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Abstract

This chapter outlines the issues associated with the development of prefrontal cortex 
in children and adolescents, and describes the developmental profile of executive pro-
cesses across childhood. The prefrontal cortex plays an essential role in various cognitive 
functions and little is known about how such neural mechanisms develop during child-
hood yet. To better understand this issue, we focus the literature on the development 
of the prefrontal cortex during early childhood, the changes in structural architecture, 
neural activity, and cognitive abilities. The prefrontal cortex undergoes maturation dur-
ing childhood with a reduction of synaptic and neuronal density, a growth of dendrites, 
and an increase in white matter volume. With these neuroanatomical changes, neural 
networks construct appropriate for complex cognitive processing. The organization of 
prefrontal cortical circuitry may have been critical to the occurrence of human-specific 
executive and social-emotional functions, and developmental pathology in these 
same systems underlies many psychiatric disorders; therefore, if we understand these 
developmental process well, we could better analyze the development of psychiatric 
disorders.
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1. Introduction

In the past two decades, an increasing number of studies have examined the human frontal 

lobe and PFC utilizing a wide variety of methodologies including stereology, MRI, minicol-
umn analysis, and DTI [1]. A number of recent studies have examined the relative size of gray 
and white matter in the frontal lobe or PFC, while others have examined the volume, neuron 
density, and columnar organization of functional subregions within the PFC. The frontal lobe 
includes several anatomical components and different functional areas, and, so it is thought 
that as a discrete unit can only tell us so much [2].

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



PFC plays most important roles in executive functions, which includes the organization of sev-

eral sensory inputs, the maintenance of attention, planning, reasoning, language comprehen-

sion, the working memory, and the coordination of goal-directed behaviors [3–6]. Therefore, the 

functions of PFC are certainly a crucial aspect of what we think of as “human” in cognition [7].

The development of the brain occurs through the interaction of several processes, some of 

these stages are completed before birth such as neurulation, cell proliferation, and migra-

tion, although others continue into adulthood [8]. It is showed that the PFC is one of the last 

regions of the brain to mature, based on most indicators of development [9], and that the 

neurons in these areas have more complex dendritic trees than primary somatosensory and 

primary motor cortex those that mature earlier [10, 11]. Brain development begins in utero in 

the third gestational week and continues into adolescence [12]. However, lateral regions of the 

PFC are the latest developing areas that involved in executive functions [9].

When discussing the role of the PFC, other brain regions with which it shares intensive inter-

connections, including the basal ganglia, thalamus, brainstem, hippocampus, amygdala, and 

other neocortical regions also play important role [13, 14]. Thus, its intrinsic connections with 

other areas provide access to emotional responses and other information [5]. The lateral PFC 

is implicated in language and executive functions, while the orbital and medial regions of the 

PFC are thought to be involved in the processing and in the regulation of emotional behavior 

[15]. The lateral orbital PFC, interconnected regions of the basal ganglia, and the supplemen-

tary motor area, these regions are called the frontostriatal system, and they work together 
with many of the cognitive capacities [16].

PFC includes the following Broadman Areas (BA): 8, 9, 10, 11, 12, 44, 45, 46, 47. “The dor-

solateral frontal cortex (BA) 9/46 has been functioned in many cognitive process, including 

processing spatial information [17–19], monitoring and manipulation of working memory 
[20, 21], the implementation of strategies to facilitate memory [22], response selection [23], 

the organization of material before encoding [24], and the verification and evaluation of rep-

resentations that have been retrieved from long-term memory [25, 26]. The mid-ventrolateral 

frontal cortex (BA 47) has implicated cognitive functions, including the selection, comparison, 

and judgment of stimuli held in short-term and long-term memory [21], processing nonspa-

tial information [27], task switching [28], reversal learning [29], stimulus selection [30], the 

specification of retrieval cues [25], and the ‘elaboration encoding’ of information into episodic 

memory [31, 32]. BA 10, the most anterior aspect of the PFC, is a region of association cor-

tex known to be involved in higher cognitive functions, such as planning future actions and 
decision-making [33]. BAs 44 and 45, include part of the inferior frontal and these regions’ 

functions are language production, linguistic motor control, sequencing, planning, syntax, 

and phonological processing [34, 35].

