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1. Introduction 

Unscented Kalman Filter (UKF) (Julier & Uhlmann, 1997) was developed as an 
improvement of Extended Kalman Filter (EKF) (Grewal & Andrews, 2001) for discrete-time 
filtering of the nonlinear dynamic systems. Comparison between different statistical 
approaches on the state and parameter estimation of the dynamic systems revealed that the 
performance of UKF is superior to EKF in many Kalman Filter (KF) applications (Chow et 
al., 2007); (Xiong et al., 2006); (Wan & Merwe, 2001); (Kandepu et al., 2008). Nonlinear 
dynamic systems with uncertain observations were often appeared in, for instance, 
communication systems (Wan & Merwe, 2001), medical systems (Polak & Mroczka, 2006) 
and machine learning (Chen, 2003). Medical systems, described by stochastic difference 
equations with measurement models including nonlinear and non-Gaussian components, 
are good candidates for the UKF analysis. Although there are many medical signal 
applications of Kalman Filters (KF); (Vauhkonen et al., 1998) and EKF (Avendano et al., 
2006), some medical diagnostic and therapeutic measures are processed by UKF from 
indirect sensor measurements including statistical brain signal analysis to study cognitive 
brain functions by Electroencephalography (EEG) and functional Magnetic Resonance 
Imaging (fMRI) (Brochwell et al., 2007), ECG model-based denoising (Sameni et al., 2007), 
medical image processing (Ijaz et al., 2008), and evoke potential analysis in the neuroscience. 
These works demonstrated that UKF can be considered as an effective framework for 
medical signal analysing, modelling and filtering. Also, it was shown that UKF is a 
promising alternative in a variety of applications’ domains including state and parameter 
estimation simultaneously which is dual estimation.  
Respiratory mechanics is the dynamic relationship between appropriate pressures and flows 
in the respiratory system and assessment of it is an important problem in the diagnosis and 
monitoring of respiratory disorders, especially of Chronic Obstructive Pulmonary Disease 
(COPD). The primarily goal on the determination of the respiratory mechanics is the 
computation, or estimation, of the respiratory parameters non-invasively, continuously, 
effectively and without any patient cooperation. Direct approach to this problem is the 
measurement of the mechanics by the lung catheter or the alveolar capsule (Bates & 
Lutchen, 2005). However, these direct measurement methods are invasive and not suitable 
for continuous monitoring. On the other hand, the studies revealed that analysis of pressure O
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and flow signals measured at the airway opening represent the respiratory parameters in 
question while isolation of the peripheral information on the mechanics remains challenging 
(Bates & Lutchen, 2005). To achieve the goal of extracting the mechanical information from 
the measured pressure and flow signals at the mouth, investigators are now using advanced 
system identification techniques in frequency-domain, time-domain or time-frequency 
domain (Yuan et al., 1998); (Lutchen & Costa, 1990).     
In the literature, common approach to respiratory mechanics determination is the inverse 
modelling of the respiratory system in the frequency-domain by measured overall 
impedance over the range of frequencies (Hellinckx et al., 2001). Although, the parameters 
of the inverse model is assumed to correspond to the physiologically important quantities, 
due to the simplifications on the model, interpretation of the parameters are not 
straightforward. Thus, determining the physiologically relevant information requires 
realistic multi-parameter models incorporating dynamic and nonlinear nature of the 
respiratory system. Measured data fitting to such a nonlinear model is very difficult in 
frequency-domain (Nucci et al., 2002). Moreover, most patients with COPD require artificial 
ventilatory supports that apply a positive pressure to the airway opening of the patient to 
assist ventilatory muscles and patient-ventilator interaction is a time-varying system (Nucci 
et al., 2002).  
These shortcomings of frequency-domain analysis of the respiratory system led us to 
implement time-domain methods for the determination of the respiratory mechanics. 
Recently presented nonlinear dynamic RC model of the respiratory system (Saatci & Akan, 
2007) and multi-parameter well-known Mead model (Diong et al., 2007) were selected for 
the inverse modelling of the respiratory system in the time-domain. Dual UKF method was 
applied to the respiratory models to estimate the states as well as the parameters. Time 
series were measured from both the COPD patients and healthy subjects and artificially 
produced by the model equations. The reason to use dual estimation was the complications 
of the model’s state and measurement equations and nonlinear relationship between the 
parameters and the states of the respiratory models. In this respect, first, in the Section 3 
EKF, UKF principles will be given briefly, and dual UKF algorithm will be discussed in 
details. Used respiratory models will be presented in the Section 4 and Section 5 is devoted 
to the estimation of the states and parameters of the models. Finally, results are given in 
Section 6 and in Section 7 conclusions are drawn. 

