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1. Introduction    

The extended Kalman filter (EKF) is one of the most widely used methods for state 
estimation with communication and aerospace applications based on its apparent simplicity 
and tractability (Shi et al., 2002; Bolognani et al., 2003; Wu et al., 2004). However, for an EKF 
to guarantee satisfactory performance, the system model should be known exactly. 
Unknown external disturbances may result in the inaccuracy of the state estimate, even 
cause divergence.  
This difficulty has been recognized in the literature (Reif & Unbehauen, 1999; Reif et al., 
2000), and several schemes have been developed to overcome it. A traditional approach to 
improve the performance of the filter is the 'covariance setting' technique, where a positive 
definite estimation error covariance matrix is chosen by the filter designer (Einicke et al., 
2003; Bolognani et al., 2003). As it is difficult to manually tune the covariance matrix for 
dynamic system, adaptive extended Kalman filter (AEKF) approaches for online estimation 
of the covariance matrix have been adopted (Kim & ILTIS, 2004; Yu et al., 2005; Ahn & Won, 
2006). However, only in some special cases, the optimal estimation of the covariance matrix 
can be obtained. And inaccurate approximation of the covariance matrix may blur the state 
estimate. 
Recently, the robust H∞ filter has received considerable attention (Theodor et al., 1994; Shen 
& Deng, 1999; Zhang et al., 2005; Tseng & Chen, 2001). The robust filters take different forms 
depending on what kind of disturbances are accounted for, while the general performance 
criterion of the filters is to guarantee a bounded energy gain from the worst possible 
disturbance to the estimation error. Although the robust extended Kalman filter (REKF) has 
been deeply investigated (Einicke & White, 1999; Reif et al., 1999; Seo et al., 2006), how to 
prescribe the level of disturbances attenuation is still an open problem. In general, the 
selection of the attenuation level can be seen as a tradeoff between the optimality and the 
robustness. In other words, the robustness of the REKF is obtained at the expense of 
optimality. 
This chapter reviews the adaptive robust extended Kalman filter (AREKF), an effective 
algorithm which will remain stable in the presence of unknown disturbances, and yield 
accurate estimates in the absence of disturbances (Xiong et al., 2008). The key idea of the 
AREKF is to design the estimator based on the stability analysis, and determine whether the 
error covariance matrix should be reset according to the magnitude of the innovation. O
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Further analysis shows that the filter can guarantee boundedness of the estimation error 
despite the unknown disturbances as well as the linearization error. Unlike the AEKF, the 
calculated innovation is not adopted directly to tune the error covariance matrix, but used as 
an indicator of the necessity of resetting the covariance matrix, so that the covariance matrix 
will be reset only when large disturbance occurs. The AREKF can be seen as a REKF with 
time-varying attenuation level. In comparison with the REKF, the advantage of the AREKF 
is that the robust behavior is achieved without decreasing accuracy. In addition, no 
complicated computation procedures are required to implement the AREKF. 
The AREKF particularly suits for state estimation in nonlinear stochastic system with large 

external disturbance. This chapter describes the application of the algorithm to autonomous 

astronomical navigation for orbit maneuvering spacecraft. The problem is to determine the 

position vector of the spacecraft according to the spacecraft dynamic model and the 

measurements from the earth sensor and the star sensor. We consider the case in which the 

spacecraft performs thrust maneuvers but the unknown acceleration produced by the 

thruster firings is not known. The unknown acceleration, which may seriously impact the 

positioning accuracy, is treated as disturbances in the design of the AREKF. Numerical 

example shows that the AREKF outperforms the usual EKF, the REKF and the AEKF. 

The structure of this chapter is as follows. In Section 2, the stability of the REKF is analyzed 
based on some standard results about the boundedness of stochastic processes. It is 
specified that the stability of the REKF is not guaranteed. In Section 3, the AREKF is derived 
to ensure the stability of the filter. The autonomous navigation system that consists of the 
earth sensor and the star sensor is described in Section 4. In Section 5, the high performance 
of the AREKF is illustrated through simulations in comparison with the usual EKF, the 
REKF and the AEKF. Some conclusions are drawn in Section 6. 

2. Problem statement 

2.1 REKF algorithm 

The considered nonlinear discrete-time system is represented by 

 ttt f wxx += − )( 1   (1) 

 ttt h vxy += )(   (2) 

where l
t Rx ∈  and m

t Ry ∈  denote the state and measurement vectors at time instant t. f(.) 

is a function that describes the dynamics of the state vector. h(.) is a function that describes 

the relation between the state vector and the measurement vector. The function f(.) and h(.) 

are assumed to be continuously differentiable. wt and vt are uncorrelated zero mean white 

noise processes with covariance matrices Qt and Rt respectively.  

The structure of the standard REKF algorithm is presented as follows (Einicke & White, 
1999): 

Prediction: The one-step prediction of 1|
ˆ −ttx  and its corresponding error covariance matrix 

1| −ttΣ  are 

 )ˆ(ˆ
11| −− = ttt f xx   (3) 
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 t
T
ttttt QFPFP += −− 11|   (4) 

 121
1|1| )( −−−
−− −= t

T
ttttt LLPΣ γ   (5) 

where 

1
ˆ

)(

−=∂
∂

=
t

f
t

xxx

x
F is the Jacobian matrix of )( 1−tf x , 

ll
t

×∈RL  is designed as identity 

matrix I, and the tuning parameter γ is found by searching over 0≠γ  such that 01| >−ttΣ . 

