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Chapter

Fatty Acids: From Membrane 
Ingredients to Signaling Molecules
Michio Hashimoto and Shahdat Hossain

Abstract

Fatty acid constitutes the foundation cell membranes, provides metabolic 
energy, affects functions of membrane-bound enzymes/receptors, conducts 
signaling cascades, and helps in learning-related memory cognition in mammals, 
including humans. Structurally, the fatty acids are of two kinds: saturated and 
unsaturated; the latter are again of mono- and polyunsaturated types. From nutri-
tional perspectives, they are of essential and nonessential types. Omega-6 linoleic 
acid (ω-6 LLA, C18:2) and ω-3 alpha linolenic acid (ω-3 αLLN, C18:3) and ω-6 ara-
chidonic acid [(ω-6 AA, C20:4); it is conditional] are essential fatty acids (EFAs). 
In addition, mammalian brains cannot biosynthesize the ω-3 docosahexaenoic 
acid (ω-3 DHA, C22:6) in adequate amounts because of lack of necessary enzymes. 
Thus, DHA is essential for the growth and development of the brains. Deficiency of 
DHA produces visual- and learning-related memory impairments, and neurodegen-
eration in the aged brains and Alzheimer’s disease brains. Finally, this chapter will 
highlight and broaden the awareness about the essentiality of different fatty acids 
with a special emphasis on DHA.

Keywords: docosahexaenoic acid, eicosapentaenoic acid, arachidonic acid, 
alpha-linolenic acid and linoleic acid, eicosanoids, docasonoids, brain cognition

1. Introduction

The concept of fatty acid was first introduced by the French chemist Michel 
Eugène Chevreul as graisse acide (acidic fat) [1]. Fatty acids are chemically defined 
as carboxylic acids with either saturated or unsaturated aliphatic chains and are 
derived after hydrolysis of fats or oils. A fatty acid has, therefore, an acid group at 
one end of its molecule and a methyl group at the other end [2, 3]. Fatty acids are 
essential structural components of the cell; they also play important roles in energy 
requirements and signaling cascades in the cell. Both plant and animal cells can 
synthesize fatty acids. Animal cells, however, cannot synthesize some of the fatty 
acids; they must take them from plant sources. These fatty acids are called essential 
fatty acids (EFAs) in the animal body. Some fatty acids are also synthesized by 
lower organisms such as phytoplanktons, which act as primary members of the food 
chain. On the basis of the location of the double bonds from the methyl terminal 
position of the unsaturated fatty acids (UFAs), they are named as ω-3 and ω-6 
UFAs. Biologically, fatty acids are esterified with glycerol, phosphoglycerol, and 
cholesterol and are referred to as triacylglycerol, phospholipids, and cholesterol 
esters, respectively. Esterified fatty acids can constitute the structural components 
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or dietary fuels for cells and organisms; they can also form complex liposomal 
structures (including lipoproteins) for transporting lipid components from the 
hepatic tissues to extrahepatic tissues and vice versa.

1.1 Saturated versus unsaturated fatty acids

Fatty acids whose aliphatic carbon chains are fully saturated with hydrogen 
atoms or contain only C-C single bond and/or contain no C=C double bonds are 
simply referred to as saturated fatty acids (SFAs). Fatty acids containing C=C 
double bonds are referred to as unsaturated fatty acids (UFAs). UFAs are again 
classified as monounsaturated fatty acids (MUFAs) and polyunsaturated fatty 
acids (PUFAs): if they contain only one C=C double bond, they are MUFAs; if they 
contain more than one C=C double bond, they are then called PUFAs (see Figure 1 
for detail). Because of the presence of C-C single bonds or C=C double bonds, they 
have characteristic structural features and differences in physical as well as chemi-
cal properties and have significant roles in the constitution of cellular membranes.

1.2 Omega-3 (ω-3) versus omega-6 (ω-6) PUFAs

The Greek letter omega (ω) is used in the systemic nomenclature of the polyun-
saturated fatty acids (PUFAs). The PUFAs that have a C=C double bond between 
the 6th and 7th carbon position counting from the terminal methyl end are called 
ω-6 and those with the double bond between the 3th and 4th carbon are called ω-3 
PUFAs. The letter ‘n’ is also used to denote the position of the double bond. The loca-
tions of double bonds in the PUFAs confer huge differences in their physical, bio-
chemical, and physiological properties. The essential fatty acid (EFA) linoleic acid 
(C18:2) is of ω-6 series, while the EFA α-linolenic acid is the member of ω-3 series. 
Some of the beneficial effects overlap between the ω-3 and ω-6, while many effects 
are antagonistic to each other. ω-6 PUFAs can be found in vegetable oils and seeds, 
whereas ω-3 PUFA is found more in fish/marine animals, walnuts, and canola oil.