Finally, the orbitofrontal cortex mostly (BA 47, 10, 11, 13) in the orbitofrontal cortex has been 

implicated in processes that involve the motivational or emotional value of incoming informa-

tion, including the representation of primary (unlearned) reinforcers such as taste, smell, and 

touch [36, 37], the representation of learnt relationships between arbitrary neutral stimuli and 

rewards or punishments [38, 39], and the integration of this information to guide response 

selection, suppression, and decision making“ [40, 41].
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2. Structural development of the PFC

2.1. Development in gestational period

In the third week of gestation, the first brain structure to arise is the neural tube, which is 
formed from progenitor cells in the neural plate [42]. In the sixth week, neuron production 
begins. Between gestational weeks 13 and 20, neuronal count increases rapidly in the tel-
encephalon [43], with 5.87⋅109 neurons at 20 weeks in the cortical plate and marginal zone 
[44]. Through some receptors and ligands, the nerve cells move from the source sites in the 

ventricular and subventricular regions to the main sites in the brain. Two basic types of cell 

migration, radial and tangential, have been described, and the most characteristic pattern 
is radial migration. The peak time period with these events is between 12 and 16 weeks of 
pregnancy [45, 46].

Cortical organizational events begin in 20 weeks of pregnancy and continues. The basic devel-
opmental pattern in the cortical organization includes: (1) neurogenesis and differentiation 
of neurons, (2) formation and organization of cortical neuron layers, (3) dendritic and axonal 
branching, (4) formation of synapses, (5) cell death and pruning of synapses, and (6) glial 

proliferation and differentiation [45].

Primary sulci (superior frontal, inferior frontal, and precentral) are the main regions of the 

PFC, and develop during gestational weeks 25–26 [42]. The dorsolateral and lateral PFC arise 

during gestational weeks 17–25 [47]. The dendrites in Layer III and V continue to mature, as 

spines develop, basal dendritic length increases, and interneurons differentiate in layer IV 
between 26 and 34 weeks [48].

Synaptogenesis begins around the 20th gestational week. The formation and organization 
of synapses in the PFC increases after birth, reaches a peak, and is followed by pruning and 
decline like other neurodevelopmental processes. Also, synaptogenesis occurs later in the 
PFC than it does in other areas.

After the other developmental stages, the latest developmental event is myelination [45]. 

Myelination begins in the 29th gestational week with the brain stem, and the development 
of white matter also follows a caudal to rostral progression like gray matter It continues 
until adulthood [49]. Figure 1 shows the main developmental stages of brain intrauterine 

development.

2.2. Development in infancy

At birth, total brain weight is about 370 g [50]. In a meta-analysis, it is showed that in all PFC 

areas, neuronal number measurements increase at every age point postnatally (0–72 months). 

Assessing the cortex as a whole, neuronal number increases 60–70% between 24 and 72 months 

postnatally [51]. Neuron density is 55% higher in the frontal cortex of 2-year-olds than it is in 

adults [52].

Total gray matter volume is also greatest at the earlier stages of infancy. During infancy and 
childhood, gray matter volume in the frontal lobe is positively correlated with total brain 
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volume, and gray matter ratio with volume shows a decrease with age [53]. Around 6 months 

of age, dendritic length is 5–10 times greater than at birth and in the middle frontal gyrus, 

dendritic length is half of adult quantities at 2 years of age [54]. In infants, pyramidal neurons 

in frontal lobe that mature later, have less complex dendritic trees than regions that mature 

early, such as primary sensorimotor cortices [11].

At the age of 3 months, synaptic density in the PFC is less than half of what it will eventually 

reach, and synaptic density in the PFC reaches the net highest value at age 3.5 years, showing 

a level approximately 50% greater than that in adults [55]. White matter volume also increases 
from infancy and it is 74% higher in mid-adolescence than infancy [56].

2.3. Development in early childhood

The neuroanatomical structure of the PFC in humans undergoes maturation particularly dur-

ing early childhood. During this period, the brain quadruples in size and grows to approxi-
mately 90% of the adult volume at age 6. The gray matter increases from early childhood until 
the age of 6–9 [56]. Neuronal density in layer III of the PFC decreases with age between 2 and 

7 years, from 55% to about 10% higher in 7-year-olds than in adults [52].