Update: The estimate of state tx̂  and the estimation error covariance matrix Pt are 

 )]ˆ([ˆˆ
1|1| −− −+= ttttttt h xyKxx   (6) 

 1
,1|
−

−= ty
T
tttt PHΣK   (7) 

 t
T
ttttty RHΣHP += −1|,   (8) 

 111
1| )( −−−
− += tt

T
tttt HRHΣP   (9) 

where 

1|
ˆ

)(

−=∂
∂

=
tt

h
t

xxx

x
H  is the Jacobian matrix of )( th x . 

Apparently, the structure of the REKF is similar to that of the EKF, and if ∞→γ , the REKF 

reverts to the EKF. The design objective of the REKF is to guarantee the norm of the transfer 
function between the estimation error and the external disturbances (modeling errors and 
system noises) to be less than a prescribed attenuation level γ  

 2

222

2~

γ≤
++ ttt

tt

vΔw

xL
  (10) 

where x is 2-norm of vector x, ttt xxx ˆ~ −=  is the estimation error, and tΔ  represents the 

model error caused by the linearization error or unknown exogenous inputs. 
It can be seen from (10) that the tuning parameter γ  in (5) describes the ability of the filter 

to minimize the effects of the disturbances on the estimation errors. Decreasing γ  will 

enhance robustness of the filter. However, as is pointed out in (Einicke & White, 1999), when 
a minimum possible γ  is adopted, the accuracy of the filter will be decreased. Another 

limitation of the REKF will be specified in the next sub-section. 

2.2 Stability analysis 

The stability analysis of the REKF is based on the following lemma. The inequalities with 
random variables in this paper hold with probability one. 
 

Lemma 1: Assume that tξ  is the stochastic process and there is a stochastic process )( tV ξ  

as well as the real numbers 0min >v , 0max >v , 0>μ  and 10 ≤< λ  such that t∀  
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2

max

2

min )( ttt vVv ξξξ ≤≤   (10) 

and 

 )()(]|)([ 111 −−− −≤− tttt VVVE ξξξξ λμ   (11) 

are fulfilled. Then the stochastic process tξ  is bounded in mean square, i.e. 

 ∑
−

=

−+−≤
1

1min

2

0
min

max2
)1()1}({}{

t

i

it
t

v
E

v

v
E λμλξξ   (12) 

The proof of Lemma 1 is given in (Reif & Unbehauen, 1999; Tarn & Rasis, 1976). 

During the stability analysis, the Lyapunov function )( tV ξ  that represents the energy of tξ  

should be chosen by the user. Certainly, a properly chosen )( tV ξ  may facilitate the analysis. 

The numbers vmin and vmax define the low bound and the upper bound of )( tV ξ  

respectively. The lemma specified that if the difference between the conditional expectations 

of )( tV ξ  and )( 1−tV ξ  is not larger than a positive constant μ  minus the product of 

)( 1−tV ξ  and another constant λ , then tξ  will be bounded. Intuitively, if the condition (11) 

is fulfilled, the energy of tξ  will not increase arbitrarily. 
The prediction error of the REKF is defined as 

 1|1|
ˆ~

−− −= ttttt xxx   (13) 

Substitute (1) and (3) into (13), the prediction error can be written as 

 )ˆ()(~
111| −−− −+= ttttt ff xwxx   (14) 

Then the predication error of the REKF is transformed to an equivalent formulation that is 
easy to handle 

 tttttt wxFβx += −− 11|
~~   (15) 

where ),,( ,,1 tltt diag ββ A=β  is unknown time-varying matrix used to scale the prediction 

error caused by the linearization error and the unknown exogenous inputs. Similar 
formulation has been used in (Boutayeb & Aubry, 1999) and (Xiong et al., 2006) to analyze 
the stability of the EKF and the UKF respectively. Using (17), the real error covariance 
matrix of the prediction error can be approximated by 

)~|~~( 11|1|1| −−−− = t
T
tttttt E xxxΣ ]~|)~)(~[( 111 −−− ++= t

T
ttttttttE xwxFβwxFβ  

 tt
T
tttt QβFPFβ += −1   (16) 

With these prerequisites, the sufficient conditions to ensure stability of the REKF are 
demonstrated in the following theorem. 
Theorem 1. Consider the nonlinear stochastic system given by (1)-(2) with linear 

measurement ttth xHx =)( , and the REKF as stated by (3)-(9). Let the following 

assumptions hold for every 0≥t  
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1. There are real numbers fmin, fmax, minβ , maxβ , hmin, hmax, such that: 

 IfIf T
tt

2
max

2
min ≤≤ FF , II T

tt
2
max

2
min ββ ≤≤ ββ , IhIh T

tt
2
max

2
min ≤≤ HH   (17) 

2. There are real numbers pmin, pmax, rmin, rmax, qmax, such that: 

 IpIp t maxmin ≤≤ P , IrIr t maxmin ≤≤ R , Iqt max≤Q   (18) 

3. The following matrix in-equation is fulfilled 

 1|1| −− > tttt ΣΣ   (19) 

Then there are real numbers 0max >μ , 10 min ≤< λ , such that 

 ∑
−

=

−+−≤
1

1

min
min

max
min

2

0
min

max2
)1()1}(~{}~{

t

i

it
t

p
E

p

p
E λ

μ
λxx   (20) 

The proof of Theorem 1 can be found in Appendix. The measurement equation is assumed 
to be linear to simplify the deduction. Nevertheless, the following analysis is expected to 
remain valid for the system with nonlinear measurement equation if the linearization error 
of the measurement equation is negligible. 