Figure 1. 
The straight chain structural features of the most common fatty acids. PLA = palmitic acid, STA = stearic acid, 
OLA = oleic acid, LLA = linoleic acid, LLN = α-linolenic acid, AA = arachidonic acid, EPA = eicosapentaenoic 
acid, DHA = docosahexaenoic acid. Omega (ω) is used to denote the position of double bonds from the methyl 
end of the fatty acid. Colored curved arrows = biological conversion is possible from the precursor by the actions 
of elongase/desaturase enzymes. Black arrow = indicates the position(s) of double bond.
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1.3 Essential versus nonessential fatty acids

The fatty acids, which mammals cannot synthesize in their body, are known as 
essential fatty acids (EFAs); they must be obtained by the mammals in a preformed 
condition, that is, from the exogenous dietary sources. EFAs were originally des-
ignated as vitamin F, until it was realized that they must be classified with fats [4]. 
Of all the 18-C UFAs, two unsaturated fatty acids are found to be essential fatty 
acids (EFAs): they are linoleic acid (Figure 1D) and α-linolenic acid (Figure 1E). 
Both of them can act as precursors of very long chain polyunsaturated fatty acids 
(LPUFAs), such as ω-6 linoleic acid acting as the precursor of arachidonic acid 
(C20:4, ω-6) and ω-3 α-linolenic acid acting as the precursor of eicosapentaenoic 
acid (EPA, C20:5, ω-3) and docosahexaenoic acid (DHA, C22:6, ω-3). The rest are 
nonessential. Some examples are (common names): stearic (C18:0), oleic (C18:1), 
palmitic (C16:0), myristic (C14:0), and lauric acid (C12:0). Being nonessential does 
not actually mean that they are not important. Our body does need them to func-
tion properly; it, however, can synthesize them without receiving them directly 
from food.

1.4 AA (C20:4, ω-6) versus DHA (C22:6, ω-3) or EPA (C20:5, ω-3)

AA is referred to as a conditionally essential fatty acid for animals [5–7], includ-
ing humans, that experience persistent deficiencies of linoleic acid (LLA, C18:2, 
ω-6), or during prematurity and growth, or if there is a limited capacity to convert 
LLA to AA [5]. However, consumption of vegetable-based oils, with large amounts 
of LLA, and an adequate capacity to convert LLA to AA, can eliminate the need for 
exogenous supply of AA, excluding it thereby from the list of essential fatty acids.

1.5 EPA (C20:5, ω-3) and DHA (C22:6, ω-3)

Both EPA and DHA are the members of ω-3 PUFA family. Both can be biosyn-
thesized from the precursor α-linolenic acid (C18:3, ω-3, LLN). However, they are 
believed to act differently in different organs. For example, the differential roles of 
EPA and DHA have been studied in lymphocytes [8], macrophages [9], vascular 
smooth muscle cells [10], and endothelial cells [11]. Their differential roles have 
also been seen in the brains. EPA constitutes a tiny part in the unsaturated fatty acid 
pool of the brain. DHA, however, constitutes >17% by weight of the total fatty acids 
in the brain of adult rats and >33% of the total fatty acids in the retina [12]. DHA is 
thus referred to as essential for the growth and development of the brains, and ani-
mals have to take it in preformed form. The brain has a limited capacity to convert 
αLNN to DHA because of the lack of synthesizing enzymes [13, 14]. DHA plays an 
important role in the learning-related memory of animals, including humans.

1.6 ω-7 and ω-9 Monounsaturated fatty acids (MUFAs)

Monounsaturated ω-7 and ω-9 fatty acids are also considered to be nonessential, 
as majority of them are obtained from dietary sources (Figure 2). They can also be 
biosynthesized in the body. The most common ω-7s are palmitoleic acid (PA) and 
cis and trans-vaccenic acid (VA) (11-cis-octadecenoic acid). The most common 
ω-9s include oleic acid (OA), erucic acid (EA) and mead acid (it is a triunsaturated 
fatty acid). Since the human body can create ω-9 unsaturated fatty acids, there is no 
need to include them in diet. Full-fat grass-fed dairy, wild-caught salmon, olives, 
sprouted nuts, etc. are the sources of ω-7 and ω-9 unsaturated fatty acids.
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Figure 3. 
The structural features of the most common cis-trans unsaturated fatty acids.

