor vessel density and inhibition of tumor growth [42]. To enhance the 
gene-carrying capacity and local transfection efficiency, cationic nanobubble or 
targeted nanobubbles have been applied and showed excellent therapeutic effect 
in vitro and in vivo [43–45]. Yin et al. developed a new kind of siRNA-nanobubble, 
through a nanoparticle heteroassembly of siRNA-loaded polymeric micelles and 
liposomes, demonstrating their ideal therapeutic effect in cancer treatment [46]. 
Xie et al. used cell-permeable peptides (CPPs) to enhance the transferring rate 
of siRNA. They developed CPP-siRNA that targets oncogene c-myc and encapsu-
lated it into nanobubbles. It was shown that the expression of c-myc mRNA was 
significantly decreased, and the growth of tumor was significantly inhibited after 
ultrasound irradiation [47].

Recently, liquid fluorocarbon nanodroplets have attracted wide attentions in the 
ultrasound-mediated gene delivery. These nanodroplets prepared from a lipid or 
a polymer shell can encapsulate liquid fluorocarbon emulsion (perfluoropentane, 
etc.). The liquid core would occur “acoustic droplet vaporization” (ADV) under 
ultrasound irradiation, which makes the nanodroplet transform into gas-containing 
microbubbles, greatly enhancing the cavitation effect of ultrasound Figure 3. 
Although nanodroplets have shown its therapeutic effect in high-intensity focused 
ultrasound (HIFU) and drug delivery, its application in gene delivery is still rare. 
Gao et al. synthesized a novel tumor-targeting cationic nanodroplet and applied 
it as gene vector to treat Her2-positive breast cancer. The results in their study 
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demonstrated that this nanodroplet could achieve better gene transfection effi-
ciency, showing its potential in gene delivery by ultrasound [48, 49].

(A) Nanoparticles penetrate the tissue through the EPR effect; (B) droplets 
vaporize into microbubbles through ADV under certain acoustic pressure, which 
enhances the cavitation effect and changes the structure of tumor vessels. (Quoted 
from: Ho et al. [50]).

Nanoparticles commonly used in gene transfection include liposomes, polymer, 
and magnetic nanoparticles. Studies demonstrated that the cavitation effect pro-
duced by UTMD could increase the concentration of nanoparticles in targeted tissue 
and improved gene transfection efficiency. In the field of ultrasound-mediated gene 
delivery, liposome and polyethylenimine (PEI) are the most popular gene vectors.

Liposome is used as a nanocarrier for gene transfection, with high gene-carrying 
capacity and transfection efficiency. Taking advantages of UTMD, researchers have 
demonstrated that the accumulation of gene-carrying liposomes can be improved in 
targeting cells or tissue [51, 52]. Yoon et al. proved that ultrasound combined with 
microbubbles and gene-carrying liposomes could be a superior gene transfection 
system [53]. Recently, Chertok et al. modified heparin on the surface of liposome 
to increase the accumulation of gene in tumor site and reduce the off-target effect. 
Compared with nonheparinized DNA-carrying liposomes, modified liposomes 
combined with UTMD could significantly enhance the gene transfection rate in 
tumor in vivo [54].

PEI is another commonly used gene vector with high-density positive charge. It 
can form stable complex with genes through electrostatic adsorption. Also, utiliza-
tion of PEI can avoid DNA degradation by nucleic acid enzyme and improve the 
stability and integrity of genes in vivo. Meanwhile, PEI can assist gene delivery 
into nuclei through proton sponge mechanism and endosomal escape, which will 
enhance the expression of targeting gene [55] Figure 4. However, the cell toxicity is 
inevitable because of its strongly positive charge. UTMD may function as an effec-
tive method to balance the cytotoxicity and transfection efficiency of PEI. UTMD 
could not only temporarily mediate the opening of cell membrane and promote the 
PEI-DNA complex entering the cell but also improve the level of intracellular calcium 
and PKC protein expression, which can enhance the effect of endocytosis. It was 
confirmed that UTMD combined with PEI or chemical modified PEI could be an 
effective and safety gene transfection strategy in vitro or in vivo [56, 57]. Dang et al. 