2. Kalman filtering 

EKF and UKF are the Bayesian data analysis based practical methods for the nonlinear 
system modelling from the observed data using probability models for both the unobserved 
states and the unknown system parameters. Many of the practical systems can be 
represented by the following state-space model: 

 ( )1x x ,θ,u qk k k k kf −= +   (1) 

 ( )z x ,θ,u rk k k k kh= +   (2) 

where ( )f •  and ( )h •  are the generally nonlinear functions. qk  and rk  the are additive state 

and observation noises respectively. uk  is devoted to the known inputs and θ  is the 

unknown parameter vector of interest. 
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In the statistical analysis terms above equations are called state-observation models of the 

practical system and represented as the distributions ( )1Pr x x ,θk k−  for the state vector 

xk and ( )Pr z x ,θk k  for the observation equation. From the Bayesian perspective, the 

solution of (1) and (2) is to recursively estimate the state vector xk  and/or parameter vector 

θ  given the observations { }
1

Z z
k

k i i=
= . Once the initial distributions ( )0Pr x ,θ  and ( )0 0Pr x z  

are given, filtering posterior distribution ( )Pr x Z ,θk k  can be obtained recursively by two 

steps: prediction and filtering. In the prediction step with the help of Markov property of the 

state vector xk  predictive distribution ( )1Pr x Zk k−  is compute by: 

 ( ) ( ) ( )1 1 1 1 1Pr x Z ,θ Pr x x ,θ Pr x Z ,θ xk k k k k k kd− − − − −= ∫  (3) 

In the filtering step posterior distribution is obtained based on the predictive distribution via 
Bayes’ rule: 

 
( ) ( ) ( ) ( )

( ) ( )
1 1

1

Pr x Z ,θ Pr z x ,θ Pr x Z ,θ Pr

Pr z x ,θ Pr x Z ,θ
k k k k k k k k

k k k k

z Z− −

−

=

∝
 (4) 

Equations (3) and (4) constitute the recursive Bayesian estimation and are optimum in the 
sense that it seeks the posterior distribution which integrated and uses all of available 
information expressed by probabilities. However, direct computation of these disributions is 
not easy due to large state-observation space and multidimensional integrals. Thus above 
expression is considered as the theoretic foundation for the estimation problem and 
computations of the predictive and posterior distributions require certain limitations to the 
model. 

2.1 Extended Kalman filter 

If the model equations (1) and (2) were to be in the linear form and the process and 

observation noises were assumed to be zero-mean white Gaussian noises, [ ]0q ,k N Q∼  and 

[ ]0r ,k N R∼ , celebrated Kalman Filter would be the Minimum Variance Unbiased 

Estimation (MVUE) providing an exact solution for the linear system with relatively easy 

matrix calculations. However, if the linearity and Gaussian distribution assumptions were 

violated, different approaches would be required to overcome the filtering problem 

(Arulampalam et al., 2002).  
One of the methods developed for the solution of the nonlinear but Gaussian distributed 
systems is the EKF. In the EKF, nonlinearity is overcome by locally linearization of the 
model equations. Due to the Gaussian assumption of the posterior distribution, EKF works 
well for some types of nonlinear problems, but it may provide a poor performance in some 
cases when the true posterior is non-Gaussian. Thus, with the linearization and Gaussian 
assumption of the distributions, the EKF equations derived from the Kalman Filter theory 
are: 

Prediction step: 
( )1 1 1 1

1 1 1

x x ,θ,u

P F P F Q

k k k k k k

T
k k k k k k

f− − − −

− − −

=

= +
 (5) 
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Filtering step: 

( )
( )( )

( )

1

1 1

1 1

1

P H H P H R

x x z x ,θ,u

P H P

T T
k k k k k k k k

k k k k k k k k k k

k k k k k k

K

K h

I K

−

− −

− −

−

= +

= + −

= −

 (6) 

where Fk  and Hk  matrices are defined as: 

 
( )

1 1

1
x x

x,θ,u
F

x k k

k k
k

df

d − −

−
==  (7) 

 
( )

1x x

x,θ,u
H

x k k

k k
k

dh

d −==  (8) 

2.2 Unscented Kalman filter 

Different from EKF, UKF is global method which attempts to solve whole posterior 
distribution by deterministic sampling approximation. Unscented Transformation (UT) 
where so-called sigma points are the deterministic samples from posterior distribution and 
propagate the information of the data through nonlinear transformation is the theory behind 
UKF. Thus, based on Kalman Theory, implementation of UKF can be summarized as 
follows: 
Step 1: Initialization and weights calculations: 

Draw xN  - dimensional particles ( ){ }0 0
1

x
xN

i

i
x

=
=  from the prior distribution 

( ) ( )0 0 0Pr x ,θ x ,P= Ν . 

( )
( ) ( )

( )

2

0

1 0

1 2 1 2

( )

( )

( ) ( ) ,

i
m x

i
c x

i i
m c x x

w N i

w N i

w w N i N

λ λ

λ λ α β

λ

= + =

= + + − + =

= = + = …

 

where ( )2
x xN Nλ α κ= + −  is the composite scaling parameter and determines the spread of 

the sigma points around xk . α , β  and κ  are the parameters for scaling and prior 

distribution of 0x . 

For 1,k = ∞…  

Step 2: Sigma points calculations 1:  

( )( )
( )( )

1 1

1 1 1

1 1 1

0

1

1 2

( )

( )

( )

( )

( )

x

x P ,

x P ,

i
k k

i
k k x k x

i

i
k k x k x x

i

i

N i N

N i N N

λ

λ

− −

− − −

− − −

ℵ = =

ℵ = + + =

ℵ = − + = +

…

…

 

where ( )( )1
( )

Px k
i

N λ −+  is the i th column of the matrix. 