It is clarified in Theorem 1 that under sufficient condition (17)-(19), estimation error of the 

REKF will remain bounded, and the effect of the initial error 0
~x  on the super-bound of tx

~  

will diminish as time goes on. In (17), the matrices Ft, tβ  and Ht are assumed to be 

bounded. Nevertheless, there are no limitations about the magnitude of the bounds. In 

general, when the REKF is used in physical processes with finite energy, it is reasonable to 

assume that tβ  is bounded, and the assumption can be verified in practice. In (18), the 

condition IPI maxmin pp t ≤≤  is related to the observability property of the linearized 

system and related discussion can be seen in (Reif & Unbehauen, 1999; Boutayeb & Aubry, 

1999). The inequalities IRI maxmin rr t ≤≤  and IQ maxqt ≤  are trivially true. 

Equation (19) is the key condition of Theorem 1. It can be interpreted as follows: to ensure 

the stability of the filter, the calculated covariance matrix 1| −ttΣ  should be larger than the 

real one. This conclusion is similar with the traditional perspective that enlarging the 

covariance matrices may enhance the filter stability (Einicke et al, 2003; Bolognani et al, 2003; 

Boutayeb & Aubry, 1999). As unknown matrix tβ  may be rather large in the presence of 

large unknown inputs, from (16), the condition (19) may be violated and stability of the filter 

can not be guaranteed. A remedy to this potential problem is to tune the parameter γ . From 

(5), with Lt = I, in order for 1|1| −− − tttt ΣΣ  to be positive definite, it requires 

0)( 1|
121

1| >−− −
−−−

− tttt ΣIP γ IΣP
21

1|
1

1|
−−

−
−
− <−⇒ γtttt  

 )](eigmax[ 1
1|

1
1|

2 −
−

−
−

− −>⇒ tttt ΣPγ   (21) 

where max[eig(A)] denotes the minimum eigenvalue of the matrix A. If 

0)](eigmax[ 1
1|

1
1| ≤− −

−
−
− tttt ΣP , (21) is bound to be fulfilled. Otherwise, the chosen γ should 

satisfy 
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 5.01
1|

1
1| )]}(eig{max[ −−

−
−
− −< tttt ΣPγ   (22) 

Hence, γ  should be small enough to improve the stability of the REKF. This requirement is 

consistent with the design criterion of the robust H∞ filter that the prescribed attenuation 
level γ  should be as small as possible (Tseng & Chen, 2001). However, in order for the error 

covariance matrix 1| −ttΣ  to be positive definite, it requires 

 021
1| >− −−
− IP γtt

5.0
1| )]}(eig{max[ −>⇒ ttPγ   (23) 

Obviously, if 5.01
1|

1
1|

5.0
1| )]}(eig{max[)]}(eig{max[ −−

−
−
−− −> tttttt ΣPP , it will be difficult to find 

an appropriate γ  to stabilize the filter, i.e., stability of the REKF is not guaranteed. 

According to (10), for a fixed γ  which is chosen to ensure 01| >−ttΣ , the bound of the 

estimation error 
2~

tt xL  will be enlarged in the presence of large linearization error or 

unknown exogenous inputs. And large deviation of the estimated state from the real one 
will further augment the linearization error. If this trend is not terminated, the filter will fail 
to converge. Hence, as can be seen from (23), ability of the REKF to minimize the energy of 
the estimation error is limited by the maximum eigenvalue of Pt|t-1. 

3. The AREKF algorithm 

In order to guarantee the stability of the filter, a novel method is proposed to design the 

REKF. From Theorem 1, the bound of tx
~  can be controlled by enlarging the calculated 

covariance matrix 1| −ttΣ . For the REKF, 1| −ttΣ  will be enlarged by decreasing γ . However, 

it may be impossible to choose a suitable γ  such that 1| −ttΣ  is sufficiently large when Lt = I. 

In fact, this problem can be solved if the matrix Lt in (5) is designed as 

 211
1|

11
1| )( −

−
−−

− −= tttttt PPL λγ   (24) 

where 21)(⋅  denotes the matrix square root, and tλ  is a tuning parameter which should be 

large enough such that the following inequation is fulfilled 

 1|1|| −− < ttttt PΣ λ   (25) 

With this design, the difficulty of tuning the prescribed level γ  is avoid, and tλ  should be 

tuned instead of γ  to obtain better robust behaviour. A practice way to tune the parameter 

tλ  is given in the next sub-section. Substitute (24) into (5), it is easy to verify that the 

sufficient condition (19) in Theorem 1 is fulfilled.  