Synaptic density in the PFC decreasing more and more through adolescence [55]. During early 

childhood, expansion of the dendritic trees of the pyramidal neurons has also been observed [57].

The results of fMRI studies in children suggested that the PFC of children aged 5 years, is also 
active during performance of the same task as that for the adults. The region and character-

istics of the activity are similar in adults and children, but comprehensive comparison could 

not be done due to technical limitations [58].

Figure 1. Timeline of brain development.
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2.4. Development in childhood and adolescence

During childhood and adolescence, both growth and then decline in gray matter volume, 
and increase in white matter volume are observed in brain development. In the longitudinal 
study of Giedd et al. across ages 4–22, showed that gray matter in the frontal lobe increases 
in volume during preadolescence including early childhood [59]. However, several studies 

have reported that during preadolescence, the increase in gray matter volume is observed 
especially in the PFC among other frontal lobe regions [60]. Inside of the frontal lobe, gray 

matter in the precentral gyrus develops the earliest, and the superior and inferior frontal 
gyri mature later. The ventromedial areas commonly reach maturity earlier than more lateral 

regions as well [9]. The rostral PFC develops more slowly than other regions, maturing into 

late adolescence and beyond [61]. Additionally, the development of the dendritic systems in 

rostral PFC matures later than in primary sensory and motor regions, and continue maturing 

until late adolescence [11]. Regions in the PFC that intercommunicate with Broca’s area show 
an increase in gray matter thickness relative to other regions at between the ages of 5 and 
11, it is thought to be associated with the maturation of linguistic capacity [62]. Gray matter 
volume reaches maximum volume in most of the frontal lobe between 11 and 12 ages [59]. 

The dorsolateral and medial PFC also expands nearly twice [63] and the dorsolateral PFC 

reaches adult grades of cortical thickness in early adolescence [8]. However, according to 

cerebral energy metabolism studies, lateral regions of the PFC and frontal pole mature earlier 

than the most anterior regions [64]. When the brain increases in size throughout childhood 
and adolescence, dendritic and axonal growth and synaptogenesis also occur such as many 

other microstructural changes [51]. Adult neuronal density in the frontal lobe is reached by 

10 years of age [52]. Pyramidal neurons in frontal lobe that mature later and they have the 

most complex dendritic trees in adolescence and adulthood [10].

Moreover, reduction in gray matter volume and synapse elimination continues in the PFC 
until adolescence and early adulthood [65]. The gray matter density in rostral PFC observed a 
reduction in between adolescence (12–16 years) and adulthood (23–30 years) like as other pre-

frontal regions [65]. Although this decrease in gray matter volume in childhood is correlated 
with age, one study showed that gray matter decreasing in the frontal lobe is significantly and 
positively associated with verbal memory abilities, independent of the age of the child [53].

In addition, as gray matter volume declines during childhood and adolescence, cross-sec-

tional and longitudinal studies have reported that white matter volume in the PFC increases 
significantly as fiber tracts grow and myelinate during childhood [49, 59]. From ages 7 to 16, 

the frontal lobe experiences an increase in white matter volume [53]. In the white matter, it 
was found that diffusion along fiber tracks was more and more anisotropic with age (range 
6–19 years) in a number of prefrontal regions, including right lateral, and medial, rostral PFC 

[66]. White matter is primarily constituted of axons covered in myelin produced by oligo-

dendrocytes, and myelination increases nerve transmission rapidity [67], thereby, reduces 

the effects of travel distance variability in networks and facilitating synchronous impulsion 
of neurons [68]. For this reason, increase in white matter volume in the PFC and distributed 
networks, may provide a structural basis for cognitive functions [69]. Additionally, macro 

and microstructural changes in gray and white matter both continue during developmen-

tal process, even after adolescence, and these structural changes are parallel to behavioral 

changes [70].
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The myelination of the frontal lobe can continue into the 3rd decade of life [71]. The anterome-

dial aspect of the frontal lobe is one of the last regions, to myelinate postnatally [72].

