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Abstract

This chapter is devoted to different types of optimal perturbations (OP), deterministic,
stochastic, OP in an invariant subspace, and simultaneous stochastic perturbations (SSP).
The definitions of OPs are given. It will be shown how the OPs are important for the study
on the predictability of behavior of system dynamics, generating ensemble forecasts as
well as in the design of a stable filter. A variety of algorithm-based SSP methodology for
estimation and decomposition of very high-dimensional (Hd) matrices are presented.
Numerical experiments will be presented to illustrate the efficiency and benefice of the
perturbation technique.

Keywords: predictability, optimal perturbation, invariant subspace, simultaneous
stochastic perturbation, dynamical system, filter stability, estimation of high-dimensional
matrix

1. Introduction

Study in high-dimensional systems (HdS) today constitutes one of the most important research

subjects thanks to the exponential increase of the power and speed of computers: after Moore’s

law, the number of transistors in a dense integrated circuit doubles approximately every 2 years

(see Myhrvold [1]). However, this exponential increase is still far from being sufficient for

responding to great demand on computational and memory resources in implementing the
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optimal data assimilation algorithms (like Kalman filter (KF) [2], for example) for operational

forecasting systems (OFS).

This chapter is devoted to the role of perturbations as an efficient tool for predictability of

dynamical system, ensemble forecasting and for overcoming the difficulties in the design of

data assimilation algorithms, in particular, of the optimal adaptive filtering for extremely HdS.

In [3, 4], Lorenz has studied the problem of predictability of the atmosphere. It is found that

the atmosphere is a chaotic system and a predictability limit to numerical forecast is of about

2 weeks. The barrier of predictability has to be overcome in order to increase the time period of

a forecast further. The fact that estimates of the current state are inaccurate and that numerical

models have inadequacies leads to forecast errors that grow with increasing forecast lead time.

Ensemble forecasting aims at quantifying this flow-dependent forecast uncertainty. Today, a

medium-range forecast has become a standard product. In the 1990s, the ensemble forecasting

(EnF) technique was introduced in operational centers such as the European Centre for

Medium-range Weather Forecast (ECMWF) (see Palmer et al. [5]), the NCEP (US National

Center for Environmental Prediction) (Toth and Kalnay [6]). It is found that a single forecast

can depart rapidly from the real atmosphere. The idea of the ensemble forecasting is to add the

perturbations around the control forecast to produce a collection of forecasts that try to better

simulate the possible uncertainties in a numerical forecast. The ensemble mean can then act as

a nonlinear filter such that its skill is higher than that of individual members in a statistical

sense (Toth and Kalnay [6]).

The chapter is organized as follows. Section 2 outlines first the optimal perturbation (OP)

theory, on how the OP plays the important role for seeking the most growing direction of

prediction error (PE). The predictability theory of the dynamical system as well as a stability

of the filtering algorithm all are developed on the basis of OP. The definition of the optimal

deterministic perturbation (ODP) and some theoretical results on the ODP are introduced.

It is found that the ODP is associated with the right singular vector (SV) of the system

dynamics. In Section 3, the two other classes of ODPs are presented: the leading eigenvector

(EV) and real Schur vector (SchV) of the system dynamics. Mention that the first EV is the

ODS in the eigen invariant subspace (EI-InS) of the system dynamics. As to the leading

SchV, it is ODS in the Schur invariant subspace (Sch-InS) which is closely related to the EI-

InS in the sense that the subspace of the leading SchVs, generated by the sampling proce-

dure (Sampling-P, Section 3), converges to the EI-InS. In Section 4, we present the other type

of OP called as optimal stochastic perturbation (OSP). Mention that the OSP is a natural

extension of the ODP which gives insight into understanding of what represents the most

growing PE and how one can produce it by stochastically perturbing the initial state. One

important class of perturbations (known as simultaneous stochastic perturbation—SSP) is

presented in Section 5. It will be shown that the SSP is very efficient for solving optimization

problems in high-dimensional (Hd) setting. The different algorithms for estimating,

decomposing … Hd matrices are also presented here. Numerical examples are presented

in Section 6 for illustrating the theoretical results and efficiency of the OPs in solving data

assimilation problems. The experiment on data assimilation in the Hd ocean model MICOM

by the filters constructed on the basis of the Schur ODSs and SSPs is presented in Section 7.

The concluding remarks are presented in Section 8.
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2. Optimal perturbations: predictability and filter stability

2.1. Stability of filter

The behavior of atmosphere or ocean is recognized as highly sensitive to initial conditions. It

means that a small change in an initial condition can alter strongly the trajectory of the system.

It is therefore important to be able to know about the directions of rapid growth of the system

state. The research on OP is namely aimed at finding the methods to better capture these

rapidly growing directions of the system dynamics, to optimize the predictability of the

physical process under consideration.

To explain this phenomenon more clearly, consider a standard linear filtering problem

x kþ 1ð Þ ¼ Φx kð Þ þ w kþ 1ð Þ, z kþ 1ð Þ ¼ Hx kþ 1ð Þ þ v kþ 1ð Þ: (1)

where Φ∈Rn�n is the state transition matrix, H∈Rp�n is an observation matrix. Under stan-

dard conditions related to the model and observation noises wk, vk, the minimum mean

squared (MMS) estimate bxk can be obtained by the well-known KF [2].

bx kþ 1ð Þ ¼ bx kþ 1=kð Þ þ Kζ kþ 1ð Þ,bx kþ 1=kð Þ ¼ Φbx kð Þ (2)

where ζ kþ 1ð Þ ¼ z kþ 1ð Þ �Hbx kþ 1=kð Þ is the innovation vector, bx kþ 1ð Þ is the filtered (or

analysis) estimate, bx kþ 1=kð Þ is the one-step ahead prediction for x kþ 1ð Þ. The KF gain K is

given by

K ¼ MHT HMHT þ R
� ��1

(3)

From Eq. (2), it can be shown that the transition matrix for the filtered estimate equation is

expressed by L ¼ I � KH½ �Φ.