Nevertheless, the use of the upper bound 1| −tttPλ  may be too conservative. Too much 

emphasis is placed in accommodating the worst case (the largest linearization error) at the 

expense of optimality. In order to improve stability of the filter without decreasing accuracy, 

an adaptive scheme to adjust 1| −ttΣ  in response to the changing environment is given as 

follows 
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⎪⎩

⎪
⎨
⎧

−

>
= −−−

−

−
−

otherwiset
T
ttt

tytytt
tt

,)(

,
121

1|

,,1|
1|

LLP

PPP
Σ

γ
α

  (26) 

where )~|~~( 1, −= t
T
ttty E xyyP  is the real covariance matrix of the innovation 

1|
ˆ~

−−= ttttt xHyy . The parameter 0>α  is introduced to provide an extra degree of 

freedom to tune the threshold during the implementation process. Although ty,P  is 

unknown in practice, it can be estimated by 

 
⎪
⎩

⎪
⎨

⎧

>
+

+
=

≈ −
0,

1

~~
0,~~

1,,
t

t
T
ttty

T
tt

ty

ρ
ρ yyP

yy

P   (27) 

where 98.0=ρ  is a forgetting factor (Bai, 1999). 

The adaptive robust extended Kalman filter (AREKF) has the structure of the REKF, except 
that the prediction error covariance is calculated by (26) instead of (5). With this particular 

design, when there is large innovation, 1| −ttΣ  will be set to 121
1| )( −−−
− − t

T
ttt LLP γ  to prevent 

filter divergence. On the other hand, when the innovation is rather small, 1| −ttΣ  will be set 

to Pt|t-1 so that it will not distort the estimation. The stability of the proposed algorithm is 
analyzed as follows. 
Theorem 2. Consider the nonlinear stochastic system given by (1)-(2) with linear 

measurement ttth xHx =)( . Assume that rank(Ht) = l and 1=α , and the real error 

covariance matrix )~|~~( 11|1| −−− t
T
ttttE xxx  is approximated by 1| −ttΣ . The AREKF is stated by 

(3), (4), (6)-(9), (24) and (26). Let the following assumptions hold for every 0≥t  

1. There are real numbers fmin, fmax, minβ , maxβ , hmin, hmax, such that: 

 IFFI
2

max
2

min ff T
tt ≤≤ , IββI

2
max

2
min ββ ≤≤ T

tt , IHHI
2
max

2
min hh T

tt ≤≤   (28) 

2. There are real numbers pmin, pmax, rmin, rmax, qmax, such that: 

 IPI maxmin pp t ≤≤ , IRI maxmin rr t ≤≤ , IQ maxqt ≤   (29) 

Then there are real numbers 0max >μ , 10 min ≤< λ , such that 

 ∑
−

=

−+−≤
1

1

min
min

max
min

2

0
min

max2
)1()1}(~{}~{

t

i

it
t

p
E

p

p
E λ

μ
λxx   (30) 

Proof: The proof of Theorem 2 is similar to that of Theorem 1, except that the sufficient 

condition shown in (19) is verified according to (24) and (26).  

From (2) and (16), the real covariance matrix of the innovation is expressed as 

]~|)ˆ)(ˆ[(E 11|1|, −−− −−= t
T

ttttttttty xxHyxHyP  
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]~|)~)(~[(E 11|1| −−− ++= t
T

tttttttt xvxHvxH  

 t
T
tttt RHΣH += −1|   (31) 

From (8) and (31), we have 

 T
tttttttyty HΣΣHPP )( 1|1|,, −− −=−   (32) 

As the rank of the measurement matrix Ht is assumed to be l and α  is assumed to be 1, if 

tyty ,, PP > , the condition 1|1| −− > tttt ΣΣ  is fulfilled. Otherwise, if the inequation tyty ,, PP >  

is not fulfilled, inserting (24) into (26), we have 

 01|1|1|1| >−=− −−−− ttttttttt ΣPΣΣ λ   (33) 

Therefore, the condition (19) can always be satisfied. Then the theorem can be proved 
following the proof process of Theorem 1. 

Remarks: 

1) This theorem shows that the stability of the proposed algorithm can be ensured with the 
assumption rank(Ht) = l. Nevertheless, the AREKF can be used even if rank(Ht) < l. 

According to (28), if the hypothesis tyty ,, PP >  is not satisfied, then the condition 

1|1| −− > tttt ΣΣ  is bound to be violated. In other words, it indicates that the stability of the 

filter is not guaranteed. Thus it is proper to adopt the robust filtering technique to adjust the 

covariance matrix 1| −ttΣ  when tyty ,, PP >  is not satisfied. 

2) The small positive number α  in (26) is introduced to avoid resetting the covariance 

matrix 1| −ttΣ  frequently. Note that the condition 1|1| −− > tttt ΣΣ  is sufficient but not 

necessary to ensure stability of the filter. Numerical simulations have shown that even if the 
condition is not globally satisfied as 1<α , the AREKF can tolerate much higher prediction 
error than the REKF and the traditional EKF. 
3) The key idea of the AREKF is to design the estimator based on the stability analysis, and 

determine whether the error covariance matrix 1| −ttΣ  should be reset according to the 

hypothesis test. Unlike the REKF, the proposed algorithm is designed based on the tuning 

parameter tλ  instead of the prescribed attenuation level γ . Sufficient large tλ  can 

generally be found for practical systems with finite energy. In contrast, as discussed earlier, 
it may be impossible to obtain appropriate γ  for the REKF. Thus, the proposed technique is 

more efficient to prevent instability in the case of large predication error. In addition, as the 
AREKF switches between the REKF and the traditional EKF under the control of the 

innovation covariance ty,P , and it will not work in the REKF mode unless the estimated 

covariance ty,P  exceeds the threshold ty,Pα , it is expected to be more accurate than the 

traditional REKF in the case of negligible predication error. 