Step 3: Prediction: 

( )1 1 1 0 2( ) ( ) ,θ,u ,i i
k k k k k xf i N− − −ℵ = ℵ = …  

www.intechopen.com



Dual Unscented Kalman Filter and Its Applications to Respiratory System Modelling 

 

209 
2

1 1
0

( ) ( )x
xN

i i
k k m k k

i

w− −
=

= ℵ∑  

( )( )
2

1 1 1 1 1
0

( ) ( ) ( )P x x Q
xN

T
i i i

k k c k k k k k k k k
i

w− − − − −
=

= ℵ − ℵ − +∑  

 

Step 4: Sigma points calculations 2: 

( )( )
( )( )

1 1

1 1 1

1 1 1

0

1

1 2

( )*

( )*

( )

( )*

( )

x

x P ,

x P ,

i
k k k k

i
k k k k x k k x

i

i
k k k k x k k x x

i

i

N i N

N i N N

λ

λ

− −

− − −

− − −

ℵ = =

ℵ = + + =

ℵ = − + = +

…

…

 

Step 5: Filtering: 
 

( )1 1 1
( ) ( )* ,θ,ui i
k k k k k kZ h− − −= ℵ  

2

1 1
0

( ) ( )z
xN

i i
k k m k k

i

w Z− −
=

=∑  

( )( )
2

1 1 1 1
0

( ) ( ) ( )P z z R
xN

T
i i i

zz c k k k k k k k k
i

w Z Z− − − −
=

= − − +∑  

( )( )
2

1 1 1 1
0

( ) ( )* ( )P x z
xN

T
i i i

xz c k k k k k k k k
i

w Z− − − −
=

= ℵ − −∑  

1P Pk xz zzK −=  

( )1 1x x z zk k k k k k kK− −= + −  

1P P P T
k k k k zz kK K−= −  

 

Above algorithm is based on the conventional UKF, however there are variant UKF 
algorithms proposed in the literature. For instance, Unscented Particle Filter (UPF) is the 
most important one among them. In UPF, UKF is used to optimize the sampling stage of the 

Particle Filter (PF) by generating the required samples from ( )Pr x Z ,θk k  rather than 

( )1Pr x x ,θk k− . As PF makes no assumption on the form of the probability densities in 

question, UPF is most suited to non-Gaussian systems. Another variant of UKF is the 
square-root implementation of the UKF algorithm where Cholesky factor is used for the 
matrix square-root of the state/parameter covariance matrix. Then the Cholesky factor is 
propagated via QR decomposition in subsequent iterations.  This form of the UKF algorithm is 
mostly required where the convergence speed or execution duration is important. 

2.3 Dual unscented Kalman filter 

System identification often requires simultaneous state and parameter estimation from 

observed noisy data. If the parameters are assumed to have a prior distribution, ( )Pr θ  

Bayesian approach can be also applied to the parameter estimation. Therefore UKF 
equations above are modified for the dual estimation problem in order to extend the 
advantages of UKF method to the parameter estimation.  There are two common 
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approaches for the simultaneous estimation: estimation with two different state-observation 
models or estimation by augmented state model with common observation model. First 
called dual UKF incorporates two distinct sequential filters, one estimating the true states 
and the other estimating the parameters. Later is called joint UKF and implementation not 
much differs from the UKF algorithm.  
If the parameters of the dynamic system are considered as time-invariant random variables 
that need to be estimated, time-update should allow no changes beyond the effects of state 
noise. That is modelled as a first-order Markov process: 

 1θ θ qk
k k p+ = +  (9) 

where 0q ,k
p pN Q⎡ ⎤⎣ ⎦∼  is the parameter process noise and assumed to be zero-mean white 

Gaussian  noise.  
However, expression in (9) may not suitable for the systems where the parameters are 
actually constant unknowns. Thus, for those systems the parameter state noise is not existed 
at all and should not be added to the model. The parameter time-update becomes: 

 1θ θk k+ =  (10) 

This form of the state equation of the parameters considerably simplifies the UKF algorithm. 

Thus, in the dual UKF algorithm, at the parameter estimation stage step 2 and step 3 are 

replaced by the equation (5) where ( )f •  and Fk  are the identity matrices.  

Constraints due to the physical limitations on the parameters are also applied to the dual 

estimation problem. Parameter constraints are usually represented by the box constraints 

(
L H
θ θ θ≤ ≤ ). In the respiratory models, parameters are assumed to be positive real 

numbers, thus the constraints are defined as 0 θ≤ ≤ ∞ . Modifications to the dual algorithm 

should be made due to the constraints in the models. In the algorithm, after the sigma pints 

were calculated (Step 2) and the Prediction step (Step 3), constrained sigma points were 

obtained with the projection method explained in (Moradkhani et al., 2005). The new 

constrained sigma points are defined as ( )1 1− −ℵ = ℵ( ), ( )i C i
k kP  and ( )1 1− −ℵ = ℵ( ), ( )i C i

k k k kP . 

3. Respiratory models 

Respiratory models express the viscoelastic and mechanic properties of the airways, lung 

and chestwall and these properties are usually represented by the electrical elements. 