When reviewed the fMRI studies, many of these studies have reported that the responsible 
regions in the PFC show age-related increases in activity through development in school-

age children and adolescents [73–75]. In the Kwon et al. study, they observed an age-related 

linear increase in activity in the lateral PFC during the n-back working memory task from 7 
to 22 years of age [73]. In contrast, in the brain regions less critical to the tasks tested has also 
been reported age-related decrease in neural activity [75]. These patterns of age-related activ-

ity changes are thought to indicate a developmental shift in functional neural organizations 
more focal, fine-tuned systems [76].

3. Cognitive development of PFC

PFC mediate several cognitive abilities and they develop fundamentally during early child-

hood in terms of age-related improvements, and functional neural systems for each function 

become more separable through development [58]. In this section, we reviewed cognitive 

abilities and their development which are mediated by the PFC.

3.1. Attentional development

The attention properties fall into five basic categories: alertness, set, spatial attention, sus-

tained attention, and interference control [77].

Although by 3 years of age, children can make the occasional perseverative error; they inhibit 
instinctive behaviors well [78]. Improvements in speed and accuracy on impulse control tasks 
can be observed up to 6 years of age [78, 79]. However, an increase in impulsivity occurs for a 

short period around 11 years of age, children aged 9 years and older are able to monitor and 

regulate their actions well [80].

The components of attention seem to develop gradually toward full maturity at about 12 years, 
with maximum development between the ages of 6 and 9 [81, 82].

3.2. Memory

Neuropsychological and functional neuroimaging evidence implicated the importance of the 

PFC, supports particularly the development of episodic memory [83]. Functional neuroimag-

ing studies consistently show increasing in PFC activation that supports the formation [84] 

and retrieval of episodic memories [85].

Although the frontal lobe damage usually does not cause loss of perceptual memory, it does 

in some cases especially if the lesion involves the left prefrontal cortex that causes the inability 

to encode and retrieve serial tasks [86], stories [87], and verbal material [88]. Particularly, if the 

lesion includes the orbitolimbic region, it can cause the presence of spontaneous confabula-

tion and false recall or recognition [87].
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In the recent study, the PFC contribution to subsequent memory (SM) in children, adoles-

cents, and young adults was investigated. It is showed that regions in the lateral PFC showed 

positive SM effects, whereas regions in the superior and medial PFC showed negative SM 
effects. Both positive and negative SM effects increased with age. The magnitude of nega-

tive SM effects in the superior PFC partially mediated the age-related increase in memory. 
Functional connectivity between lateral PFC and regions in the medial temporal lobe (MTL) 
increased with age during successful memory formation [83]. In the study of Qin et al., they 

examined age-related changes in brain activity associated with memory-based arithmetic and 

found increased working of memory-based strategies for solving arithmetic problems across 
a period of 14 months in children ages 7–9. Paralleling these behavioral findings, increased 
functional connectivity between the lateral prefrontal cortex (IFG/MFG) and the hippocam-

pus was observed [89].

3.3. Working memory

Working memory is the one of neural functions for temporary storage and manipulation of 
information [90]. It is necessary for other cognitive functions, such as language comprehen-

sion, reasoning, and learning [91]. Behavioral measures showed that working memory sys-

tems improve fundamentally during early childhood [92].

Kaldy and Sigala [93] observe that 9-month-old infants can integrate the visual features of 

an object with its location as part of the content of working memory. On the conclusion of 
findings, they speculate that the early development of the what-where integration in working 
memory [93].

Luciana and Nelson’s study showed that in normal children, aged 4–8 years, the prefrontal 

working memory system emerges at around the age of 4 and improves between 5 and 7 years 
of age [94], and capacity of visual short-term memory increases also substantially between 

5 and 11 years of age [95]. Additionally, age-related improvement of working memory for 
phonological information has also been observed during early childhood from 4 years of age 

[96]. Consistent with these findings, fMRI studies in children indicated that the lateral PFC 
functions in healthy children as young as 4 years, and the neural systems of this area respon-

sible for working memory gradually mature at 4–7 years of age [97]. In conclusion all of them, 

the child reaches the mature level of performance by age 10–12 years [77].

In the development of working memory, not only PFC plays role, but also stronger fronto-

parietal connectivity underlies the development of working memory. Edin et al. indicated 
that the weak connectivity among subregions of the PFC might also be important for the 
functional development of the PFC [98]. It can be summarized that functional maturation of 
the PFC is tightly linked to changes in several other brain regions [99].