4) Note that the estimate of ty,P  is not adopted directly in the algorithm, but used as an 

indicator of the filter instability. Even if the covariance matrix 1| −ttΣ  is reset inappropriately 
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due to the inaccurate approximation in (27), as 1|
121

1| )( −
−−−

− >− ttt
T
ttt PLLP γ , from (19) in 

Theorem 1, it will not affect the stability of the filter. Certainly, in order to avoid decreasing 

accuracy of the filter, the parameter α  should be fine tuned so that 1| −ttΣ  will not be reset 

frequently. 
5) In fact, the estimation errors of the EKF and the UKF can be written as a uniform 
formulation which is similar to (A.3) (See (Xiong, 2006) for more explanations about the 
reformulation). Hence, conclusions as shown in Theorem 1 and Theorem 2 can also be 
drawn for the UKF, and the proof goes roughly the same as those shown in this paper. 
6) A robust adaptive Kalman filter for linear systems with stochastic uncertainties has been 
proposed in (Wang & Balakrishnan, 1999). The key idea of the algorithm is to minimize the 
mean square estimation error, and a convex optimization problem should be solved 
according to the time-varying model and the measurements at each step of the algorithm. In 
contrast, the purpose of this paper is to provide a technique to stabilize the filter for 
nonlinear systems with external disturbances, and the hypothesis test is adopted to control 
the error covariance matrix of the estimator. 
7) This section provides a technique to enhance the ability of the EKF to handle large 

external disturbances. In the presence of both model-plant mismatch and disturbances, 

other methods should be used together with the proposed technique to design the estimator. 

The most popular method to account for the model mismatch is to estimate the error terms 

adaptively and compensate the mismatch effect according to the estimates (Kwon, 2006). 

Another effective method is the extended robust H∞ filter technique developed in (Seo et al., 

2006). When this technique is adopted, several terms that scale the magnitude of the model 

error should be added in the error covariance matrix of the filter. 

8) Although the paper focus on the external disturbance in state equation, the result in this 

paper can be extended to the systems with disturbance in measurement equations, and the 

innovation covariance matrix Py,t may play a similar role to the error covariance matrix 

1| −ttΣ  in ensuring the filter stability. In other words, enlarging the covariance matrix of the 

innovation could enhance ability of the filter to handle large prediction errors in the 

innovation. However, if both the state equation and the measurement equation are 

nonlinear, the stability analysis will be more complicated. Further works are required to 

give some principles for the design of Py,t. 

4. The autonomous navigation system 

Currently, the orbit of a spacecraft is determined by earth stations, which require expensive 

equipments and extensive ground operations. As the number of the satellites increases, the 

number of the earth stations and system maintenance cost may increase significantly. This 

problem can be partly solved by using the autonomous navigation technique (Wiegand, 

1996; Ma & Zhai, 2004; Huang et al., 2004). 

The usefulness of autonomy has been recognized in the literature and several studies have 

been done to realize the autonomous navigation. The EKF forms the basis of many 

spacecraft navigation algorithm today (Vasile et al., 2002; Psiaki & Hinks, 2007; Nolet, 2007). 

Here we study the astronomical navigation technique method that employs the earth sensor 

and the star sensor. The basic measurement of the navigation system is illustrated in Fig.1. 
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Fig. 1. The angle between the satellite position vector and the LOS vector 

In Fig.1, rr  is the unit position vector that points from the center of Earth to the spacecraft. 

It can be obtained from the earth sensor. i
su  is the line of sight (LOS) vector that points from 

the spacecraft to the star. It can be obtained from the star sensor. sα  is the angle between 

the unit position vector rr  and the LOS vector i
su . The measurement sα  does not depend 

on the estimate of the spacecraft attitude. 
Then we define the state vector, the dynamic model and the measurement model that are 

used in the spacecraft navigation filter. The spacecraft navigation filter uses the following 6-

dimensional state vector 

 T
t ][ rrx $=   (34) 

 

where T
zyx rrr ][=r  is the position vector of the spacecraft in Earth-centered inertial 

(ECI) coordinates, T
zyx vvv ][=r$  is the velocity vectors of the spacecraft in ECI 

coordinates.  

The orbital dynamic model is written in the form of (1) with the function )( 1−tf x  as follows 

(Zhang & Fang, 2003) 

 tf ttt Δ+= −−− )()( 111 xxx ϕ   (35) 

 

where the propagation period tΔ  is defined as the time between two predictions, and  
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µ is the Earth’s gravitational constant, Re is the radius of Earth, 5.0222 )( zyxi rrrr ++=  is the 

distance of the satellite from the center of Earth. Although the motion of the spacecraft is 
affected by the Earth’s non-spherical mass distribution, atmospheric dray, solar radiation 
pressure and the forces caused by the thruster firings, the dynamic model in the algorithm is 
limit to the two-body equations of motion augmented by J2 perturbations. For most Earth-
orbiting satellites that are placed in a set orbit with no mission operations deviating from 
that orbit, the unmodeled terms are relative small and their effects are represented as the 
process noise wt.  