Elemental equations define the relationship between appropriate pressures and volumetric 

flow at the specific regions of respiratory system whereas the system state and measurement 

equations are the mathematical descriptions of the whole system behaviour. Theoretical and 

experimental studies reveal that respiratory system models may be linear and nonlinear in 

both state and parameters depending on the system identification technique, considered 

disease conditions and experimental methodology (Polak & Mroczka, 2006); (Bates & 

Lutchen, 2005); (Avanzolini et al., 1995). For the interested reader, discussion and 

comparisons on the linear and nonlinear models can be found in the literature (Diong et al., 

2007); (Yuan et al., 1998). In this work well-known multi-parameter linear Mead model and 

recently presented nonlinear RC model were used to model the respiratory system. The 

presented nonlinear model is the simplified model by (Athanasiades et al., 2000). The 
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motivation behind to use this nonlinear model was that, first it includes nonlinearities as 

well as time-varying nature of the respiratory system, second model states and 

measurements mimic the COPD patients data under non-invasive ventilatory support.  

3.1 Mead respiratory model 

Mead respiratory model with non-invasive ventilatory pressure effect, ( )venP t  and muscular 

pressure effect, ( )musP t  is shown in Fig. 1a. In the model, cR  and pR  are the resistances of 

the central and peripheral airways respectively. Airway flow inertance is represented as L  

and compliances include bronchial tube compliance bC , lung compliance lC , and chestwall 

compliance wC .  
 

(b)

(a)

Rc

Cb

Pven (t)

Paw (t)

+

-

Ce

Rp

+ -

Cl

Pmus (t)
+

-

L Cw

Pmus (t)

Pven (t)

Paw (t)

+

-

+ -

+

-

R

C

 

Fig. 1. (a) Mead respiratory model and (b) Nonlinear RC model of the respiratory system. 

Non-invasive ventilatory pressure effect, ( )venP t  and muscular pressure effect, ( )musP t  is 

added to the models. 

Since the pressure measured at the airway opening is composed of relatively small part of 

the patient’s effort and big part of the non-invasive ventilatory support, a series of the 

independent pressure sources are added to the model to mimic the muscular pressure effect 

and ventilatory effects. ( )musP t  is direct effects of the patients inspiratory muscles and can be 

approximated by the second-order polynominal function (Yamada & Du, 2000):  

 ( ) ( )
τ−

⎧− − + ≤ ≤⎪= ⎨
≤ ≤⎪⎩

2
1 0max max

max
m

mus I mus I
mus t

mus I

P t T P t T
P t

P e T t T
 (11) 
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where maxmusP  represents the effect of maximal patient’s effort and added to the unknown 

parameter vector. IT  and T  are the inspiration duration time and total duration of one 

cycle respiration respectively. They are set to constant values in the algorithm. τm  is the 

inspiratory muscles relaxation time constant and determines the patient-ventilator 

asynchrony. τm is also set to 60 ms  constant value in the simulations. 
Non-invasive ventilator pressure is simulated as an exponential function (Yamada & Du, 
2000): 

 ( ) ( )τ

τ

−

−

⎧ ≤ ≤
⎪⎪= − ≤ ≤⎨
⎪ ≤ ≤⎪⎩

0

1 vi

ve

trig

t
ven ps trig I

t
ps I

PEEP t t

P t P e t t T

P e T t T

 (12) 

where psP  represents the maximum inspiration pressure set on the non-invasive ventilator. 

Depended upon the patient’s established values, psP  is taken between 28 0cmH  - 215 0cmH  

and Positive End Expiration Pressure (PEEP) is set to 20 0cmH  - 24 0cmH . Ventilator 

inspiration time constant τ vi  corresponds the flow acceleration speed of the ventilator, 

whereas ventilator expiration time constant τ ve  is the ventilator deceleration speed and 

contributes to the small pressure rise at the termination of the inspiration. Both τ vi  and τ ve  

were set to 0 006. s . The inspiration trigger delay of the ventilator trigt  was set to 20 ms  

corresponding to the real world scenario. 

Above set values for ( )musP t  and ( )venP t  were applied to simulations where artificially 

produced data and COPD patient’s data were used. For the healthy subject’s data ( )venP t  

was not included to the respiration model.  
In the Mead model, parameter vector and state vector can be defined respectively as: 

⎡ ⎤= ⎣ ⎦maxθ
T

k c l b p w e musR L C C R C C P , ⎡ ⎤= ⎣ ⎦
$x

l b w e

T
k k k k k k
s L C C C CV P P P P . Then, with 

the help of basic electrical circuits rules and first-order Taylor series expansion the state-
observation equations of the state vector in the discrete-time become: 

 1

1 0 1 1 1 0 1

0 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

1 0 0 1 0 0 0

1 0 0 0 1 1 0

x x q

c

p l p l

k k k k
b p b p bs s k mus ms

w

e e

R L L L L

R C R C

C R C R C V P

C

C C

+

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−= + + +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

$  (13) 

 [ ]0 0 0 0 1z x rk k k k
s s ven msP= + +  (14) 

where k  is the discrete-time index and we assumed that initial state vector 0xs  is 5-

dimentional random vector with mean 0x xs sE⎡ ⎤ =⎣ ⎦  and covariance 

( )( )0 0 0x x x x
T

s s s s sE P⎡ ⎤− − =⎢ ⎥⎣ ⎦
, measurement noise and state noise are zero-mean white 

Gaussian noises, [ ]0q ,k
ms msN Q∼  and [ ]0r ,k

ms msN R∼ . kV$  is the measured airway flow 

sequence. 
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In order to define state-observation equations of the parameter vector, we assume that the 

parameters are first-order Markov process, but there is no uncertainty in the state 0qk
vp ≅ . 