3.4. Planning

The effective planning is crucial to self-organization and it involves setting a goal, formulating 
a checklist of tasks necessary to achieve it, and executing each one until the goal is achieved. 
Studies suggest that children and adolescents are identified as deficient in planning skills, 
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which is not surprising given that executive functions improve especially through adoles-

cence [100, 101]. The failure to formulate plans, especially new plans, is generally accepted as 

being a common feature of prefrontal syndromes. Especially, the symptom appears unique to 
dysfunction of the prefrontal cortex [77].

Simple planning skills are observed by 4-year-olds [102]. Similarly by 4 years of age children 

are skillful of create new concepts [103]. When the aims are made clear, at the age of 6 years 
children can make detailed plans [104]. Planning and organizational skills develop rapidly 
between 7 and 10 years of age [105] and gradually after into adolescence [102]. Young children 

use simple strategies, which are usually ineffective but between 7 and 11 years of age strategic 
behavior and reasoning abilities become more organized [106]. The planning seems to develop 

at about 12 years with the plateau and around 12–13 years of age, regression from conceptual 

strategies to piecemeal strategies may occur and it suggesting a developmental period in which 

cautious and conservative strategies are preferred. Improving of strategies and decision making 
continues during adolescence [107]. Studies have reported improved the planning skills into 
the 20s [108, 109]. In addition, the inter-correlations observed between planning skills and other 
neuropsychological tasks and IQ, during adolescent development of planning abilities [110].

3.5. Temporal integration

Temporal integration is the ability to organize temporally separate items of perception and 
action into goal-directed thinking, speech, or behavior. This ability derives from the joint and 
temporally extended operation of attention, memory and planning. In neural terms, it derives 
from the cooperation of the prefrontal cortex with other cortical and subcortical regions. In a 

study, age-dependent comparisons were made between 9–10- and 13–14-year-olds and these 

findings suggested that children used a similar strategy as adults and indicate a stabilizing 
and optimalizing process by the age of approximately 13–14 years with respect to subjective 
rhythmization [111].

In conclusion, the temporal integration seem to develop at about 12–13 years as same as 

development of working memory and planning [77].

3.6. Inhibitory control

Inhibitory controls the ability to suppress information and actions that are inappropriate 

situations and it is important for several cognitive abilities and adaptive behaviors [99]. The 

children aged 2.5 years were able to inhibit the prepotent tendency on the spatially incompat-

ible trials and by 3 years, they were correct 90% of the time [112].

Several studies have demonstrated that performance on the cognitive tasks that requires 
inhibitory control, improves throughout childhood over the ages of 4 years [6, 99, 109].

The fMRI studies suggest a change in the recruitment of rostral PFC (BA10) in situations of 
response inhibition during late childhood and adolescence. An increase in BOLD signal in 
this region [113] initially and then a decrease in BOLD signal [114] seems consistent with the 

anatomical findings suggesting that gray matter volumes in the frontal cortex [59].

In summary, the ability inhibitory control develops both anatomically and functionally sig-

nificantly during early childhood.
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3.7. Language

The spoken language is based on the exercise of temporal integration and the cognitive func-

tions. For this reason, language has been found to be adversely affected in a variety of ways 
by frontal damage [115].

In early childhood, increase in speed and verbal fluency of language is observed, particularly 
between 3 and 5 years of age [102, 116]. Processing speed and fluency continues to improve 
during middle childhood [80, 102] with significant gains in processing speed observed 
between 9–10 and 11–12 years [117]. Improvements in efficiency and fluency occur during 
adolescence [107, 117].

However, higher cognitive functions such as language and intelligence continue to develop 

into the 3rd decade of life, supported by the lateral prefrontal cortex, which does not seem to 

reach full maturity until that time [77].