1.7 Cis-trans fatty acids

The naturally occurring unsaturated fatty acids have predominantly a cis 
carbon-carbon double bond ( ). The C=C double bond typically lies on C-9 for 
the C18 unsaturated fatty acids. However, the artificial hydrogenation of C-18 
unsaturated fatty acids such as linoleic acid (C18:2, ω-6) may produce cis-trans 
conjugated fatty acid (CLA), like isomers of cis Δ-9, trans Δ-11; cis Δ-9, trans Δ-12; 
and trans Δ-10, cis Δ-12. Hydrogenation may produce other forms of trans fatty 
acids (TFAs), such as trans Δ-8, trans Δ-9, and trans Δ-10 elaidic acid and trans Δ-11 
vaccenic acid (Figure 3). Trans fatty acids (TFAs) are a kind of unsaturated fatty 
acids and also nonessential fatty acids. The primary TFAs are elaidic acid and 
vaccenic acid. The vaccenic acid is produced by bacteria in cattle rumen and thus 
may pass into humans via the milk of cows. The trans Δ-9 elaidic acid is the major 
industrial isomer of TFA [15].

The reports on the effect of CLAs on health and diseases are still scant. Raff 
et al. [16] reported that a 50:50 mixture of cis Δ-9, trans Δ-11 CLA and trans Δ-10, 
cis Δ-12 CLA caused a nonsignificant increase in SBP (by only 3 mmHg) without 
any effect on DBP in humans. Laso et al. [17] reported that CLA did not have any 
effect on blood pressure. Zock and Katan [18] reported that CLAs increase LDL-C 
and decrease HDL-C, thus indicating that CLA can act as a potential vascular 
risk factor. American Heart Association, the American Dietetic Association, 
the Institute of Medicine, US Dietary Guidelines, and the National Cholesterol 

Figure 2. 
The structural features of the most common ω-7 and ω-9 unsaturated fatty acids.



5

Fatty Acids: From Membrane Ingredients to Signaling Molecules
DOI: http://dx.doi.org/10.5772/intechopen.80430

Education Program Adult Treatment Panel are claiming to limit trans fatty acids in 
the daily diet [19]. We have previously reported that cis Δ-9, trans Δ-11-conjugated 
linoleic acid promotes neuronal differentiation [20] in rats. These reports thus sug-
gest that the effects of CLA remain to be resolved cautiously.

2. Physicochemical properties of fatty acids

Fatty acids are ubiquitous biological molecules. They are esterified to numerous 
complex lipid molecules, including triglycerides, phospholipids, and cholesterol 
esters. As being part of these molecules, fatty acids thus may govern some of their 
physical properties. The aliphatic chains and their lengths confer hydrophobicity 
to fatty acids. The hydrophobic nature of the fatty acids renders them insoluble in 
aqueous environments.

At very high pH, where the longer chained fatty acids are totally ionized, they 
form micelles, which are thermodynamically stable aggregates of molecules in aque-
ous solution [21]. This property confers the ionized fatty acids to detergent proper-
ties. However, to achieve a stable micelle formation, the fatty acids must be present 
in a solution at a pH greater than 9, which is generally unphysiologic. In fact, the 
most probable state of fatty acids at physiological temperature and pH is a mem-
brane-like bilayer structure [22] (Figure 4, the middle one). The chain length of the 
fatty acid is interrelated with melting point; the higher the chain length, the lower 
the melting point. The double bonds in the (poly)unsaturated fatty acids further 
decrease their melting points [23]. This is very critical to the survival of mammals 
that live in extremely cold environments such as the polar areas of the earth. The 
presence of fatty acids in the bilayer membranes provides an excellent anisotropic 
solution for other membrane constituents. They confer fluidity to the membrane 
bilayer [24], wherein membrane-bound receptors, enzymes, and other proteins 
can diffuse laterally along the surface of the bilayer membrane. Phospholipids can 
also flip-flop between the bilayer leaflets and/or fatty acyl chains can have a vertical 
motion (translational motion). The word membrane fluidity can thus be referred 
to as the degree of stiffness or rigidity of the cellular bilayers. As saturated fatty 
acids are straight-chained, they can pack/stack easily with themselves and/or with 
the neighbor-cholesterol in the bilayer membrane. The (poly)unsaturated fatty 
acyl chains, on the other hand, retain bent(s) along the long axis of the chain at the 
position of double bonds; thus, they cannot align/stack tightly (Figure 5).