This means parameters are actually time-invariant. Thus the state-observation equations of 

the parameters are in the form as: 

 1θ θk k+ =  (15) 

 ( )1x x ,θ , , rk k k k
s k s k k mus mph V P+ = +$  (16) 

where we assumed that initial state vector 0θ  is 8-dimentional random vector with mean 

[ ]0 0θ θE =  and covariance ( )( ) 0
0 0 0 0θ θ θ θ

T

pE P⎡ ⎤− − =⎢ ⎥⎣ ⎦
, measurement noise is zero-mean 

white Gaussion noises,  0r ,k
mp mpN R⎡ ⎤⎣ ⎦∼ . 

3.2 Nonlinear RC respiratory model 

Fig. 1b shows the nonlinear RC respiratory model with non-invasive ventilatory pressure 

effect, ( )venP t  and muscular pressure effect, ( )musP t . In the model R  represents the upper 

airway resistance as the biggest contribution to the resistive pressure lost comes from the 

upper airways. Rohrer’s equation is used to compose the relation between airway flow ( )V t$  

and mouth pressure ( )awP t . Thus resistive pressure lost and dynamic pressure across the 

nonlinear compliance C  in the model can be given respectively as: 

 ( ) ( )( ) ( )r u uP t A K V t V t= + $ $  (17) 

 ( ) ( )lK V t

c l lP t A e B= +  (18) 

where ( )V t  represents the gas volume changes above Residual Volume in the lungs. In (7) 

and (8) uA , uK , lA , lK , lB  together with maxmusP  constitute the unknown parameter vector 

to be estimated.  

In the nonlinear RC model, parameter vector and state vector can be defined respectively as: 

maxθ
T

k u u l l l musA K A K B P⎡ ⎤= ⎣ ⎦ , ⎡ ⎤= ⎣ ⎦x
Tk k

s V . If the circuit theory rules are applied to the 

nonlinear RC circuits and elemental equations are written for nonlinear R and C elements 

below state-observation equations in discrete-time are given for the states of the circuits: 

 1+ = + +$x qk k k k
s nsV V  (19) 

 ( )z r
k

lK Vk k k k k k
u u l l ven mus nsA K V V A e B P P= + + + + − +$ $  (20) 

where same assumptions on the state are applied to (19) and (20). Measurement noise and 

state noise are zero-mean white Gaussion noises, [ ]0q ,k
ns nsN Q∼  and [ ]0r ,k

ns nsN R∼ . zk  is 

the measured mouth pressure sequence (discrete form of ( )awP t ). 
Parameter model state equation of the nonlinear RC model is the same as the linear Mead 
model parameter equation (15) due to the same assumptions whereas (20) is used for the 
parameter model observation equation. 
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4. Dual UKF based respiratory model parameter estimation 

Respiratory models, illustrated in Fig. 1 are composed of the electrical elements that have 
the unknown parameters. Discrete-time equations (13) – (16) were driven from Mead 
respiratory model and equations (15), (19) and (20) constitute non-linear RC respiratory 
model state-observation equations. The common way to model the respiratory system is to 
estimate the model parameters. The states are also required in order to implement Bayesian 
data analysis. Then, the respiratory model parameter estimation problem becomes dual 
recursive nonlinear inference problem from the noisy observed time series.  

4.1 Data acquisition and pre-processing 

In Mead model two state-observation equations for the states and parameters required to 

use dual UKF evaluation whereas joint UKF method was used for the nonlinear RC model. 

Both model parameters and states were estimated by i) artificially produced data that mimic 

the respiratory diseased patients, ii) data acquired from COPD patients and iii) data 

recorded from healthy subjects. Artificial airway flow was simulated as a sinusoidal signal 

with maximum flow of 0 6. l s  and sampling rate was 100 Hz . Inspiration time 
I
T  was 

taken as 1 s  while total breath cycle was 3 s . The states and observations were computed by 

(13), (14), (19), (20) and the parameters shown in the Table 1. After the observation sequence 

was obtained the zero-mean white Gaussian observation noises with 
5 5

0 02.
ms
R I ×=  and 

0 02.
ns
R =  were added to the Mead model and nonlinear RC model respectively.  
 