The measurement equation is written in the form of (2) with the function )( th x  as follows 

(Wei, 2004) 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

2

1

)(
s

s
th

α
α

x   (37) 

where  

 )
||

arccos(
r

ru ⋅
−=

i
si

sα , i = 1,2  (38) 

The superscript i is used to distinguish the measurements obtained from different star 
sensors. 
Based on the previous state equation and measurement equation, the standard EKF can be 
used to estimate the position and velocity vector of the spacecraft. Note that the unknown 
acceleration produced by the thruster firings is not taken into consideration in the orbital 
dynamic model. Hence, the standard algorithm is only valid for one specific orbit. If a 
spacecraft’s mission requires it to maneuver at some point, such as merely changing its 
location along the orbit track or possibly altering its entire orbit shape, the unknown 
acceleration, which can be seen as the external disturbances of the navigation system, will 
degrades the performance of the EKF.  
In order to achieve better accuracy, the AREKF is adopted in this Section. For a 

maneuvering spacecraft, the filter innovation ty
~  will be enlarged due to the unknown 

acceleration. From (26), if the covariance matrix ty,P  calculated according to ty
~  exceed the 

www.intechopen.com



 Kalman Filter: Recent Advances and Applications 

 

132 

specified threshold ty,

1
P

α
, the matrix 1| −ttΣ  will be reset as 121

1| )( −−−
− − t

T
ttt LLP γ  such that 

the effect of the measurements to correct the state estimate will be reinforce. On the other 
hand, when the spacecraft stop maneuvering, the innovation will decrease as the filter goes 

on, and from (26), the original 1| −ttP  will be used to calculate the gain Kt, such that the 

information contained in the orbital dynamic model will be fully used to handle the 
unfavorable effect of the measurement noise. 

5. Simulation 

The autonomous navigation system described in Section 4 is considered in this sub-section 

to demonstrate the improvement of the AREKF over the EKF, the REKF and the AEKF. The 

simulated truth orbital states are obtained by using a high accurate numerical orbit 

propagator, and the simulated measurements are obtained according to the simulated states 

and the measurement model. The simulated measurements are processed by different filters 

to obtain the state estimates. The estimates are compared with the simulated states to 

evaluate the performance of the filter. 

The numerical simulation is implemented under the following assumptions. An Earth-

orbiting satellite performs maneuver from 7293s to 8373s and from 11279s to 12068s. The 

height of the perigee of the orbit is raised from 500km to 2000km. The measurement 

precisions are 0.02° for earth sensor and 5" for star sensor. The measurements are used to 

correct the predicted state 1|
ˆ −ttx  with a sampling interval of 100s. The initial position error 

and the corresponding error covariance matrix of the filters are list below 

 T
0 ][~

vvvrrr pppppp=x   (39) 

 ])([ 222222
0 vvvrrr ppppppdiag=P   (40) 

where pr = 5000m, pv = 10m/s. The process noise covariance matrix is set to 

 ])[( 222222
vvvrrrk qqqqqqdiag=Q   (41) 

where qr = 2×10-5m, qv = 2×10-4m/s. 
The proposed AREKF can cope with the large linearization error caused by the initial error 
or the external disturbances. As the effect of the initial estimation error on the performance 
of the nonlinear filter has been analyze in (Xiong et al., 2006), here emphasis is on the impact 
of the disturbances, i.e., the unknown acceleration produced by the thruster firings.  

First, the usual EKF is performed to estimate the position and the velocity of the 

maneuvering spacecraft according to (3), (4), (6)-(9) with the covariance matrix 

1|1| −− = tttt PΣ . The result obtained from the EKF serves as a baseline reference for the 

comparison. The estimation errors are plotted versus time in Fig.2. Obviously, the 

performance of the EKF is seriously degraded due to the unknown acceleration in dynamic 

model. It indicates that this algorithm is sensitive to the disturbances. In addition, the root 

mean square (RMS) error of the EKF is computed from the data collected in the last 2000s of 

the simulation. The equation to compute RMS error can be expressed as  
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=
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nTt

titii rr
n

2
,, )ˆ(

1

1σ , i = x, y, z, n = 2000  (42)  

where T is the time of the simulation. In order to facilitate the comparison, the square root of 

xσ , yσ  and zσ  are computed by using the following equation 

 222
zyxp σσσσ ++=   (43) 

The RMS errors of the filters are summarized in Table 1. 
 

 

Fig. 2. Estimation error of the EKF 

Second, the REKF is implemented according to (3)-(9). It was found that 8000=γ  is 

sufficient to satisfy the condition 5.0
1| )]}(eig{max[ −> ttPγ  for the entire run. Fig.3 shows the 

graph of the position error of the REKF, and the RMS error of the REKF is listed in Table1 1. 