Consequently, they increase the degree of membrane fluidity. Therefore, 
the greater the degree of unsaturation of the fatty acids, the higher the fluidity 
of the membrane. We have previously reported the DHA, which has six double 
bonds, contributes to a greater extent in membrane fluidity than less-unsaturated 

Figure 4. 
The arrangements of fatty acids in aqueous environments at T > Tc. T = temperature. Tc = melting point of 
the fatty acid.
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fattyvacids, such as EPA and/or saturated fatty acids [25, 26]. As a whole, the physi-
cochemical properties of the fatty acids may affect the functions of these molecules 
[27], ultimately leading to altered functions of the cells and organisms.

3. Fatty acid oxidation

Fatty acids are usually oxidized by most of the cells of tissues in the body, except 
the RBCs. The cells of the central nervous system also do not use fatty acids for their 
energy requirements, using instead carbohydrates or ketone bodies. Heart cell fully 
depends on energy derived from fatty acid oxidation. Fatty acids constitute the 
principal source of energy for cells between meals, during hypoglycemia, and/or in 
diabetes. Beta-oxidation of fatty acids takes place in the mitochondria and, to some 
extent, in the peroxisomes, particularly the very long chain fatty acids [28]. Unlike 
in the mitochondria, beta-oxidation of fatty acid in the peroxisomes is not coupled 
to ATP; the high-potential electrons are rather transferred to O2, yielding hydrogen 
peroxide (H2O2) and generating heat. The enzyme catalase, found exclusively in 
peroxisomes, converts H2O2 into water and oxygen. H2O2 is also used intracellularly 
to digest unwanted wastes like proteins and/or to defend against intracellular for-
eign particles including toxins or microorganisms. All fatty acids are not oxidized at 
the same rates, which implicates that the purposes of cellular accumulation of fatty 
acids are not the same for all cells. Some fatty acids might have been exploited for 
energy purposes, some of them might be exploited for the structural purposes, and 
some of them (or their derivatives) might help the cell for the signal transductions. 
For example, 30–40% of all esterified fatty acids in the neural plasma membrane 
phospholipids consist of DHA [29], while EPA constitutes only a tiny percent of the 
brain total fatty acid. Among the saturated fatty acids, lauric acid (12:0) is oxidized 

Figure 5. 
The 3D structural features of the most common fatty acids (A). PLA = palmitic acid, STA = stearic 
acid, OLA = oleic acid, LLA = linoleic acid, LLN = α-linolenic acid, AA = arachidonic acid, EPA 
= eicosapentaenoic acid, DHA = docosahexaenoic acid. Double bonds of the unsaturated fatty acids are denoted 
by red color (in A) (B). Because of the presence of double bond(s) along the long axis of (poly)unsaturated 
fatty acids, they occupy more space when they are esterified in the phospholipid bilayer and loosely align with 
3D cholesterol, and increase the degree of disorder (membrane fluidity). However, when straight-chained 
saturated fatty acids like PLA highly align (stacks) with 3D cholesterol, the degree of packing in the bilayer 
increases (tightens); hence, the membrane bilayer becomes more rigid, that is, less fluid.
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at the fastest rate and is the most efficient energy substrate[30]. Oleic acid (18:1) 
is also oxidized at a remarkably faster rate, similar to that of lauric acid. Of the ω-6 
essential fatty acids studied, linoleic acid (18:2, ω-6) is oxidized at a faster rate, 
with arachidonic acid (20:4, ω -6) being oxidized at the slowest rate. DHA and EPA 
possess different oxidizing properties [31, 32]. DHA is a poor substrate for both 
mitochondrial and peroxisomal beta-oxidation [33], while EPA can be oxidized and 
to a much greater extent than DHA [33, 34]. The mechanisms of these properties 
are not fully elucidated, although intensive investigations are continuously going 
on. Furthermore, ω-3 fatty acids are incorporated into cell membranes in a highly 
selective manner where they act as structural components influencing fluidity of 
the membrane [35]. The ω-3 fatty acids also compromise themselves for enzymatic 
biotransformations into eicosanoids/docosanoids that act as intracellular signal-
ing molecules and, finally, they get involved in the activity of membrane-bound 
enzymes, ion channels, and receptors [36]. When EPA is administered to rats, both 
the EPA and DHA accumulate in different organs, including brain [37], indicating 
EPA is elongated to DHA. DHA administration also leads to an accumulation of EPA 
both in the plasma and brains, however, only a tiny percent [37]. As DHA seems 
difficult to metabolize, we thus speculate that DHA is retroconverted to EPA for 
further metabolism. Therefore, EPA and DHA imply different metabolic properties 
in the cells of the brains.