Figure 3. 
Schematic model of acoustic droplet vaporization (ADV).
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demonstrated that UTMD combined with PEI could achieve the same transfection 
efficiency as Lipofectamine 2000 and lower cytotoxicity [58]. Deshpande et al. found 
that ultrasound combined with PEI could enhance the DNA transfection rate up to 
200-fold than naked DNA plasmids [59]. Park et al. applied UTMD combined with 
PEI mediating the adenine nucleotide translocase-2 (ANT2) shRNA to successfully 
increase the survival rate of xenograft mice and induce the tumor regression [60].

PEI binds with cell membrane and is endocytosed. When they enter lysosome, 
the unsaturated amino groups are able to capture protons and cause the retention of 
Cl− ion and water molecule, which will make lysosomal swelling and rupture, and 
then release the lysosomal content. (Quoted from: Nel et al. [55]).

4. Application of local gene delivery by ultrasound

4.1 Tumor

Tumor is a kind of genetically related disease. Its occurrence, development, 
and recurrence are closely related to the mutation and deletion of the gene. With 
the development of molecular biology, gene therapy has shown a great potential in 
cancer treatment. At present, the common strategy of gene therapy is to transfer 
tumor suppressor gene into tumor cells to restore normal phenotype of cells. Nande 
et al. applied UTMD to mediate tumor suppressor genes, including p53, Rb, p130, 
and significantly reduced tumor growth [61]. Chang et al. utilized the p53-loaded 
targeted microbubbles for ovarian cancer treatment and achieved higher transfection 

Figure 4. 
Schematic model of the proton sponge effect by cationic nanoparticles.
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efficiency than conventional nontargeted microbubbles [62]. Mishel et al. used 
ultrasound to mediate hSef-b delivery, another kind of human tumor suppressor 
gene, and demonstrated the efficacy of gene therapy mediated by ultrasound [63]. 
Recently, gene delivery by ultrasound was also applied in gene-directed enzyme pro-
drug therapy (GDEPT). The key process of GDEPT is effectively transferring gene 
encoding enzyme, which can convert a nontoxic prodrug into an activated cytotoxic 
agent [64]. Devulapally et al. used PEGylated-PLGA-PEI nanoparticles and mediated 
TK-NTR fusion gene delivery in tumor xenograft mice. Their results showed that the 
tumor size was reduced by 2.3-fold when compared with untreated mice [65].

In the field of tumor therapy, RNAi could selectively inhibit the expression of key 
genes in the development of cancer. It has been proved that co-delivery of siRNA and 
chemotherapy drugs by ultrasound could improve the therapeutic effect of tumor and 
reduce the dosage chemotherapy drugs [66–69]. Zhao et al. synthesized cationic por-
phyrin microbubbles for the delivery of FOXA1-siRNA, achieving an excellent thera-
peutic effect for breast cancer [70]. Cancer stem cells (CSCs), a group of tumor cells 
with self-renewal, multidirectional differentiation potential, are thought to be the key 
of tumor recurrence, metastasis, and drug resistance. Specific markers, such as CD133, 
are important targets for gene therapy. Liu et al. used UTMD to deliver shRNA-CD133 
to liver CSCs and reversed the process of epithelial-mesenchymal transition [71].

4.2 Cardiovascular disease

Atherosclerosis is the main cause of coronary heart disease, cerebral infarction, 
and peripheral vascular disease. Studies demonstrated that ultrasound combined 
with microbubbles can deliver angiogenic genes to the ischemic region of the 
myocardium and enhance expression of angiogenesis-related factors and thus 
improve myocardial blood supply [72, 73]. Du et al. utilized UTMD and cationic 
microbubbles to mediate delivery of growth differentiation factor 11 (GDF11) plas-
mid to aged heart. Their results suggested that ultrasound could enhance GDF11 
expression, increase the cardiac stem cell (CSC) proliferation, and rejuvenate the 
senescent heart from ischemic injury [74]. Castle et al. successfully enhanced the 
level of ApoA-I and high-density lipoprotein cholesterol (HDL-C) in vivo through 
delivering human apolipoprotein ApoA-I plasmids by ultrasound [75].

Heart failure, caused by various cardiac structures and functional disorders, 
will impair ventricular filling and ejection function and eventually cause cardiac 
output unable to meet body tissue metabolic needs. Lee et al. delivered survivin 
gene to cardiomyocyte by UTMD and observed its efficacy on cardiac function. The 
apoptosis rate of cadiomyocyte was significantly decreased, and the left ventricular 
systolic dysfunction was attenuated after 6 weeks, demonstrating that ultrasound-
mediated gene delivery can be an effective treatment in heart failure [76].