Simulation Parameter Value Model Parameter Value 

PEEP  2
4 cmH O  

c
R  1

2
1 9601. cmH O s l−⋅ ⋅  

ps
P  

2
6 cmH O  L  

2 1

2
20 772. cmH O s l−⋅ ⋅  

vi
τ  0 006. s  

l
C  1

2
4 5182. l cmH O−⋅  

ve
τ  0 006. s  

b
C  1

2
6 6670. l cmH O−⋅  

trig
t  10N  p

R  1

2
4 7039. cmH O s l−⋅ ⋅  

I
N  3N  w

C  1

2
7 56. l cmH O−⋅  

Non-invasive 
Ventilator 
Pressure 

Simulation 

N  300 points

Mead Model 

Parameters θ

e
C  1

2
40 589. l cmH O−⋅  

maxmus
P  

2
1 2. cmH O

u
A  1

2
3 1. cmH O s l−⋅ ⋅  Muscular 

Pressure 
Simulation m

τ  60 ms  
u
K  2 2

2
0 32. cmH O s l−⋅ ⋅  

s
f  100 Hz  

l
A  

2
0 5. cmH O  

s
R  0 02 I.  

l
K  0 2.  

Common 
Parameters 

s
Q  0 01 I.  

Nonlinear RC 
Model 

Parameters θ

l
B  

2
0 cmH O  

Table 1. Parameters of the artificial respiratory signal. 

Seven male and one female patients with COPD and four male and two female healthy non-
smoking subjects (without any respiratory disease) were recruited. Patients were on non-

invasive ventilator (Respironics Inc. BIPAP S/T IPAP - 28 15 0− cmH , PEEP - 20 4 0− cmH ) 

www.intechopen.com



Dual Unscented Kalman Filter and Its Applications to Respiratory System Modelling 

 

215 

via facemask (Respironics Inc. Spectrum size medium and small). Mask pressure and airway 
flow were measured by pneumotachograph and pressure transducer system (Hans Rudolph 
Inc. Research pneumotachograph system). Sampling rate was 100 Hz. During acquisition, 
subjects were awake and in supine position breathing though the facemask. At least 10 
breathing cycle of airway flow mask pressure and lung volume (integration of airflow) 
signals were recorded by data acquisition system (National Instrument DAQCard-6036E 
ADC-16bit) to the computer for the offline signal processing. 
The airflow signal was first software filtered to remove high frequency noise with 8th order 
Butterworth low-pass filter with cut-off frequency of 50 Hz and then processed to detect the 
breathing cycle onset and end. Recorded signals were divided by breathing cycles with the 
consideration of ventilator trigger time, inspiration time and expiration time. Five clear 
breathing cycles were chosen for the offline signal processing step. 
Dual UKF and joint UKF algorithm are applied to the pre-processed respiratory signals as 
explained in the section (3.2) and (3.3). Parameter constraints information was also 
incorporated in the dual UKF and EKF algorithm.  

4.2 UKF and EKF parameter selection 
Although there is no defined criteria for the estimator parameter selection, incorporating the 
model knowledge with the observation method some information can be drawn. In the both 
model the state transitions were obtained from the discretization of the continuous-time 

model equations by first-order Taylor series. The truncation error ( 2
( )O tΔ ) is the most 

contribution error in the process equation. Thus based on 1 100t sΔ = , process noise 

covariance matrices for the states were 4

5 5
10Q

ms
I−

×=  and 
0

0

-4
10

Q
0

ns

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

. In the UKF 

algorithm initial error covariance matrices for both models were 
0
P Q
ms

ms
= and 

0
P Q
ns

ns
=  

whereas in EKF in order to have some convergences in the parameters, initial error 

covariance were set to higher values such as 6

0
10P Q

ms

ms
= , and 2

0
10P Q

ns

ns
= . Observation 

noise covariance matrices were set with the convergence considerations to 0 9R R .
ms ns
= =  

for both models and for both estimators. Since the errors driven from the measurement 
equipment treats relatively low variances (accuracy of the equipments are in the range of 
%3), such a high choice of observation noise demonstrated the bigger uncertainty in the 
model fit to the measured noisy time-series. On the other hand in Mead model, the 
parameter observation error covariance matrix was set to the state process error covariance 
matrix due to the same equations.  

Parameter and state initial values were found to be the most important settings. Especially 

the success of EKF was very much depended on the initial values. For the Mead model the 

initials were selected with regard to the convergences.  Thus the set of initials for the Mead 

model were drawn from 0 =x 0s , [ ]0 1 1∼x ,p N for UKF algorithm and 0 =x 0s , [ ]0 1 2∼x ,p N  for 

EKF algorithm. For the nonlinear RC model initials were the same for the states, but for the 

parameters, the [ ]0 0 1∼x ,p N was set in the both estimator algorithms.  
Furthermore, UKF algorithm parameters were set according to the minimum Mean Squared 
Error (MSE) computed in the artificial data run. Monte Carlo simulations were performed 
with 100 run by artificial data series. 0 1.α =  for the parameters whereas 0 9.α =  for the 

states. κ, the secondary adjustment parameter was set to 1.1 for the minimum MSE. Finally, 
β = 2 indicating that the actual acquired signals were Gaussian distributed. 
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5. Results 

5.1 MSE for the Mead and nonlinear RC models 

MSE is the important showing for the performance comparison of both estimators. It was 

calculated with the Monte Carlo simulations and plotted against the data points. Figs. 2 and 

3 show the MSE curves for the Mead and nonlinear RC models respectively. Both UKF and 

EKF estimates converge to single points through time-steps. Compared to Figs 2 and 3, 

although Mead model convergences are faster than nonlinear RC model convergences, 

approximations are better in the nonlinear RC model meaning that corresponding MSEs are 

lower. However, parameters 
u
K ,

l
K  in the nonlinear RC model and 

maxmus
P  in the Mead 

model show very irregular results that demonstrate very slow or no convergence at all. This 

can be explained by the parameters interaction in the model structure. Parameter 
u
K  is 

effected by the uncertainty of the airway flow, kV$  by nonlinear fashion and 
l
K  is in the 

direct relation with the estimated state kV . On the other hand, parameter L  is found to be 

the less identifiable parameter, apart from 
e
C . Since the state transition model of 

maxmus
P  

includes L  in the Mead model, 
maxmus

P uncertainty is mostly effected by this parameter, 

therefore, degeneracy of the convergence happened. 