Although the RMS error is slightly reduced by using the REKF instead of the EKF, 

performance of the REKF is also severely degraded by the disturbance. As the ability of the 

REKF to tolerant large disturbances is limited by the scaling parameter γ , which is chosen 

to ensure 01| >−ttΣ , there is a potential problem of instability in the method. From (22) and 

(23), it is difficult to choose an appropriate γ  such that 1|1| −− > tttt ΣΣ  is fulfilled when the 

magnitude of the disturbances is rather large. Surely, the problem can be partly solved be 

choosing time-vary scaling parameter γ  (Fu et al, 2001). However, additional computation 

is required to implement this technique. In addition, the performance of the REKF may be 

improved by tuning the noise covariance matrices Qt and Rt. However, in general, it is 

difficult to obtain appropriate Qt and Rt. 
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Fig. 3. Estimation error of the REKF 

In order to clarify the superiority of the proposed algorithm, the AREKF is also compared 

with the AEKF proposed in (Moghaddamjoo & Kirlin, 1989) and developed in (Ashokaraj et 

al, 2002). A brief description of the AEKF is collected in the Appendix. It is shown in 

(Ashokaraj et al, 2002) that the performance of the AEKF is superior to that of the EKF. The 

AEKF algorithm can be implemented by using (3), (A.16), (A.17) and (6)-(9). For estimation 

of tQ̂ , the matrix A and B in (A17) are set to be  

 

T

a
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
×=

010000

21021000
A , T

AB =   (44) 

where 5.1=a . The parameter k in (A.16) is set to be 2, i.e., tQ̂  is determined by 

 ])(exp[ˆˆ 1
0,2,1,1

T
tyyyttt HCCCHQQ

−
− +=   (45) 

Cy,i (i = 1,2) is estimated by 

 ∑
+−=

−−
=

t

Ntj

T
ijjiy

N
1

,
~~

1

1
yyC  (46) 

The window size N is set to be 15 for this simulation. The performance of the AEKF is 

shown in Fig.4 and Table 1. The estimation result of the AEKF is better than those of the EKF 

and the REKF. It shows that the AEKF is more effective to eliminate the unfavorable effect of 

the considered disturbances in comparison with the EKF and the REKF. However, the error 
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curves also fluctuate widely during the maneuver. On the other hand, it is specified in 

(Xiong et al., 2008) the AEKF is somewhat less accurate than the standard EKF when there 

are no disturbances in dynamic model, for the noise covariance matrix is reset to the 

estimated value tQ̂  in every step of the filter, and tQ̂  which may deviate from its true value 

due to the inaccuracy of the state estimate. In addition, to implement the adaptive EKF, 

many tuning parameters (such k, N and the elements in matrices A and B) have to be 

designed. In contrast, for the AREKF, only parameters tλ  and α  should be tuned. And 

from (26), the covariance matrix 1| −ttΣ  will not be reset unless ty,P  is enlarged sufficiently 

due to the disturbances. 

 

 
 

Fig. 4. Estimation error of the AEKF 

Finally, we illustrate the application of the AREKF. The only difference from the REKF is 

that the prediction error covariance matrix is calculated by (26) instead of (5). As explained 

in Section 3, the design of the parameter tλ  is crucial to control the accuracy and stability of 

the filter. In order to obtain appropriate tλ , tλ  is tuned according to trace of the covariance 

matrix ty,P  calculated from the innovation ty
~ . In this scenario, tλ  is set to be 

 
)(trace

)(trace

,

,

ty

ty
t

P

P
=λ   (47) 

and α  is set to be 0.2 to avoid resetting 1| −Σ tt  frequently when the disturbances are rather 

small. The estimation errors of the AREKF are plotted in Fig.5.  
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Fig. 5. Estimation error of the AREKF 

As we expected, the proposed algorithm is robust enough to cope with the disturbances. 
Unlike the AEKF, the covariance matrix of the AREKF is reset only when the disturbances 
are large enough. Since the impact of the disturbances is partly eliminated, it is not 
surprising that the accuracy of the autonomous navigation system is further improved by 
using the AREKF instead of the AEKF. From Fig. 2-5 and Table 1, it is evident that the 
proposed method outperforms the usual EKF, the REKF and the AEKF in the presence of 
large external disturbances. The RMS error of the AREKF for the considered navigation 
system is on the order of 200m. 
     

RMS error (18000s < t < 20000s) 
Filtering Algorithm σx (m) σy (m) σz (m) σp (m) 

EKF 0.2771×106 2.4096×106 1.2367×106 2.7175×106 

REKF 0.1382×106 1.4027×106 0.7055×106 1.5762×106 

AEKF 1.9091×104 1.2786×104 0.6441×104 2.3863×104 

AREKF 126.1731 143.1503 69.5699 203.1050 

Table 1. Performance Comparison of the Filtering Algorithms 

6. Conclusion 

The AREKF is proposed here as a modification of the REKF, that switches between the 
REKF mode and the normal EKF mode under the control of the innovation. In the presence 
of large external disturbances, the proposed algorithm is more effective than the REKF to 
ensure boundedness of the estimation error. On the other hand, in the absence of 
disturbances, it can yield more accurate estimates. In comparison with the adaptive EKF, the 
main advantage of the AREKF is its ease of application, as few parameters need to be tuned 
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for the design of the estimator. The proposed method is successfully applied to determine 
the position and velocity of the orbit maneuvering spacecraft based on the information 
obtain from the earth sensor and the star sensor. Numerical simulation shows that the 
AREKF is more effective than the EKF, the REKF and the AEKF to eliminate the unfavorable 
effect of the unknown acceleration produced by the thruster firings. 
In addition, the adaptive robust filtering technique is expected to be effective to improve the 
stability of other nonlinear filters, such as the unscented Kalman filter (UKF) and the particle 
filter. 