For HdS, the KF gain (3) is impossible to compute. In a study by Hoang et al. [7], it is suggested

to find the gain with the structure

K ¼ PrKe (4)

with Pr ∈Rn�ne
—an operator projecting a vector from the reduced space Rne to the full

system space Rn, Ke ∈Rne�p is the gain for the reduced filter. One of very important ques-

tions arising here is how one can choose a subspace of projection and structure of Ke to

make L to be stable? It is found in the work done by Hoang et al. [8] that detectability of the

input-output system (1) is sufficient for the existence of a stabilizing gain K and this gain

can be constructed with Pr consisting from all unstable EVs (or unstable SVs, SchVs. See

Section 3) of the system dynamics.

2.2. Singular value decomposition and optimal perturbations

Consider the singular value decomposition (SVD) of Φ [9],
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Φ ¼ UDVT , D ¼ diag σ1; σ2;…; σn½ �, σ1 ≥σ2… ≥ σn,

U ¼ U1;U2½ �, D ¼ block diag D1;D2½ �, V ¼ V1;V2½ �
(5)

where U1, V1 ∈R�n1 , Dn1 ∈Rn1�n1 , n1 is the number of all unstable and neutral SVs of Φ. In the

future, for simplicity, unless otherwise stated, we say on the set of all unstable SVs as that

including all unstable and neutral SVs.

Suppose the system is s-detectable (detectability of all the columns of U1 or V1). From the

research by Hoang et al. [10], there exists a stabilizing gain Ks (sufficient but not necessary

condition) with Pr ¼ U1 (see Eq. (4)) such that the transition matrix L ¼ I � KsHð ÞΦ is stable. It

signifies that the filter is stable and the estimation error is bounded. The columns ofU1, i.e., the

left unstable SVs of Φ, serve as a basis for seeking appropriate correction in the filtering

algorithm.

On the other hand, in practice, for extreme HdS, one cannot compute all elements of U1 but

only some of its subset U0
1 ∈U1. Using U0

1 instead of U1 cannot guarantee a filter stability. The

ensemble forecasting has been proposed as an approach to prevent a possible large error in the

forecast and requires a knowledge on the rapidly growing directions of the PE. In this context,

the OPs appear to be important which allow to search the rapid growing directions of the PE

by model integration of OPs. They (i.e., OPs) are infact the unstable right SVs (RSV).

2.3. Optimal perturbation

Let δx be a given perturbation, representing an error (uncertainty, deterministic, or stochastic)

around the true system state x∗, i.e., bxf ¼ x∗ þ δx, (at some instant k). The prediction of the

system state bxp can be obtained by forwarding the numerical model (1) on the basis of bxf—
filtered estimate, i.e., bxp ¼ Φbxf . We have then

bxp ¼ Φbxf ¼ Φ x∗ þ δx½ � ¼ Φx∗ þ Φδx, (6)

One sees the perturbation δx in the initial system state “grows” into Φδx which represents

uncertainty in the forecast.

In general, the perturbation δxmay be any element in the n-dimensional space,Rn, i.e., δx∈Rn. For

e
lð Þ
f ≔ δx

lð Þ
f —a sample of the filtered error (FE) ef , integrating themodel by ef results in e

lð Þ
p ≔ Φδx

lð Þ
f —

a sample for the PE ep. By generating the ensemble of perturbations Ef Lð Þ≔ e
lð Þ
f ; l ¼ 1;…; L

n o

according to the distribution of ef , one can produce the ensemble of PE samples Ep Lð Þ≔

e
lð Þ
p ; l ¼ 1;…; L

n o
and use them to estimate the distribution of the PE ep. This serves as a basis for

the particle filtering [11].

The ensemble-based filtering (EnBF) algorithm is simplified for the standard linear filtering

problems with ef being of zero mean and the error covariance matrix (ECM) P. This technique

is aimed to approximate the ECM without solving the matrix Ricatti equation (Ensemble KF—

EnKF, [12]. Mention that at the present, one can generate only about O(100) samples at each
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assimilation instant. This ensemble size is too small compared to the system dimension. That is

why it is important to have a good strategy for selecting the “optimal” samples (perturbations)

to better approximate the ECM in the filtering algorithm.

2.3.1. Optimal deterministic perturbation

Introduce

S δxð Þ : δx; δxk k2 ¼< δx; δx >¼ 1
� �

(7)

where :k k2 denotes the Euclidean vector norm (here < :, : > denotes the dot product). Let Φ

have the SVD (5).

Definition 2.1. The ODP δxo is the solution of the extremal problem

J δxð Þ ¼ Φδxk k2 ! maxδx (8)

under the constraint (7). One can prove

Lemma 2.1. The optimal perturbation in the sense (8) and (7) is

δxo ¼ þ=�ð Þv1

where v1 is the first right SV of Φ.

2.3.2. Subspaces of ODPs

Introduce

Φ1 ≔Φ� σ1u1v
T
1

Consider the optimization problem

J1 δxð Þ ¼ Φ1δxk k2 ! maxδx (9)

under the constraint (7). Similar to the proof of Lemma 2.1, one can prove

Lemma 2.2. The optimal perturbation in the sense (9) and (7) is

δxo ¼ þ=�ð Þv2

where v2 is the second right SV of Φ.