It is apparent from the Figures that UKF converge faster than EKF for the Mead model. 

However, for the nonlinear model, EKF showed surprisingly no convergence at all for the 

nonlinear parameters 
l
A , 

l
K  and 

l
B . This could be the consequence of the changes in the 

expiration. As it is noted convergences are distorted when the expiration begins and at the  
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Fig. 2. MSE curves belongs to Mead model parameters (produced by artificial data). Curves 
were calculated by 100 run Monte Carlo simulations. Continuous and dashed lines represent 
the UKF and EKF estimates respectively. 

www.intechopen.com



Dual Unscented Kalman Filter and Its Applications to Respiratory System Modelling 

 

217 

 

0 50 100 150 200 250 300
0

1

2

3

4

M
S

E
 f
o
r 

A
u

Data Points

 

 

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

M
S

E
 f
o
r 

K
u

Data Points

 

 

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

M
S

E
 f
o
r 

A
l

Data Points

 

 

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

M
S

E
 f
o
r 

K
l

Data Points

 

 

0 50 100 150 200 250 300
0.1

0.2

0.3

0.4

0.5

0.6

M
S

E
 f
o
r 

B
l

Data Points

 

 

0 50 100 150 200 250 300
0

0.5

1

1.5

2

M
S

E
 f
o
r 

P
m

u
s
m

a
x

Data Points

 

 

UKF

EKF

UKF

EKF

UKF

EKF

UKF

EKF

UKF

EKF

UKF

EKF

 
 

Fig. 3. MSE curves belongs to nonlinear RC model parameters (produced by artificial data). 
Curves were calculated by 100 run Monte Carlo simulations. Continuous and dashed lines 
represent the UKF and EKF estimates respectively. 

expiration side only the nonlinear parameters govern the equations leaving muscular and 

ventilatory effects without contribution. Also, in line with our previous study (Saatci & 

Akan, 2007) in the nonlinear RC model, the most robust parameter is the parameter 

maxmus
P for the artificial data sequence. 

5.2 Convergence of the parameters for the measured respiratory signals 

To illustrate the performance of the UKF and EKF estimators for the case of measured 

signals, parameters were estimated from acquired respiratory signals. Both UKF and EKF 

were evaluated with both model and for COPD patients’ data and for healthy subjects’ data. 

Figs 4 and 5 show Mead model UKF and EKF parameter convergence curves produced by 

the representative COPD patient’s data respectively. Estimations from five different breath 

cycles were plotted on the same figure to illustrate the similarities and differences between 

breath cycles. Figs 6 and 7 show the plots of the same patients’ parameters for the nonlinear 

RC model. Parameters’ convergence curves produced by the healthy subject’s data were 

plotted in the Figs 8 and 9 corresponding to the Mead model and in the Figs 10 and 11 for 

the nonlinear RC model. 

First, it should be noted that since the Figs 4, 5, 6, 7 belong to the same COPD patient’s data 

and it is expected to see compatible parameter values that at least indicate the patient’s 
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actual respiratory condition. First, if we compare Fig. 4 and Fig. 5 for some parameters EKF 

doesn’t seem to converge at all in the Mead model. Since the initial value is very important 

for the EKF to converge, initial error covariance matrix was set to high values ( 1

0
10P

mp = and 

1

0
10P

np = ) in order to compensate the initial uncertainty. Thus, although consistency 

between breath cycles is accomplished in the EKF, the actual convergences don’t go very far 

from the initial values.  However for the nonlinear RC model case (Figs. 6 and 7), the 

parameter estimates of EKF and UKF is not only consistent but also very selective. Breath-

to-breath variations existed for 
maxmus

P could be the consequence of the variations in the 

patient’s breath cycle.  

If healthy subject’s data is examined, it could be seen that convergence problems of the EKF 

resulted in again unexpected values in the Mead model (Figs 8 and 9). However, subject’s 

data sequence fit to nonlinear RC model successfully. From the estimated values of the 

parameters it is apparent that UKF and EKF perform identical for the nonlinear RC model in 