7. Appendix 

7.1 Proof of Theorem 1 

Proof: First, choose the Lyapunov function 

 tt
T
tttV xPxx ~~)~( 1−=   (A.1) 

Because of (16), we have the bounds for the function )~( ttV x  

 
2

min

2

max

~1
)~(~1

tttt
p

V
p

xxx ≤≤   (A.2) 

i.e., (10) hold with 
max

min

1

p
v =  and 

min
max

1

p
v = . To satisfy the requirement (11) for the 

application of Lemma 1, it needs an upper bound on )~(]~|)~([E 111 −−− − ttttt VV xxx . 

 
From (5), (13) and (2), estimation error of the REKF can be written as 

 tttttttttttttt vKwHKIxFβHKxFβx −−+−= −− )(~~~
11   (A.3) 

Substitute (A.3) into (A.1), and taking the conditional expectation yields: 

−−= −
−

−−
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−− )~()~()~()~[(E]~|)~([E 1
1
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1
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T

ttttttttt
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ttttttV xFβPxFβHKxFβPxFβxx  
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− )~()~()~()~( 1
1
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ttt xFβHKPxFβHKxFβHKPxFβ  

 ]~|)()( 1
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−
−− +−− tttt

T
t

T
ttttt

T
tt

T
t xvKPKvwHKIPHKIw   (A.4) 

Using (6) and (7), it can be verified that 

 1−= t
T
ttt RHPK  

And then (A.4) becomes 

 tttttt
T
ttttt

T
tttt

T
t

T
ttttV μxFβHRHPHRRHΣβFxxx +−−= −

−−−−
−−− 1

1111
1|11

~])([~]~|)~([E (A.5) 

where 

 ])()([E 11
ttt

T
t

T
ttttt

T
tt

T
tt vKPKvwHKIPHKIwμ −− +−−=   (A.6) 
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It can be seen from (14) and condition (17) that 

 t
T
tttttt

T
tttttt βFPFβQβFPFβΣ 111| −−− ≥+≥   (A.7) 

In addition, it is easy to verified that 

 1
1|

111 )( −
−

−−− +=− t
T
ttttt

T
ttttt RHΣHRHPHRR   (A.8) 

Using (A.7) and (A.8), we have 

 tttttt
T
tttt

T
tt

T
t

T
ttt

T
ttttV μxFβHRHΣHHβFxxPxxx ++−≤ −

−
−−−

−
−−− 1

1
1|11

1
111

~)(~~~]~|)~([E (A.9) 

Subtracting )~( 11 −− ttV x  from both sides of (A.9), we establish that 

 )~()~(]~|)~([E 11111 −−−−− −≤− ttttttttt VVV xxxx λμ   (A.10) 

where 

 )~(]~)(~[ 111
1

1|1 −−−
−

−− += ttttttt
T
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T
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T
t

T
tt V xxFβHRHΣHHβFxλ   (A.11) 

The aim of the following deduction is to determine domains of tμ  and tλ . Because both 

sides of (A.6) are scalars, taking the trace of the equation will not change its value. Under 
assumption (15) and (16), we obtain 

)(])[( 111
ttt

T
ttttt

T
t

T
ttt trtr RKPKQHKPKHP

−−− ++≤μ  

)(])[( 1111 T
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4
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1
min )( −−− ++≤  

 maxμ
Δ
=   (A.12) 

Obviously, 0max >μ . Applying the matrix inversion lemma (see, e.g., (Lewis, 1986), 

Appendix A2, p.347) yields: 
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Hence, 1<tλ . Under assumption (15) and (16), 
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2
maxmax

2
maxmaxmaxmax

2
minminminmin ])([)( −++≥ rhqfhpfhpt ββλ  

 0min>=
Δ
λ   (A.14) 

Then we obtain the following inequality 

 )~()~(]~|)~([E 11minmax111 −−−−− −≤− ttttttt VVV xxxx λμ   (A.15) 

Where 0max >μ , 10 min << λ . Finally, applying Lemma 1, we can draw a conclusion that 

the estimation error tx
~  is bounded in mean square. 

7.2 The AEKF algorithm 

The key idea of the AEKF is to stabilize the filter under any unknown external disturbances 

by adjusting the noise covariance matrix Qt. In other words, Qt is modified to insert a 

negative feedback in the estimation process such that the property of the filter will be 

optimized.  

The difference between the AEKF and the traditional EKF is that the prediction error 

covariance matrix of the AEKF is calculated as 

 t
T
ttttt QFPFΣ ˆ

11| += −−   (A.16) 

And tQ̂  is adjusted according to the innovation of the filter 

 ])(exp[ˆˆ 1
0,

1

,1
T

y

k

i

iytt BCCAQQ
−

=
− ∑=   (A.17) 

where )~~(E,
T
ittiy −= yyC  is the autocorrelation of the innovation ty

~ , A and B are coefficient 

matrices which should be found experimentally, and their dimensions are ( ml × ). It is 

suggested in (Psiaki & Hinks, 2007) to choose a small number of autocorrelation k. 

In this method, tQ̂  is used to control the Kalman gain Kt adaptively. From (A.16), when the 

estimate of Cy,i increases, tQ̂  will be increased. On the other hand, when Cy,i decreases, tQ̂  

will be decreased. This behaviour can be seen as a negative feedback which has a stabilizing 

role in the performance of the algorithm (See (Psiaki & Hinks, 2007) for more explanations). 
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