4.3 Central nervous system diseases

Blood-brain barrier (BBB) is an important obstacle for central nervous system 
(CNS) diseases. BBB is mainly composed of cerebral capillary endothelial cells 
and their cells, matrix, astrocytes, and extracellular matrix [77]. To cross the BBB, 
researchers have tried various methods, including invasive surgery, hypertonic 
drugs, chemical modification of drugs to target delivery to brain, and micro-carri-
ers [78–80]. Recently, ultrasound mediating BBB opening has attracted researchers’ 
attention due to its characteristic of noninvasive, reversible, and targeted delivery. 
Hynymen et al. proved that microbubbles could be applied as cavitation nuclei to 
reduce the ultrasonic energy to open the BBB, reducing the risk of tissue damage 
and bleeding [81]. Based on this, numerous studies are exploring the therapeutic 
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effect of gene delivery mediated by ultrasound in CNS diseases [82, 83], such as 
glioma, Parkinson’s disease, and Alzheimer’s disease.

Glioma is the most common malignant tumor of the central nervous system. 
UTMD has a wide application prospect in the treatment of brain glioma. In 2016, 
Carpentier et al. developed an implantable ultrasonic irradiation system, named 
SonoCloud. They used this system to open the local area of BBB with microbubbles. 
In their study, 15 patients with recurrent brain glioma were selected to test the 
therapeutic effect of UTMD-mediated BBB opening. After intravenous adminis-
tration of carboplatin and Sonovue combined with ultrasound treatment, it was 
proved that the BBB could be safely opened, and 9 of 15 patients showed no further 
tumor growth [84]. Fan et al. applied cationic microbubbles as therapeutic gene 
vectors and effectively mediated BBB opening for gene delivery in vitro and in vivo 
[85, 86]. Zhao et al. used targeted liposomes (NGR-liposomes) as vector for shRNA-
Birc5 delivery and demonstrated the enhancement of local gene transfection and 
the inhibition of glioma progression [87].

Parkinson’s disease (PD) is a common neurodegenerative disease of the nervous 
system due to the degeneration and death of dopaminergic neurons in substantia 
nigra and the significant decrease of dopamine content in striatum. Glial cell 
line-derived neurotrophic factor (GDNF) can protect the dopaminergic neurons 
and promote the regeneration of dopamine system in black striatum [88]. Fan et al. 
restored behavioral function in a PD animal model through delivering GDNF gene 
by transcranial focused ultrasound [89]. Lin et al. used the GDNF-loaded liposome-
microbubble complexes and demonstrated the therapeutic effect of PD by using 
focused ultrasound-mediated BBB opening [90, 91].

In addition, ultrasound-mediated gene delivery was also applied in other CNS 
diseases. Song et al. developed PLGA nanobubbles for NGF delivery. NGF expres-
sion was significantly enhanced, and neuronal apoptosis in injured spinal cords was 
inhibited after ultrasound irradiation [92]. Wang et al. demonstrated that UTMD 
could successfully mediate VEGF gene delivery into brain and decreased infarct 
areas in a cerebral ischemic injury model [93].

4.4 Musculoskeletal disease

Arthritis is a common chronic inflammatory disease. Of these, the most com-
mon type is osteoarthritis and rheumatoid arthritis (RA). At present, the main 
treatment of arthritis is drug, including nonsteroidal anti-inflammatory drugs, 
cytotoxic drugs, and hormones. However, there are some drawbacks such as low 
local concentration and systemic side reaction. Ultrasound-mediated gene delivery 
has been proved to be effective in arthritis therapy. Xiang et al. applied UTMD-
mediated enhanced green fluorescent protein (EGFP) gene delivery in antigen-
induced arthritis rabbit model, and the significantly enhanced expression remained 
detectable for 40 days in the synovial pannus [94]. Tumor necrosis factor α (TNFα) 
secreted by synovial fibroblasts plays an important role in the progression of RA, 
which can cause bone destruction and joint dysfunction. Inue et al. transferred 
siRNA-TNFα to the articular synovial membrane of the rat through UTMD tech-
nique. They found that the expression of TNFα was inhibited, resulting in a signifi-
cant remission of paw swallowing in comparison to control group [95].