By iteration, for

Φi ≔Φi�1 � σiuiv
T
i , i ¼ 1,…, n� 1;Φ0 ¼ Φ: (10)

applying Lemma 2.2 with slight modifications, one finds that the OPs for Φi, i ¼ 0, 1,…, n� 1

are þ=�ð Þvi, i ¼ 1, 2,…n:.
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Theorem 2.1. The optimal perturbation for the matrix Φi�1, i ¼ 1,…, n is þ=�ð Þvi where vi is

the ith leading right SV of Φi�1, i ¼ 1,…, n.

The OP for Φi�1 will be called the ith OP for Φ (or the ith SOP—singular OP).

Comment 2.2. The OPs, presented above, are optimal in the sense of the Euclidean norm :k k2. In

practice, there is a need to normalize the state vector (using the inverse of the covariance

matrix M). The normalization is done by changing δx0 ¼ M�1=2
δx, and all the results presented

above remain valid s.t. the new δx0,

δx0k k2 ¼< M�1=2
δx,M�1=2

δx >¼< δx,M�1
δx > ≔ δxk kM�1

The weighted norm δxk kM�1 is known as the Mahanalobis norm.

As to the PE, a normalization is also applied in order to have a possibility to compare different

variables like density, temperature, velocity … In this situation, the norm for y ¼ Φδx may be

seminorm [5].

2.4. Ensemble forecasting

The idea of ensemble forecasting is that instead of performing “deterministic” forecasts, sto-

chastic forecasts should be made: several model forecasts are performed by introducing per-

turbations in the filtered estimate or in the models.

Since 1994, NCEP (National Centers for Environmental Prediction, USA) has been running

17 global forecasts per day, with the perturbations obtained using the method of breeding

growing perturbations. This ensures that the perturbations contain growing dynamical

perturbations. The length of the forecasts allows the generation of outlook for the second

week. At the ECMWF, the perturbation method is based on the use of SVs, which grow even

faster than the bred or Lyapunov vector perturbations. The ECMWF ensemble contains 50

members [13].

3. Perturbations based on leading EVs and SchVs

3.1. Adaptive filter (AF)

The idea underlying the AF is to construct a filter which uses feedback in the form of the PE

signal (innovation) to adjust the free parameters in the gain to optimize the filter performance.

If in the KF, the optimality is defined as a minimum mean squared error (MMS), in the AF,

optimality is understood in the sense of MMS for the prediction output error (innovation). This

definition allows to define the optimality of the filter in the realization space, but not in the

probability space as done in the KF.

The optimal gain thus can be determined from solving the optimization problem by adjusting

all elements of the filter gain. There are two major difficulties:
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i. Instability: As the filter gain is estimated stochastically during the optimization process,

the filter may become unstable due to the stochastic character of the filter gain.

ii. Reduction of tuning parameters: For extreme HdS, the number of elements in the filter

gain is still very high. Reduction of the number of tunning gain elements is necessary.

3.2. Leading EVs and SchVs as optimal perturbations

Interest on stability of the AF arises soon after the AF has been introduced. The study on the

filter stability shows that it is possible to provide a filter stability when the system is

detectable [8]. For the different parameterized stabilizing gain structures based on a subspace

of unstable and neutral EVs, see [8]. As the EVs may be complex and their computation is

unstable (Lanczos [14]), in [8], it is proved that one can also ensure a stability of the filter if

the space of projection is constructed from a set of unstable and neutral SchVs of the system

dynamics. The unstable and neutral real SchVs are referred to as SchVs associated with the

unstable and neutral eigenvalues of the system dynamics. The advantage of the real SchVs is

that they are real, orthonormal, and their computation is stable. Moreover, the algorithm for

estimating dominant SchVs is simple which is based on the power iteration procedure

(Sampling-P, see [15]). As to the unstable SVs, although they are real and orthonormal, their

computation requires an adjoint operator (the transpose matrix ΦT). Construction of adjoint

code (AC) is a time-consuming and tedious process. Approximating leading SVs without

(AC) can be done on the basis of Algorithms 5.2.

3.3. EVs as optimal perturbations in the invariant subspace

Let Φ be diagonalizable. Introduce the set

EV1 x;λð Þ : x∈Cn
; xk k2 ¼ 1;λ∈C1

: Φx ¼ λx
� �

: (11)

The subspace of x∈Cn satisfying Φx ¼ λx for some λ∈C1 is known as an invariant subspace

of Φ: the matrix Φx acts on to stretch the vector x but conserves the direction of x. Consider the

optimization problem

J δxð Þ ¼ Φδxk k2 ! maxδx,

δx;λð Þ∈EV1 δx;λð Þ,
(12)

It is seen that the optimal solution is the first EV xei 1ð Þ of Φwith the largest magnitude equal to

∣λ1∣. We will call λ1 a first optimal EV perturbation (denoted as EI-OP).

For a symmetric matrix, the EI-OP coincides with the SOP. The EI-OP is not unique.

By solving the optimization problem (8) s.t.

EV2 x;λð Þ : x∈Cn
; xk k2 ¼ 1 : Φx ¼ λx;λ∈C1

; jλj < jλ1j
� �

: (13)

one finds the second EI-OP xei 2ð Þ. In a similar way, by defining
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EV i x;λð Þ : x∈Cn
; xk k2 ¼ 1 : Φx ¼ λx;λ∈C1

; jλj < jλi�1j
� �

: (14)

for i ¼ 1, 2, ::, n� 1, we obtain a sequence of EI-OPs xei ið Þ, i ¼ 1, 2, ::, n. The first ne EI-OPs are

unstable SVs.