4. Roles of ω-6 and ω-3 PUFAs in physiology

4.1 Platelet physiology

Platelets are derived from megakaryocytes and cause aggregation and play 
important roles in physiological conditions and pathological conditions as well. 
Fatty acids are enriched in the plasma membranes of platelets and thus may con-
tribute to the physiology and pathology of platelets. Oral administration of ω-3 
PUFAs to rats decreases the degree of platelet aggregation both in rats and humans 
[38, 39]; hence, it is evident that fatty acids may affect the platelet physiology and 
atherosclerosis. The mechanisms through which PUFA affects the platelet aggrega-
tion is unclear; however, it is assumed that ω-3 PUFA deceases the levels of athero-
genic ω-6 PUFA particularly platelet membrane-AA, which acts as a proaggregatory 
fatty acid. Therefore, ω-3 prevents platelet aggregation by inhibiting PLA2 and 
interrupting the prostaglandin/thromboxane pathways [40, 41]. In addition, ω-3 
PUFAs modulate the platelet membrane fluidity [42], specific lipid domains that 
hold the receptors for a variety of aggregation factors, such as ADP, thrombin, 
fibrin, etc. [37], and doing so, they decrease platelet aggregation.

4.2 Effects of fatty acids on hypertension

The effect of fish oil on hypertension came into light when the Norwegian 
under Nazi invasion had to consume more fish rather than land-based food 
items during WWII [43]. The Norwegian had low blood pressure, low degree 
of platelet aggregation, and hypocholesterolemia as well. Afterwards, in stud-
ies on the Greenlandic Eskimos, Dyerberg and Bang [44] and Fischer et al. [45] 
reported that the Eskimos had also a low incidence hypertension and blood 
cholesterol levels. Then, oil components of marine animals and fish, in particular 
EPA and DHA, were attributed to lower incidence of cardiovascular risk factors, 
such as hypertension, hypercholesterolemia, and platelet hyperaggregation. 
We have previously reported that oral administration of EPA and DHA to rats 
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(hypercholesterolemic) decreased the hypertension [46] and hypercholesterol-
emia [47]. The results were consistent with many other published reports [48]. To 
understand the mechanism(s) of action of these PUFAs, we also pretreated the 
rat thoracic endothelial cells with these PUFAs and some interesting data emerged 
from our experiments. For example, the EPA and DHA increased the plasma 
levels of nucleotide products including ATP, ADP, AMP, and adenosine. The blood 
vessels of the PUFA-fed rats exhibited less sensitivity to noradrenaline and had 
caused an increased release of the total purines (ATP + ADP + AMP + Adenosine), 
concurrently with less contractility [47]. We hypothesized that these nucleotides 
and their derivatives decreased the noradrenaline sensitivity to purine-receptors 
of the blood vessels and decreased the blood pressure. The mechanism also might 
be related to the EPA/DHA-induced increase in the membrane fluidity of the 
endothelial cells (ECs). These hypotheses led us to preincubate the cultured ECs 
with EPA and DHA. As expected, the PUFAs increased the membrane fluidity 
of the ECS [49]. The inhibitory effects of fish oil ω-3 polyunsaturated fatty acids 
(PUFAs) have also been reported on the expression of endothelial cell adhesion 
molecules [50]. Hence, the ω-3 PUFAs might have played beneficial roles in reduc-
ing hypertension in the animal models as well as in human cases who consumed 
fish/marine animals’ oils in their everyday life.

4.3 Effects of fatty acids on hepatic functions

Saturated and/or unsaturated fatty acids are indispensable for the functions of 
all tissues in the mammalian body. However, an adequate balance between saturated 
and (poly)unsaturated and between ω-6 and ω-3 PUFAs is essential to the proper 
functioning of the cells. Fatty acids after their absorption in the intestinal epithelial 
cells are first carried to the liver, which acts as a distribution center for the whole 
body. Therefore, fatty acids can affect the liver functions. Inadequate amounts of 
essential fatty acids may cause disorders of the liver, such as fatty liver, liver cir-
rhosis, metabolic syndromes, hyperlipidemia, hypercholesterolemia, and other liver 
problems [51, 52].