3.8. Social behavior

Social cognition defines to identify and interpret social signals, and the use of those signals to 
guide the flexible performance of appropriate social behaviors given in changing situations 
[118]. The PFC is connected with several cortical and subcortical regions of the brain, includ-

ing nucleus accumbens (NAc), amygdala, ventral tegmental area (VTA), hypothalamus, and 

regions of the cortex involved in processing sensory and motor inputs. PFC is also connected 

with which regions known as social brain, so PFC has been played rol in also social behavior 

[119, 120]. Many studies have demonstrated the importance of the vmPFC for social motiva-

tion and reward. The vmPFC is also engaged with social acceptance feelings and is activated 

learning with cues of related with social reward [121, 122]. The lateral PFC is also a part of a 

network that process in the social domain, such as imitation, abstract social reasoning, and 
resolving conflict in social cues [123].

The mPFC is responsive to social stimuli in developing infants [124]. In particular, the mPFC 

activates at the infant with viewing a mothers smile, or hearing infant directed speech [125]. 

Studies with children and adolescents focus on amygdala and findings of these studies 
showed an association between cerebral maturation and increased regulation of emotional 

behavior; the latter mediated by prefrontal systems [126, 127]. In another study, findings 
suggest that the adult brain better modulated OFC activity based on attention demands, 
while the adolescent brain better modulated activity based on the demands of emotion. 
So, if there were no attentional demands, emotional content of the stimuli-induced higher 
activity in ACC, OFC and amygdala in the adolescents compared with the adults [128]. 

These fMRI results show that both the brain’s emotion processing systems develop during 
adolescence.

3.9. Theory of mind and mentalizing

Theory of mind (ToM) is the ability of an individual to mean the feelings, motives, opinions, 
and emotions of another on the basis of his or her expressions. It is a necessary ability for 

meaningful social interaction [77]. Some studies have investigated the development of men-

talizing, which to have been associated with rostral PFC.
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When investigating the development of ToM, children develop an understanding of desires, 
goals, and intentions at around 18 months firstly, and then the understanding of many men-

tal states such as wanting, knowing, pretending, or believing is available in implicit form to 
2-year-olds. Typical tests of mentalizing develop at about 4 years old in children [129]. At 

the age of 6 years, all typically developing children understand the tasks, involving more 
complex scenarios [130].

A functional MRI study investigated the development of mentalizing by the task and found 
that children (between 9 and 14 years old) engaged frontal regions includes medial PFC and 

left inferior frontal gyrus more than adults did in this task [131]. In another study, adolescent 

(12–18 years) and adults participants (22–37 years) were scanned with functional MRI and 
the results showed that adolescents activated part of the medial PFC more than adults did, 

and adults activated part of the right superior temporal sulcus more than adolescents did. 

These results suggest that the neural strategy for mentalizing changes between adolescence 
and adulthood. Although the same neural network is active, the relative roles of the differ-

ent areas change, with activity moving from anterior (medial prefrontal) regions to posterior 

(temporal) regions with age [132].

4. Conclusion

In this chapter, we have attempted to link structural and functional findings of developmental 
studies to PFC. Our knowledge and understanding of the neural mechanisms, a growing 
body of evidence, point to the PFC as a central regulator. The review of the developmental 

literature indicates that, in the child, the cognitive and emotional functions of the prefrontal 

cortex develop in apparent synchrony with its structural maturation. The long-term develop-

ment of executive functions is likely to be aligned with neurophysiological changes, particu-

larly synaptogenesis and myelination in the prefrontal cortex.

All of cognitive functions seem to reach a relative plateau of maturity at about the age of 

12 years. For example, development of attention reach maturity at about age 12, Working 
memory and planning seem to develop also at the same pace and toward the same plateau 

(about 12 years). Temporal integration development depends on both working memory and 
planning and it develops at the same time with the others. However, higher cognitive functions 

such as language and intelligence continue to develop into the third decade of life. In sum-

mary, these functions develop gradually, between 5 and 10 years of age, to reach completion 

at about age 12.

In the future, longitudinal studies will be required to verify our understanding of cognitive 

development. With the structural and functional neuroimaging studies, we are now in the 
position to concurrently track the development of neural systems and cognitive functioning, 
greatly enhancing our understanding of brain-behavior relationships.

It is known that abnormalities of PFC is associated with many of psychiatric disorders such 
as attention deficit and hyperactivity disorder, schizophrenia, obsessive compulsive disorder, 
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depression, autism, etc. As we know more about the prefrontal cortex, we think that we could 
better understand these psychiatric disorders and could develop new treatment options.
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