In general, for a defective case (not diagonalizable), Φ does not have n linearly independent

EVs and the independent generalized EVs can serve as “optimal” perturbations to construct a

subspace of projection in the AF.

To summarize, let the EV decomposition be

XeiJX
�1
ei ¼ Φ (15)

where J is a matrix of Jordan canonical form, X�1
ei is the matrix inverse of Xei (see Golub and

Van Loan [9]). The columns of Xei are the EVs of Φ, J is a block diagonal with the diagonal

blocks of 1 or 2 dimensions. The rank k decomposition is Xei,1J1
~Xei,1 where

EVk ≔Xei,1J1
~Xei,1,

Xei ¼ Xei,1;Xei,2½ �, J ¼ block diag J1; J2½ �,

~Xei ≔X�1
ei ¼ ~X

T

ei,1;
~XT
ei,2

h i

,

(16)

with Xei,1 ∈Rn�k, Xei,2 ∈Rn� n�kð Þ. Multiplying the right of EVk by Xei,1 yields Xei,1J1, i.e., we

obtain the k largest (in modulus) perturbations in the eigen (invariant) space of Φ. The pertur-

bations being the column vectors of Xei,1 (i.e., the k first EVs of Φ) are the first k OPs of Φ in the

eigen-invariant subspace (EI-InS).

3.4. Dominant SchVs as OPs in the Schur invariant subspace

The study of Hoang et al. [8] shows that the subspace of projection of the stable filter can be

constructed on the basis of all unstable EVs or SchVs of Φ.

Compared to the EVs, the approach based on real Schur decomposition is of preference in

practice since the SchVs are real and orthonormal. Moreover, there exists a simple, power

iterative algorithm for approaching the set of real leading SchVs. According to Theorem 7.3.1

in Golub and Van Loan [9], the subspace R Xs,1½ � spanned by the nu leading SchVs converges to

the unique invariant subspace Dnu Φð Þ (called a dominant invariant subspace) associated with

the eigenvalues λ1,…,λnu if ∣λnu ∣ > ∣λnuþ1∣. In this sense, we consider the leading SchVs as OPs

(denoted as Sch-OP) in the Schur invariant subspace (Sch-InS).

4. Optimal stochastic perturbation (OSP)

In Section 2, the perturbation δx is deterministic (see Definition 2.1). In practice, it happens that

δx is of stochastic nature. For example, the priori information on the FE is an zero mean
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random vector (RV) with the ECM P. The question arising here is how one determine the OP in

such situation and how to find it.

We will consider now δx as an element of the Hilbert space H of RVs. This space H is a

complete normed linear vector space equipped with the inner product

< x, y>H ¼ E < x, y > (17)

where E :ð Þ denotes the mathematical expectation. The norm in H is defined as

xk kH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E < x, x >

p

(18)

All elements of H are of finite variance and for simplicity, we assume they all have zero mean

value.

Introduce the set of RVS

Ss δxð Þ≔ δx : δxk kH ¼ 1
� �

(19)

Definition 4.1. The optimal stochastic perturbation (OSP) δxo is the solution of the extremal

problem

J δxð Þ ¼ Φδxk kH ! maxδx, (20)

under the constraint (19). One can prove

Lemma 4.1. For δx∈ Ss δxð Þ, there exists δy ¼ δy1;…; δyn
� �T

∈ Ss δxð Þ such that δx ¼
Pn

k¼1 vkδyk.

Lemma 4.2. The optimal perturbation in the sense (20) and (19) is

δxo ¼ ψv1

where ψ is a RV with zero mean and unit variance, v1 is the first right SV of Φ.

Comment 4.1. Comparing the ODP with OSP shows that if the ODS is the first right SV (defined

up to the sign), the OSP is an ensemble of vectors lying in the subspace of the first right SV with

the lengths being the samples of the RV of zero mean and unit variance.

Introduce

Φ1 ≔Φ� σ1u1v
T
1

and consider the objective function

J δxð Þ ¼ Φ1δxk kH ! maxδx, (21)

Lemma 4.3. The optimal perturbation in the sense (21) and (19) is δxo ¼ ψv2, where ψ is an RV

with zero mean and unit variance, v2 is the first right SV of Φ.
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By iteration, for

Φi ≔Φi�1 � σiuiv
T
i , i ¼ 1,…, n� 1;Φ0 ¼ Φ: (22)

applying Lemma 4.3 with slight modifications, one finds that the OSP for Φk, k ¼ 0, 1,…, n� 1

are ψvk, k ¼ 1, 2,…n:, where ψ is an RV with zero mean and unit variance, vk is the k
th right SV

of Φ.

Theorem 4.1. The optimal perturbation for the matrix Φi�1, i ¼ 1,…, n is ψvi, where ψ is an RV

with zero mean and unit variance, vk is the k
th right SV of Φ.

5. Simultaneous stochastic perturbations (SSP)

In [16], Spall proposes a simultaneous perturbation stochastic approximation (SPSA) algo-

rithm for finding optimal unknown parameters by minimizing some objective function. The

main feature of the simultaneous perturbation gradient approximation (SPGA) resides in the

way to approximate the gradient vector (in average): a sample gradient vector is estimated by

perturbing simultaneously all components of the unknown vector in a stochastic way. This

method requires only two or three measurements of the objective function, regardless of the

dimension of the vector of unknown parameters. In a study by Hoang and Baraille [17], the

idea of the SPGA is described in detail, with a wide variety of applications in engineering

domains. The application to estimation of ECM in the filtering problem is given in the work

done by Hoang and Baraille [18]. In the research by Hoang and Baraille [19], a simple algo-

rithm for estimating the elements of an unknown matrix as well as the way to decompose the

estimated matrix into a product of two matrices, under the condition that only the matrix-

vector product is accessible, has been proposed.