both COPD patient’s data and healthy subject’s data.  
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Fig. 4. Mead model UKF parameter convergence curves (produced by the representative 
COPD patient’s data). Estimations from five different breath cycles were plotted on the same 
figure to illustrate the similarities and differences between breath cycles 
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Fig. 5. Mead model EKF parameter convergence curves (produced by the representative 
COPD patient’s data). Estimations from five different breath cycles were plotted on the same 
figure to illustrate the similarities and differences between breath cycles 
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Fig. 6. Nonlinear RC model UKF parameter convergence curves (produced by the 
representative COPD patient’s data). Estimations from five different breath cycles were 
plotted on the same figure to illustrate the similarities and differences between breath cycles 
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Fig. 7. Nonlinear RC model EKF parameter convergence curves (produced by the 
representative COPD patient’s data). Estimations from five different breath cycles were 
plotted on the same figure to illustrate the similarities and differences between breath cycles 
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Fig. 8. Mead model UKF parameter convergence curves (produced by the representative 
healthy subject’s data). Estimations from five different breath cycles were plotted on the 
same figure to illustrate the similarities and differences between breath cycles 
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Fig. 9. Mead model EKF parameter convergence curves (produced by the representative 
healthy subject’s data). Estimations from five different breath cycles were plotted on the 
same figure to illustrate the similarities and differences between breath cycles 
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Fig. 10. Nonlinear RC model UKF parameter convergence curves (produced by the 
representative healthy subject’s data). Estimations from five different breath cycles were 
plotted on the same figure to illustrate the similarities and differences between breath cycles 
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Fig. 11. Nonlinear RC model EKF parameter convergence curves (produced by the 
representative healthy subject’s data). Estimations from five different breath cycles were 
plotted on the same figure to illustrate the similarities and differences between breath cycles 

5.3 Convergence of the states for the measured respiratory signals 

Reproducibility of the defined states of the respiratory models was also verified by 

comparing the state estimates produced for five breath cycles. Figures 12 and 13 show the 

Mead model states of the COPD patient corresponding to UKF and EKF estimates 

respectively. Healthy subject’s figures are given in the Figs 14 and 15. Comparing to both 

figures, contrary to parameter estimates EKF seems to be more successful than UKF in the 

time-varying state estimation. For instance, state $ k
LV  could be estimated nothing but noise 

by UKF in the Mead model. Moreover, tracking of the states 
l

k
CP , 

b

k
CP  and 

w

k
CP converged to 

unexpectively more negative pressure values by UKF. However, incorporating the model 

equations together with the lung tissue, small airways and chest wall pressure effects it is 

expected to see pressure rise at the inspiration and pressure decrease at the expiration. Thus, 

especially EKF tracks produced from healthy subject’s data (Fig. 15) report the expected 

state pressure waveforms in the Mead model. 

In the nonlinear RC model case, both estimation methods again demonstrate the same sate 

tracks. Figs 16 and 17 are the evident of the UKF and EKF success on the state estimation. 

Tracks show expected lung volume, above Residual Volume, k
LV  as it increases through 

inspiration and decreases to zero at the end of expiration. 
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Fig. 12. Mead model UKF state convergence curves (produced by the representative COPD 
patient’s data). Estimations from five different breath cycles were plotted on the same figure 
to illustrate the similarities and differences between breath cycles 
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Fig. 13. Mead model EKF state convergence curves (produced by the representative COPD 
patient’s data). Estimations from five different breath cycles were plotted on the same figure 
to illustrate the similarities and differences between breath cycles 
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Fig. 14. Mead model UKF state convergence curves (produced by the representative healthy 
subject’s data). Estimations from five different breath cycles were plotted on the same figure 
to illustrate the similarities and differences between breath cycles 
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Fig. 15. Mead model EKF state convergence curves (produced by the representative healthy 
subject’s data). Estimations from five different breath cycles were plotted on the same figure 
to illustrate the similarities and differences between breath cycles 
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Fig. 16. Nonlinear RC model (a) UKF and (b) EKF parameter convergence curves (produced 
by the representative COPD patient’s data). Estimations from five different breath cycles 
were plotted on the same figure. 
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Fig. 17. Nonlinear RC model (a) UKF and (b) EKF parameter convergence curves (produced 
by the representative healthy subject’s data). Estimations from five different breath cycles 
were plotted on the same figure. 
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6. Conclusion 

Common problem in the respiratory model parameter estimates is the lack of information 

on the uncertainty (or residuals) between measured airway pressure and used model. As the 

model has more degree of freedom (incorporates more parameter (Avanzolini et al., 1995) or 

incorporates the nonlinearity (Athanasiades et al., 2000)) the uncertainties approaches to the 

statistical noise that is usually Gaussian distributed. Here, we started with the assumption 

that the residuals are the white Gaussian noises and estimation and measured noisy time 

series can be fit to the respiratory models by the estimation methods. Thus, unscented 

Kalman filter (UKF) was employed as an inverse solver to estimate the time-invariant 

parameters and time-varying states in the linear Mead model and the nonlinear RC model. 

Illustrative comparison between UKF and conventional EKF was also performed with the 

respiratory model applications. The convergence results of the parameters demonstrated the 

performance gains over EKF only in the Mead model. UKF is known to make more accurate 

results only if the kurtosis and higher order moments of the parameters’ errors are 

significant. This fact is one indication of why the UKF doesn’t perform better than EKF in 

the nonlinear RC model parameter and state estimation.  

It is also experienced that the tuning of EKF is more difficult than UKF even though UKF 

has more tuning parameter. For the real respiratory signals, initial parameter and state 

vectors may require small adjustments for the proper convergences of the parameters.  
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