In the field of fracture healing, bone morphogenetic protein-2 (BMP-2) is an 
ideal osteoinduction factor, which possesses the function of inducing cartilage 
and bone formation [96]. Some studies have confirmed that the transfection rate 
of BMP-2 gene in skeletal muscle cells and fibroblast cells could be enhanced by 
UTMD [97]. Osawa et al. delivered BMP-2 gene to the skeletal muscle in vivo, 
confirming the therapeutic effect of UTMD mediating gene transfection [98].
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Tendon injury is a common disease in orthopedics with a significant impact 
on the quality of patient’s life. Regulation of the expression of local cytokines in 
Achilles tendon by gene therapy is a potential therapeutic method to improve the 
prognosis of patient. Studies demonstrated that UTMD could increase the expres-
sion of genes in the Achilles tendon [99–101]. For example, Tang et al. transfected 
injured Achilles tendons of mice with insulin-like growth factor-1 (IGF-1) cDNA, 
showing that the maximum load, stiffness, and ultimate stress of treated Achilles 
tendons were higher than control group [102]. Bez et al. transferred BMP-6 encod-
ing DNA by UTMD in Yucatan mini-pigs, showing the significantly enhanced 
osteointegration of all pigs after 8 weeks [103].

4.5 Ocular disease

For the treatment of ocular diseases, the most common method of drug delivery 
is surface administration or systemic administration. However, due to the unique 
structure of the eye, traditional drugs are difficult to enter the posterior eye seg-
ment, causing low bioavailability of drugs. As for ultrasound mediated gene 
delivery in ocular diseases, recent researches mainly focus on the cornea, retino-
blastoma, and retinal neovascularization.

Cornea is a transparent tissue without blood vessels, which is an ideal target 
tissue for gene therapy because of its superficial position, transparent organization, 
and easy observation. Sonoda et al. confirmed that UTMD could mediate eGFP 
gene transfection to cornea epithelial cells of rabbit. In their study, they injected 
plasmid and microbubbles into the cornea of the rabbit and irradiated the eyes with 
ultrasound. They found that the corneal cells with GFP-positive expression were 
distributed around the injected region. No obvious tissue damage was observed 
in their study [104]. To optimize the gene transfection efficiency, Yamashita et al. 
developed a novel lipid microbubble, composed of polyethylene glycol (PEG) 
modified liposomes and perfluoropropane gas, and achieved a 27% gene transfec-
tion rate [105].

In the retina, there is a biological barrier similar to the blood-brain barrier named 
blood-retinal barrier (BRB), which is composed of tight connection between retinal 
endothelial cells and retinal pigment epithelial (RPE) cells. The presence of BRB 
prevents most systemically administered genes entering the retina, reducing the 
effectiveness of treatment. Park et al. demonstrated that UTMD could mediate BRB 
reversible opening without retinal damage [106]. Some studies have confirmed the 
effect of UTMD-mediated gene delivery into retinal in vitro and in vivo [107–110].

Retinoblastoma (RB) is a common ocular malignancy. Local treatment not only 
can retain part of the vision but also reduce the toxic side effects. Luo et al. applied 
wild-type 53 (wtp53) as a therapeutic gene. The in vitro experiment showed that the 
apoptosis rate of RB cells was higher (25.58%) than control group after ultrasound 
treatment [111]. To prove the therapeutic effect of gene delivery by ultrasound 
in vivo, Gao et al. transferred both wtp53 and Rb94 by UTMD to treat tumor-
bearing mice. RB tumor growth was significantly inhibited, along with the decrease 
of the level of vascular endothelial factor and microvessel density [112].

Retinal neovascularization (RNV) is caused by hypoxic-ischemic ocular fundus 
diseases, characterized by retinal fibrous hyperplasia, retinal detachment, and even 
loss of vision. It has been reported that endostatin can be used for treating RNV 
because of its excellent antiangiogenic effect [113]. Xu et al. significantly enhanced 
the expression of endostatin by using cationic microbubbles to deliver endostatin 
gene under ultrasound irradiation. As a result, the growth of human retinal vascu-
lar endothelial cell was inhibited, suggesting that endostatin gene delivery mediated 
by UTMD may be a useful tool for RNV therapy [110].
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4.6 Nephropathy