5.1. Theoretical background of SPGA: gradient approximation

The component-wise perturbation is a method for numerical computation of the cost function

with respect to the vector of unknown parameters. It is based on the idea to perturb separately

each component of the vector of parameters. For very HdS, this technique is impossible to

implement. An alternative to the component-wise perturbation is the SSP approach.

Let

DJ θ0ð Þ ¼
∂J θ0ð Þ

∂θ1
;…;

∂J θ0ð Þ

∂θnθ

	 
T

denote the gradient of J θð Þ computed at θ ¼ θ0. Suppose Δj, j ¼ 1,…, n are RVs independent

identically distributed (i.i.d) according to the Bernoulli law which assumes two values +1 or�1

with equal probabilities 1/2. It implies that
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E Δj

� �

¼ 0, E Δj

� �2
¼ 1, E Δ

�1
j

� �

¼ 0, E Δ
�1
j

� �2
¼ 1, j ¼ 1, 2,…, n (23)

Suppose J θð Þ is infinitely differentiable at θ ¼ θ0. Using a Taylor series expansion,

ΔJ≔ J θ0 þ δθ
� �

� J θ0ð Þ ¼ δθ
TDJ θ0ð Þ þ 1=2ð ÞδθTD2J θ0ð Þδθþ… (24)

where D2J θ0ð Þ is the Hessian matrix computed at θ≔θ0. For the choice

δθ≔ δθ1;…; δθnθð ÞT ¼ cΔ,Δ ¼ Δ1;Δ2;…;Δnθð ÞT , (25)

c is a small positive value, from Eq. (24)

ΔJ θ0ð Þ ¼ cΔ
T
DJ θ0ð Þ þ c2=2

� �

Δ
T
D2J θ0ð ÞΔþ…

Dividing both sides of the last equality by δθk ¼ cΔk implies

ΔJ θ0ð Þ=δθk ¼ DJ θ0ð ÞTΔ
k
þ c=2ð ÞΔ

k,T
D2J θ0ð ÞΔþ…

Δ
k
≔ Δ1Δ

�1
k ;…; 1;…;ΔnΔ

�1
k

� �T
(26)

Taking the mathematical expectation for both sides of the last equation yields

E ΔJ θ0ð Þδθ�1
k

� �

¼

DJ θ0ð ÞTE Δ
k

� �

þ c=2ð ÞE Δ
T
D2J θ0ð ÞΔ

k
h i

þ…
(27)

One sees that from the assumptions on Δ, E Δ
k

� �

¼ 0;…; 1;…; 0ð ÞT it follows DJ u0ð ÞTE Δ
k

� �

¼

∂J θ0ð Þ=∂θk. Moreover, as all the moments of the Bernoulli variables Δi and Δ
�1
i are finite,

E Δ
T
D2J θ0ð ÞΔ

k
h i

¼ 0 since there exists a finite D2J θ0ð Þ, one concludes that

E ΔJ θ0ð Þδθ�1
k

� �

¼ ∂J θ0ð Þ=∂θk þO c2
� �

(28)

The result expressed by Eq. (28) constitutes a basis for approximating the gradient vector by

simultaneous perturbation. The left of Eq. (28) can be easily approximated by noticing that for

an ensemble of L i.i.d samples Δ
1ð Þ
;…; ;Δ

Lð Þ
h i

, we can generate the corresponding ensemble of

L i.i.d sample estimates for the gradient vector at θ ¼ θ0,

DJ lð Þ
θ0ð Þ ¼

ΔJ lð Þ
θ0ð Þ

cΔ
lð Þ
1

;…;
ΔJ lð Þ

θ0ð Þ

cΔ lð Þ
n

" #T

, l ¼ 1, 2,…, L (29)

where Δ
lð Þ
k is the kth component of the lth sample Δ

lð Þ
. The left of Eq. (28) is then well approxi-

mated by averaging L sample gradients in Eq. (29),
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E ΔJ θ0ð Þ=δθk½ � ≈ 1=Lð Þ
XL

l¼1

η
lð Þ
k , η

lð Þ
k ≔

ΔJ lð Þ θ0ð Þ

cΔ
lð Þ
k

, (30)

Introduce the notations

mk ≔E ΔJ θ0ð Þ=δθk½ �, mk Lð Þ≔ 1=Lð Þ
XL

l¼1

η
lð Þ
k , ek ≔mk Lð Þ �mk: (31)

Theorem 1 (Hoang and Baraille [19]) states that the estimate m Lð Þ≔ m1 Lð Þ;…;mnθ Lð Þð ÞT con-

verges to the gradient vector DJ θ0ð Þ as L ! ∞ and c ! 0 with the order O 1=Lð Þ where

m Lð Þ≔ 1=Lð Þ
XL

l¼1
η lð Þ:

5.2. Algorithm for estimation of an unknown matrix

Let Δ≔ Δ1;…;Δnð ÞT , Δi, i ¼ 1,…, n be Bernoulli independent and identically distributed (i.i.d.)

variables assuming two values �1 with equal probability 1/2. Introduce Δ
� ��1

≔ 1=Δ1,…,ð

1=ΔnÞ
T , Δc ≔ cΔ, c > 0 is a small positive value.