Oral administration of ω-3 DHA decreases the plasma as well as hepatic 
cholesterol and triacylglycerol levels [53]. The mechanism through which ω-3 
PUFAs decrease the plasma cholesterol is not clear; however, it is attributed to 
the inhibition of hepatic HMG-CoA reductase by the PUFAs, including EPA and 
DHA. To prove the mechanism, we determined the levels of hepatic mRNA levels 
of HMG-CoA reductase (yet unpublished) of the DHA-fed rats. DHA decreased 
the expression of HMG-CoA reductase. Our results were also consistent with 
numerous other published reports [54–56]. The beneficial effects also emerged at 
lower levels of LDL-C and TG and high levels of HDL-C. The oral administration 
of DHA also increased the levels of ω-3 PUFAs and decreased the levels of ω-6 AA 
both in the plasma and liver tissues. It might be suggested that the oral administra-
tion of PUFAs like DHA increases the degrees of oxidative stress and mammalian 
tissues, including the liver. However, the levels of lipid peroxide (LPO) and reac-
tive oxygen species (ROS) were not increased, thus demonstrating that the feeding 
of DHA does not pose an oxidative stress to the tissues. We suggest that the oral 
administration of DHA rather increases the levels of antioxidative enzymes, 
including glutathione peroxidase and catalase, and antioxidant substrate like GSH 
[53]. In a similar study, the levels of antioxidative enzymes and GSH increased 
in the brains of hypercholesterolemic aged rats after oral administration of DHA 
[57]. However, there are also contradictory results where consumption of PUFA 
was reported to promote oxidative stress [58]. Furthermore, we isolated and puri-
fied the canalicular plasma membranes of the hepatic cells of EPA/DHA-fed rats. 
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These membranes allow the transport and pump bile components in-and-out of 
the hepatic cells. The levels of PUFAs increased in the canalicular plasma mem-
branes, concurrent with increases in the activities of membrane-bound enzymes 
such as Mg2−-ATPase, 5′-nucleotidase. Membrane fluidity also increased in these 
membranes, thus suggesting that an increased fluidity might have helped in the 
pumping out the cholesterol via the bile (Figure 6). Otherwise, the levels of fecal 
cholesterol could have not been increased in the feces of the fish-oil-fed rats [53].

4.4 Anti-inflammatory responses

ω-6 PUFA like arachidonic acid (AA, C20:4, ω-6) generates 2-series prostanoids, 
namely prostaglandins PGE2, PGI2, PGD2, and PGF2α (largely produced by mono-
cytes and macrophages) and thromboxanes TXA2 and TXB2 by COX-1/COX-2 
enzymes. Prostaglandin PGI2/PGE2 has proinflammatory effects. AA by the action 
of LOX also produces leukotrienes such as 5-HETE and 5-HPETE, LTE4, LTB4, 
LTC4, and LTD4. They are strong proinflammatory agents and have vasoconstric-
tion effects and platelet- and/or neutrophil- and macrophage-activating effects 
[59–61]. Interestingly, the eicosanoids derived from the action COX and/or LOX 
on EPA and DHA produces 3-series prostaglandins and thromboxanes and 5-series 
leukotrienes, and they are less inflammatory and even have anti-inflammatory 
effects, as compared to the eicosanoids derived from AA. These lipid mediators 
antagonize the effects of those derived from AA, thus conferring beneficial effects 
on inflammatory responses [62].

4.5 Effects on skeletal muscles

Skeletal muscle is the largest organ in the human body, comprising approxi-
mately 40% of total body weight [63]. This muscle has a plastic-like property 
and has adapting capability to physical activity. Strenuous muscle exercise 
increases muscle fatigue and decreases muscle strength, leading to an increase 
in muscle oxidative stress. It is believed that the response of skeletal muscle 
to exercise can be modified by the nutritional status of the muscles. There 