The blood flow of the normal kidney accounts for one-fourth to one-fifth of the 
total circulating blood volume. Therefore, a large number of microbubbles could 
enter the kidney blood vessels, which could be applied for ultrasound contrast 
imaging or targeted treatment. Based on this feature, some researchers applied 
UTMD to deliver genes to treat nephropathy, including diabetic nephropathy, 
hypertensive nephropathy, and renal fibrosis. Zhang et al. found that UTMD could 
increase the renal interstitial capillary permeability in diabetic nephropathy rat 
models [114]. Transforming growth factor β (TGF-β) is the key cytokine to promote 
the development of renal fibrosis. It can induce apoptosis of the podocytes on glo-
merular filtration membranes and promote the activation and proliferation of inter-
stitial fibroblasts through TGF-β/SMAD signaling pathway. Lan et al. enhanced the 
expression of Smad7 in rat unilateral ureteral obstruction model by ultrasound as 
the gene delivery system, greatly attenuating tubulointerstitial fibrosis [115]. The 
therapeutic effect of UTMD-mediated Smad7 gene delivery in renal fibrosis was 
also proved in Smad7 gene knockout mice [116], diabetic nephropathy model mice 
[117], and angiotensin II-mediated hypertensive nephropathy [118].

In addition to the TGF-β/SMAD signal pathway, researchers have also explored 
the use of other signaling pathways in the treatment of renal fibrosis. RAP1 is a small 
molecule G protein that participates in the regulation of cell proliferation, differen-
tiation, and intercellular adhesion [119]. Xiao et al. treated diabetic model rats with 
Rap1 gene delivery by ultrasound and microbubble (Optison). It was demonstrated 
that this treatment could protect the mitochondrial function of renal tubules and 
reduce the interstitial fibrosis [120]. In diabetic nephropathy, Yiu et al. confirmed the 
therapeutic effect of Kallistatin, which possesses the function of antioxidative and 
anti-inflammatory. The glomerulosclerosis and renal fibrosis were attenuated, and 
the renal function was improved after Kallistatin gene delivery by UTMD [121].

Recently, RNAi combined with UTMD therapy has been applied to the treat-
ment of renal diseases. miR-29b is low expression in diabetes [122] and can function 
as a therapeutic targeting [123]. Chen et al. delivered miR-29b in diabetic mice by 
ultrasound combined with SonoVue. The results showed that this treatment could 
inhibit the inflammation induced by NF-κB/p63 and delay the progress of renal 
fibrosis [28]. Zhong et al. found that the level of miR-21 is highly associated with 
the development of renal fibrosis in diabetic mice and effectively improved renal 
fibrosis and inflammation by using UTMD-mediated miR-21 shRNA delivery [29]. 
Wei et al. applied UTMD combined with shRNA-CTGF to treat mouse models of 
renal fibrosis; the level of CTGF was significantly lower; and the renal fibrosis was 
attenuated, accompanied by the reduction of TGF-β and Type I collagen [38].

5. Conclusion and prospect

With the development of ultrasound contrast agents and the understanding of 
the biological effects of ultrasound, ultrasound-mediated gene delivery has been 
proven the great potential in the treatment of various diseases. Ultrasound contrast 
agents, including microbubbles, nanoparticles, and nanobubbles, can be used as 
gene vectors through intravenous or local injection into lesion site. With ultrasound 
irradiation at a certain level of acoustic intensity, the cavitation effect, sonopora-
tion, and thermal effects occur, which can enhance the permeability of local tissue 
and promote the gene delivery into the pathological tissue.

Although ultrasound-mediated gene delivery has a broad application in ani-
mal study, there is still a long way for its application in human body. The main 
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problems, which need to be solved, may include the following aspects. First, many 
cationic materials are applied for the preparation of the ultrasound contrast agents. 
They have high gene-carrying capacity, but their biocompatibility is still doubt-
ful. Second, ultrasound security is also an important concern. Unlike diagnostic 
ultrasound energy, the intensity applying in gene delivery is greater. Studies have 
shown that severe cavitation effects can lead to membrane rupture, DNA rupture, 
nuclear fragmentation, endothelial cell damage, microvascular leakage, hemolysis, 
myocardial injury, and even left ventricular function [19, 124]. More investigations 
need to be made to optimize the ultrasonic parameters so as to maximize the gene 
transfection efficiency and reduce the adverse side effects on the normal tissues and 
organs. In addition, the different types of ultrasound equipment used in various 
laboratories also bring some difficulties for the repeatability, which hinder the prog-
ress of ultrasound-mediated gene transfection technology to some degree. At the 
same time, it is believed that ultrasound will make more progress in gene delivery 
and bring about greater medical revolution in the future.
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