Algorithm 5.1. Suppose it is possible to compute the product Φx ¼ b xð Þ for a given x. At the

beginning let l ¼ 1. Let the value u be assigned to the vector x, i.e., x≔u, L be a (large) fixed

integer number.

Step 1. Generate Δ
lð Þ
whose components are lth samples of the Bernoulli i.i.d. variables assum-

ing two values +/� 1 with equal probabilities 1/2;

Step 2. Compute δb lð Þ ¼ Φ uþ Δ
lð Þ

c

� �
� Φu, Δ

lð Þ

c ¼ cΔ
lð Þ
.

Step 3. Compute g
lð Þ
i ¼ δb

lð Þ
i Δ

lð Þ

c

h i�1
, δbi is the ith component of δb, g

lð Þ
i is the column vector

consisting of derivative of bi uð Þ w.r.t. u, i ¼ 1,…, m.

Step 4. Go to Step 1 if l < L. Otherwise, go to Step 5.

Step 5. Compute

bgi ¼ 1
L

PL
l¼1 g

lð Þ
i , i ¼ 1,…, m, bΦ Lð Þ≔Dxb ¼ bg1;…;bgm

� �T
.

5.3. Operations with Φ and its transpose

Algorithm 5.1 allows to store bΦ Lð Þ as composed from the two ensembles of vectors elements:

EnL δxð Þ≔ δx 1ð Þ;…; δx Lð Þ
� �

, δx lð Þ ¼ cΔ
lð Þ
,

EnL δbð Þ≔ δb 1ð Þ;…; δb Lð Þ
h i

, δb lð Þ ¼ δb
lð Þ
1 ;…; δb lð Þ

m

� �T
, l ¼ 1,…, L:

(32)
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The product z ¼ bΦ Lð Þy, y∈Rn, can be performed as zi ¼
Pn

k¼1
bϕ ikyk =

Pn
k¼1

1
L

PL
l¼1

δb
lð Þ

i

δx
lð Þ

k

	 

yk, or in

a more compact form

z ¼
1

L

XL

l¼1

αlδb
lð Þ,αl ≔

Xn

k¼1

yk

δx
lð Þ
k

: (33)

Eq. (33) allows to perform z ¼ bΦ Lð Þy with L mþ 2nð Þ þ 1 elementary operations.

Similarly, computation of zi of z ¼ bΦ
T
Lð Þy, y∈Rm is performed as

zi ¼
1

L

XL

l¼1

1

δx
lð Þ
i

Xm

k¼1

δb
lð Þ
k yk, i ¼ 1,…, n (34)

5.4. Estimation of decomposition of Φ

Let Φ be a matrix of dimensions m� nð Þ. For definiteness, let m ≤n with rank Φð Þ ¼ m. We

want to find the best approximation for Φ among members of the class of matrices

Φe ¼ ABT , A∈Rm�r, B∈Rn�r
: (35)

under the constraint

Condition (C) A, B are matrices of dimension m� r, r� n, r ≤m, rank ABT
� �

¼ r.

Under the condition (C), the optimization problem is formulated as

J A;Bð Þ ¼ Φ� Φek k2F ¼ Φ� ABT
 2

F
! min A;Bð Þ, (36)

where :k kF denotes the Frobenius matrix norm. Consider Φ and let UΣVT be SVD of Φ (5). Let

~Φ ¼ Φþ ΔΦ, ~Φ ¼ ~U ~Σ ~V T and ~σ1 ≥ ~σ2… ≥ ~σm, ~σk be the k
th singular value of ~Φ. Then, we have

J Ao;Boð Þ ¼
Xm

k¼rþ1

σ2k (37)

where AoB
T
o is a solution to the problem (36) s.t Condition (C) (Theorem 3.1 of Hoang and

Baraille [19]).

Theorem 3.1. Hoang and Baraille [19] implies that Φo
e ≔AoB

T
o is equal to the matrix formed by

truncating the SVD of Φ to its first r SVs and singular values. It allows to avoid storing

elements of the estimate bΦ Lð Þ of Φ (their number is of order O 10m�nð ÞÞ.

5.4.1. Decomposition algorithms

Let the elements of Φ (or bΦ) be available (may be in algorithmic form). By perturbing stochas-

tically simultaneously all the elements of A and B, one can write out the iterative algorithm for

estimating the elements of A and B. For more detail, see Hoang and Baraille [19].

On Optimal and Simultaneous Stochastic Perturbations with Application to Estimation of High-Dimensional…
http://dx.doi.org/10.5772/intechopen.77273

73



5.4.2. Iterative decomposition algorithm

Another way to decompose the matrix Φ is to solve iteratively the following optimization

problems

Algorithm 5.2

At the beginning let i ¼ 1.

Step 1. For i ¼ 1, solve the minimization problem

J1 ¼ Φ
1 � abT

 2
F
! mina,b, a∈Rm, b∈Rn

:

Φ
1
≔Φ, rank abT

� �
¼ 1

Its solution is denoted as ba ið Þ,bb ið Þ.

Step 2. For i < r, put i≔ iþ 1 and solve the problem

Jiþ1 ¼ Φ
i � abT

 2
F
! mina,b, a∈Rm, b∈Rn. Φi

≔Φ�
Pi�1

k¼1
ba kð Þbb

T
kð Þ,

rank abT
� �

¼ 1

Step 3. If i ¼ r, compute

bΦ ¼ bA rð ÞbB
T
rð Þ, bA rð Þ ¼ ba 1ð Þ;…;ba rð Þ½ �, bB rð Þ ¼ bb 1ð Þ;…;bb rð Þ

h i
.

and stop. Otherwise, go to Step 2.