Figure 6. 
Effects of oral administration of EPA and DHA on the plasma and hepatic lipid profile (TC = total 
cholesterol, TG = triacylglycerol), LPO = lipid peroxide, ROS = reactive oxygen species, CanPM = canalicular 
plasma membrane of hepatic cells).
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are numerous reports on the beneficial effects of EPA and DHA on muscle. 
Therefore, the effects of these PUFAs on muscle strength have been investigated 
with increasing interest. Hess et al. [64] reported that dietary algae and marine 
fish increase the levels of EPA and DHA in the equine skeletal muscles. Guen 
et al. [65] reported that DHA-enriched supplementation improves endurance 
exercise capacity and skeletal muscle mitochondrial function in murine skeletal 
muscle. Stebbins et al. [66] reported that DHA + EPA enhances skeletal-muscle 
blood and vascular conductance in active skeletal muscle (especially type I 
and IIa fibers) and that the increase in muscle blood is due to an increase in 
cardiac output secondary to increases in vascular conductance [66]. However, 
we believe that there are differential effects of PUFAs on the muscle [67]. AA 
deposition in the fast-twitch muscle of aging rats reduced cell volume with an 
increase in oxidative stress [68].

5. Effect of ω-3 DHA/EPA on brain cognition

As neurons are the structural and functional units of brain, electrochemical 
properties of the neurons allow them to transmit signals over long distances and 
send information to each other. Neurons form the basis of the brain activity and 
brain cognition and dictate the whole body when and how to work and maintain the 
behavior of the animals, including humans. Numerous reports have been published 
stating that the PUFAs have colossal roles in brain growth and development, learn-
ing, and memory. At the same time, deficiency of PUFAs such as DHA has been 
reported to cause neurodegeneration leading to impairments of memory and brain 
cognition.

Henriksen et al., reported that the level of DHA was low in the preterm 
infants (born at <33 weeks gestation, body weight < 1.5 Kg). Concurrently, the 
preterm infants had learning disabilities, reduced IQ, and weak visuospatial 
relations. However, when these infants were supplemented with DHA, they 
exhibited normal growth and development in terms of body weight, height, 
head circumference, visual acuity, and mental development [69]. The study 
thus suggests that DHA is important before birth. Infants (9-month-old, growth 
spurt period) fed with DHA-supplemented traditional formula showed higher 
problem-solving activities, when compared with those fed with traditional 
formula-only, suggesting thus that DHA also plays an important role during 
growth spurts and development [70]. Infant’s gray matter autopsy (of human/
nonhuman primate) study showed that brain DHA levels have also 40% higher 
in the DHA-supplemented formula-fed infants than those in the formula-fed 
only infant brains [29, 71]. In addition, DHA declines in aging and age-related 
neurodegenerative diseases such as Alzheimer’s disease [72–74]. All these 
investigations thus suggest that DHA is important for brain cognitions, such 
as learning and memory, thought processes, tracing of new information, and 
comprehension, and that brain DHA deficiency can be recovered by the dietary 
DHA supplementation. Though cerebral endothelial cells and brain astroglial 
cells can synthesize DHA and/or α-LLN, EPA from the diet can act as precur-
sors for the DHA; however, the endogenous synthesis or conversion of DHA is 
extremely low [75] . Thus, dietary DHA is the ultimate source for the DHA in 
the brain.

We have previously reported that oral administration of DHA for 12 weeks 
significantly increased the learning-related memory, as evaluated by the 
8-armed-radial maze task in DHA-deficient young and old rats [76, 77]. Not 
only DHA increases the memory of DHA-deficient young and old rats, DHA 
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also had an extraordinary ability to increase the learning-related memory of 
Alzheimer’s disease model rats [78, 79] (Figure 7). EPA also increased the 
learning-related memory, however, only after their conversion into DHA [80]. 
The roles of ω-6 AA on the brain cognitions have also recently been investi-
gated; however, the results are controversial. Memory-enhancing effect of 
AA has been reported previously [81]. In our investigation, the ω-6 AA failed 
to increase memory of rats (yet unpublished). DHA always exhibited a posi-
tive effect on memory. However, the mechanisms by which DHA increases 
the memory remain to be clarified. Numerous mechanisms of action of DHA 
on memory have been proposed. DHA-induced increases in synaptic plasma 
membrane fluidity [26]; antioxidative effects [76–79]; anti-apoptotic effect 
[78]; increased expressions memory-related proteins, including postsynaptic 
PSD-95, presynaptic synaptophysin, NMDA-receptor unit NR2A [75], and 
c-fos [82]; and reductions of brain Aβ-burdens [83] have been attributed to the 
beneficial effects of DHA in the normal and AD rats, respectively. To examine 
the mechanism(s) of the reduction of amyloid burden, we tested whether DHA 
affects the in vitro Aβ peptide (Aβ25–35, Aβ1–40, and Aβ1–42 are the most toxic 
amyloids) fibrillation, a process that assumes to increase the Aβ deposition in 
the brains. We found that DHA inhibits in vitro Aβ fibrillation both at the initial 
stage of Aβ-seed formation and oligomerization and also causes dissolution of 
mature Aβ peptide fibers [84–86] (Figure 8A). It is thus conceivable that DHA, 
by decreasing the amyloid fibrillation, decreases the brain Aβ-burden and hence 
contributes to the amelioration of memory of AD model rats. DHA also caused 
a clearance of circulating Aβs by increased lipid raft-dependent degradation 
pathways [87].