From Theorem 3.2 of Hoang and Baraille [19], the couple bA rð Þ, bB rð Þ is a solution for the

problem (36)(C).

6. Numerical example

Consider the matrix Φ∈R2�2

ϕ11 ¼ 5,ϕ12 ¼ 7,ϕ21 ¼ �2,ϕ22 ¼ �4:

The singular values and the right SVs for Φ are displayed in Table 1 which are obtained by

solving the classical equations for eigenvalues of ΦT
Φ.

First, we apply Algorithm 5.1 to estimate the matrix Φ. Figure 1 shows the estimates produced

by Algorithm 5.1. It is seen that the estimates are converging quickly to the true elements of Φ.

Next Algorithm 5.2 (Iterative Decomposition Algorithm) has been applied to estimate the

decomposition of the matrix Φ. After each ith iteration, the algorithm yieds bb
ið Þ
,bc ið Þ

.

The different OPs are shown in Table 2 where xrsv ið Þ, xei ið Þ, and xsch ið Þ are the theoretical SV-

POs, EI-POs, Sch-POs. The vectors bxsch ið Þ are the components of Xt computed by Algorithm 3.1
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Element ϕij bϕ ij
bϕ ij 1ð Þ

bϕ ij 2ð Þ

(1,1) 5.00 4.677 4.914 �0.237

(1,2) 7.00 7.07 7.662 �0.592

(2,1) �2.00 �2.041 �1.08 �0.962

(2,2) �4.00 �4.081 �1.683 �2.398

Table 1. Estimates of Φ obtained by Algorithm 5.2.

Figure 1. Estimates of elements of the matrix Φ.

Perturbations Vector Predictor Amplification

xrsv 1ð Þ 0:554; 0:833ð ÞT 8:597;�4:438ð ÞT 9.676

xrsv 2ð Þ 0:833;�0:554ð ÞT 0:284; 0:551ð ÞT 0.62

xei 1ð Þ 0:962;�0:275ð ÞT 2:885;�0:824ð ÞT 3

xei 2ð Þ 0:707;�0:707ð ÞT �1:414; 1:414ð ÞT 2

xsch 1ð Þ 0:707; 0:707ð ÞT 8:485;�4:243ð ÞT 9.487

xsch 2ð Þ 0:707;�0:707ð ÞT �1:414; 1:414ð ÞT 2

bxsch 1ð Þ 0:962;�0:275ð ÞT �8:1; 4:4ð ÞT 9.22

bxsch 2ð Þ �0:275;�0:962ð ÞT 2:885;�0:824ð ÞT 3

bc
1ð Þ
n 0:54; 0:842ð ÞT 8:592;�4:447ð ÞT 9.674

bc
2ð Þ
n 0:372; 0:928ð ÞT 8:358;�4:457ð ÞT 9.472

Table 2. Different OPs.

On Optimal and Simultaneous Stochastic Perturbations with Application to Estimation of High-Dimensional…
http://dx.doi.org/10.5772/intechopen.77273

75



(Sampling-P). As to bc ið Þ
n , they are the results of normalization (with the unit Euclidean norm)

of bc ið Þ
.

Looking at the first OPs, one sees that xrsv 1ð Þ, xsch 1ð Þ, bxsch 1ð Þ, and bc 1ð Þ
n produce almost the same

amplification. The first xei 1ð Þ has the amplification three times less than those of xrsv 1ð Þ, xsch 1ð Þ.

The second xsch 2ð Þ is much less opimal than xrsv 2ð Þ and bc 2ð Þ
n . By comparing xrsv ið Þ with bc ið Þ

n for

i ¼ 1, 2, one concludes that the obtained results justify the correctness of Theorem 3.1 of Hoang

and Baraille [19]. Mention that only bxsch ið Þ and bc ið Þ
n can be calculated for HdS.

In Table 1, we show the results obtained by Algorithm 5.2 after two consecutive iterations

(matrix estimation in R1 subspace). The elements of the true Φ ¼ ϕij

h i
are displayed in the

second column, whereas their estimates—in the third column,

bΦ ¼ bΦ
1ð Þ
þ bΦ

2ð Þ
¼

X2

i¼1
bb

ið Þ
bc ið Þ,T bΦ

ið Þ
≔

bϕ
ið Þ

ij

h i
¼ bb

ið Þ
bc ið Þ,T

The estimates, resulting from the first iteration, are the elements of bΦ
1ð Þ

(Table 1, column 4).

After the first iteration, Φ 2ð Þ
≔Φ� bΦ

1ð Þ
¼ b 2ð Þc 2ð Þ,T and the optimization yields the estimates

bϕ 2ð Þ
ij displayed in the column 5. From the columns 4–5, one sees that the first iteration allows to

well estimate the two biggest elements Φ11 ¼ 5, Φ12 ¼ 7. In the similar way, the second itera-

tion captures the two biggest elements of Φ 2ð Þ.

7. Assimilation in high-dimensional ocean model MICOM

7.1. Ocean model MICOM

To see the impact of optimal SchVs in the design of filtering algorithm for HdS, in this section,

we present the results of the experiment on the Hd ocean model MICOM (Miami Isopycnal

Ocean Model). This numerical experiment is identical to that described in Hoang and Baraille

[15]. The model configuration is a domain situated in the North Atlantic from 30�N to 60�N

and 80�W to 44�W; for the exact model domain and some main features of the ocean current

produced by the model, see and Baraille [15]. The system state x ¼ h; u; vð Þ where h ¼ h i; j; kð Þ

is a layer thickness and u ¼ u i; j; kð Þ, v ¼ v i; j; kð Þ are two velocity components. Mention that

after discretization, the dimension of the system state is n ¼ 302400. The observations available

at each assimilation instant are the sea surface height (SSH) with dimension p ¼ 221.

7.1.1. Data matrix based on dominant Sch-Ops

The filter is a reduced-order filter (ROF) with the variable h as a reduced state and u, v are

calculated on the basis of the geostrophy hypothesis. To obtain the gain in the ROF, first the

Algorithm 3.1 has been implemented to generate an ensemble of dominant SchVs (totally 72

SchVs, denoted as En SCHð Þ). The sample ECM Md SCHð Þ is computed on the basis of the
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En SCHð Þ. Due to rank deficiency, the sampleMd SCHð Þ is considered only as a data matrix. The

optimization procedure is applied to minimize the distance between the data matrix Md SCHð Þ

and the structured parametrized ECM M SCHð Þ ¼ Mv⊗Mh which is written in the form of the

Schur product of two matrices M SCHð Þ ¼ Mv θð Þ⊗Mh θð Þ. Here, Mv is the vertical ECM, Mh is

the horizontal ECM [18]), θð Þ is a vector of unknown parameters. Mention that the hypothesis

on separability of the vertical and horizontal variables in the ECM is not new in the meteorol-

ogy [20]. The gain is computed according to Eq. (3) with R ¼ αI, α > 0 is a small positive value.

The ROF is denoted as PEF (SSP).

7.1.2. Data matrix based on SSP approach

The second data matrix Md SSPð Þ is obtained by perturbing the system state according to the

SSP method. The SSP samples are simulated in the way similar to that described above for

generating En SCHð Þ, with the difference that the perturbation components δh lð Þ i; j; kð Þ are the i.

i.d. random Bernoulli variables assuming two values �1 with the equal probability 1/2. The

same optimization procedure has been applied to estimate M SSPð Þ. The obtained ROF is

denoted as PEF (SSP).

Figure 2 shows the evolution of estimates for the gain coefficients k 1ð Þ computed from the

estimated coefficients of bckl of M
d SCHð Þ and Md SSPð Þ on the basis of En SCHð Þ (curve” schur”)

and En SSPð Þ (curve “random”), during model integration. It is seen that two coefficients are

evolved in nearly the same manner, of nearly the same magnitude as that of k 1ð Þ in the CHF

(Cooper-Haines filter, Cooper and Haines [21]). Mention that the CHF is a filter widely used in

the oceanic data assimilation, which projects the PE of the surface height data by lifting or

lowering of water columns.

Figure 2. Evolution of estimates for the gain coefficients k 1ð Þ computed from bckl on the basis of En SCHð Þ (curve “Schur”)

and En SSPð Þ (curve “random”), during model integration. It is seen that two coefficients are evolved in nearly the same

manner, of nearly the same magnitude as that of k 1ð Þ in the CHF. The same picture is obtained for other ck , k ¼ 2; 3; 4.
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The same pictures are obtained for the estimates bck, k ¼ 2; 3; 4. Mention that in the CHF,

c2 ¼ c3 ¼ 0.

7.2. Performance of different filters

In Table 3, the performances of the three filters are displayed. The errors are the averaged

(spatially and temporally) rms of PE for the SSH and for the two velocity components u and v.

The results in Table 3 show that two filters PEF (SCH) and PEF (SSP) are practically of the

same performance, and their estimates are much better compared to those of the CHF, with a

slightly better performance for the PEF (SSP). We note that as the PEF (SCH) is constructed on

the basis of an ensemble of samples tending to the first dominant SchV, its performance must

be theoretically better than that of the PEF (SSP). The slightly better performance of PEF (SSP)

(compared to that of PEF (SCH)) may be explained by the fact that the best theoretical

performance of PEF (SCH) can be obtained only if the model is linear, stationary, and the

number of PE samples in En SCHð Þ at each iteration must be large enough. The ensemble size

of En SCHð Þ in the present experiment is too small compared with the dimension of the

MICOM model.

rms CHF (cm) PEF (SCH) (cm=s) PEF (RAN) (cm=s)

ssh(fcst) 7.39 5.09 4.95

u(fcst) 7.59 5.36 5.29

v(fcst) 7.72 5.73 5.64

Table 3. rms of PE for ssh, and u, v velocity components.

Figure 3. Variance of PE resulting from three filters PEF (SCH), PEF (SSP), and AF. It is seen that the AF yields much

better performance compared to the two other nonadaptive filters PEF (SCH) and PEF (SSP).
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To illustrate the efficiency of adaptation, in Figure 3, we show the cost functions (variances of

innovation) resulting from the three filters PEF (SCH), PEF (SSP), and AF (i.e., APEF based on

PEF (SCH); the same performance is observed for the AF based on PEF (SSP)). Undoubtedly,

the adaptation allows to improve considerably the performances of nonadaptive filters.

8. Conclusion remarks

We have presented in this chapter the different types of OPs—deterministic, stochastic, or

optimal, the invariant subspaces of the system dynamics. The ODPs and OSPs play an impor-

tant role in the study on the predictability of the system dynamics as well as in construction of

optimal OFS for environmental geophysical systems.

One other class of perturbation known as SSP is found to be a very efficient tool for solving

optimization and estimation problems, especially with Hd matrices and in computing the

optimal perturbations.

The numerical experiments presented in this chapter confirm the important role of the differ-

ent types of OPs in the numerical study of Hd assimilation systems.
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