We later tested whether DHA affects neurogenesis, which is of great inter-
est in the modulation of memory both in the aging and neurodegenerative 
Alzheimer’s disease. As expected, DHA accelerated both in vitro and in vivo 

Figure 7. 
Effect of oral administration of DHA on the learning-related memory of DHA-deficient young/old and 
Alzheimer’s disease model rats. Protein levels of postsynaptic density protein (PSD-95), brain-derived 
neurotropic factor (BDNF), and presynaptic synaptophysin were measured. Also, the mRNA levels of BDNF-
receptor tyrosine Kinase B (TrkB) and NMDA receptor units NR2A and NR2B were determined by RT-PCR to 
examine whether they were affected by the oral administration of exogenous DHA. All these parameters were 
ameliorated by the oral administration of DHA.



Fatty Acids

12

neurogenesis [88] (Figure 8B, C), which is conducive to inhibition of the impair-
ments of memory in aging and/or AD model rats. DHA stimulated the differen-
tiation of neural stem cells into mature neurons by triggering the activating-type 
bHLH transcription factors, including neurogenin, Mash1, and NeuroD and 
inhibiting the repressor-type transcription factor Mes1 [89]. We also reported 
that DHA-derived docosanoids, such as neuroprotectin D1, help increase the 
memory of rats [90]. Consistent with our results, Bazan et al. [91] also reported 
that endogenous signaling by DHA-derived mediators sustains neuronal func-
tion and protects synapses and circuits, thus demonstrating that DHA and/or its 
docosanoid products might act as signaling molecules during memory process-
ing. Finally, DHA is essential for the growth and development of brain and might 
play crucial roles in the formation of learning-related brain cognition.

6. Conclusion

For the last several decades, fatty acid nutrition, in terms of quality, has been 
dramatically changed [92]. Consumption of saturated fatty acids, ω-6 PUFAs, 
and trans fatty acid intake has been increased [93]. Optimal dietary ω-6:ω-3 
ratio should be around 1–4:1; however, this ratio has now increased to 10: 1 to 
20: 1 in the Western diet [92]. Concurrently, the incidence of diseases involving 
inflammatory diseases, cardiovascular disease, obesity, rheumatoid arthritis, 
cancer, neurodegenerative, and psychiatric illnesses, such as AD and depres-
sion, are increasing with an ever-increasing rate [94]. The results of our investi-
gations and those of the others, finally, suggest that DHA is accumulated in the 
synaptic plasma membranes, represses oxidative stress by increasing the anti-
oxidative defense, decreases cholesterol in the detergent-insoluble membrane 
fraction (DIMF) of the brain tissues, increases synaptic plasma membrane flu-
idity, inhibits amyloid fibrillation and decreases amyloid toxicity and burden in 
the brain tissues, improves the neuronal morphology, increases memory-related 
protein substrates, and hence ameliorates the memory-related brain cognition 
(Figure 9). In conclusion, a balanced intake of ω-3 and ω-6 PUFAs is a must, as 
well as an increased intake of DHA, which might act as a signaling molecule to 
protect the brains from preterm-, postnatal-, and other age-related neurological 
diseases, such as Alzheimer’s disease.

Figure 8. 
Effect of incubation of DHA on in vitro amyloid beta (Aβ) peptide fibrillation (A) and in vitro neurogenesis 
in NSCs culture (B) and, effect of oral administration of in vivo neurogenesis (C). Neurogenesis occurred 
primarily in the dentate gyrus (DG) region.
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Figure 9. 
Outlines of the effect of DHA on learning-related memory of rats. SPM = synaptic plasma membrane. 
DIMF = detergent-insoluble membrane fraction. All other abbreviations are same as for other figures.
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