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Chapter

Biomechanics of Eye Globe and 
Methods of Its Study
Irina Bubnova

Abstract

Knowledge of biomechanical properties of eye globe is necessary both for 
correct selection of candidates for refractive surgery and right choice of operative 
intervention parameters. No less important, it is for corneal ectatic disease diag-
nostics and monitoring. Also it gives inestimable contribution for interpretation of 
intraocular pressure (IOP) indices especially in cases with irregular eye shape or 
after past corneal surgical procedures. Moreover, it allows studying injury mecha-
nism by glaucoma process on optic nerve head fibers. Above it, scleral biomechani-
cal properties research is necessary for the investigation of pathophysiologic factors 
of myopia manifestation and progression. This chapter is devoted to review of 
existed to date methods of study of eye fibrous tunic biomechanical properties. It 
describes mathematical, experimental, and clinical models provided evaluation of 
unsearchable by direct measurement parameters. It also observes effective technics 
of impact on both sclera and cornea with the aim of correction of its biomechanical 
condition.

Keywords: corneal biomechanics, refractive surgery, LASIK, keratokonus, IOP

1. Introduction

The cornea and the sclera are two conjugated quasi-spherical segments with 
unequal curvature radii; together they form corneoscleral (fibrous) tunic—the sup-
porting structure of the eye capsule. Their mechanical properties play a crucial role 
of holding together the inner ocular structures. Despite them both being composed 
of connective tissue, they differ in physical (particularly, optical) and biomechanical 
properties [1].

The cornea is the anterior part of the fibrous tunic of the eyeball, and it takes 
up 1/6 of its length. Despite it being relatively thin, its main function is protec-
tion—assured by its high durability. But the cornea also participates in light ray 
refraction, making up an important part of the visual apparatus; as such, it is 
characterized by high optical homogeneity and complete transparence.

The cornea is an anisotropic, inhomogeneous structure; it mainly consists of 
highly specific connective tissue formed by parallel collagen fibrils that extend from 
one limb to another and act as load supporting elements [2].

The sclera takes up the other 5/6 of the eye length and represents the poste-
rior part of the fibrous tunic of the eyeball. Scleral tunic is the main supporting 
structure of the eyeball; it consists of dense collagen fibers. In contrast to cornea, 
the sclera has high dispersive power due to its chaotically distributed fibrils and 
fibers, which prevents light from entering the eye cavity from the side. In natural 



Biomechanics

2

conditions, in the living eye, scleral elements are constantly in a strain-stress state 
determined by intraocular pressure and mechanical properties of the scleral tissue, 
as well as by anisotropy and inhomogeneity of these properties [3].

Studying the biomechanical properties of the cornea is relevant for certain 
clinical needs associated with the appearance of new biomechanics examination 
methods, as well as the need to diagnose and monitor ectatic diseases of the cornea, 
to adequately select the parameters for keratorefractive surgeries, to correctly 
interpret the intraocular pressure (IOP) values, and, consequently, to appropriately 
assess IOP and monitor glaucomatous process.

In addition, conducting studies on the biomechanical properties of the sclera is 
a necessary step in the research of pathogenic factors relevant for occurrence and 
progression of myopia, as well as finding effective means and methods of influenc-
ing the sclera in order to correct its biomechanical state.

However, the lack of standardized terminology and uniform classification hurts 
the ability to compare research results and consequently hinders their introduction 
into the knowledge area of ophthalmology.

2. Classification of approaches to study the biomechanics of the eye

In accordance with different approaches, eye biomechanics can be divided into 
the following types:

1. theoretical;

2. physical (i.e., experimental); and

3. clinical.

2.1  Theoretical biomechanics of the eye

Theoretical biomechanics is a science that employs mathematical methodology 
and mathematical analysis. As applied to ophthalmology, it handles with specific 
physical constants characterizing elasticity, strength, and other mechanical param-
eters of the tissues (usually measured in vitro).

The main theoretical approach is mathematical modeling. The research may tar-
get separate structures of the eyeball and the tunic, or the eye in its entirety. It can 
also include modeling of physiological or pathological processes, changes induced 
by specific stimuli or effects of surgical treatment.

The results obtained from modeling can be used in experimental and clinical 
studies. In turn, all models are based on the figures acquired in experiments or from 
clinical diagnostic.

Disadvantages of the theoretical approach in studying eye biomechanics are 
associated with structural complexity of the eyeball, inhomogeneity, and variabil-
ity of morphology of the ocular structures, and dependence on the technological 
advancement of experimental and clinical research methods.

2.2  Physical (experimental) biomechanics of the eye

Experimental biomechanics of the eye is based on studying individual tissues and 
the eyeball as a whole in vitro or by conducting animal experiments using physical 
methods. It is the most developed subdiscipline of biomechanics with many years of 
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research history. Capabilities of the approach are limited by post-mortem changes 
in eye tissues, and anatomical and physiological differences between humans and 
animals. The main purpose of experimental studies is to find potentially useful 
methods of studying biomechanical properties of eye tissues in clinical environment 
and to acquire data for mathematical modeling. The main advantages of experimen-
tal researches are the absence of restrictions for employed methods and approaches, 
and the choice of which is only limited by technological and scientific advancement.

Methods of experimental biomechanics allow measurement of a big number of 
physical parameters of the cornea:

• Young’s modulus (E),

• Poisson’s ratio (μ),

• Durability (σ),

• Deformation capacity (Σ), etc.

However, they do not fully reflect the properties of fibrous tunic of the eye  
in vivo.

2.3  Clinical biomechanics of the eye

Clinical biomechanics of the eye studies the influence of biomechanical proper-
ties of the fibrous tunic on the results of diagnostics, development, and treatment 
of various eye diseases. Clinical biomechanics operates on data obtained with 
specialized examination methods used in ophthalmology (in vivo) that characterize 
biomechanical properties of the fibrous tunic. Its research subject is strictly the 
eyeball as a whole, only allowing arbitrary delineation of the internal structures. 
This complicates the interpretation of data. However, in order to improve diagnos-
tics and treatment of eye diseases, clinical methods for eye biomechanics need to 
have higher priority in research and development.

The following corneal parameters can be measured clinically:

• Friedenwald’s rigidity coefficient;

• Corneal hysteresis;

• Corneal resistance factor;

• Coefficient of elasticity;

• Corneal deformation.

The biggest number of already existed studies are dedicated to investigation of 
biomechanical properties of the cornea, which is probably related to the specifics of 
corneal structure, or to its accessibility for examination.

3. Theoretical (mathematical) biomechanics

The originator of mathematical approach to study biomechanical properties  
of the cornea was F.A. Rachevsky. In 1930, in his theoretical study, he pointed “…for 
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the first time at the paramount importance of the radius of the corneal curve and 
especially of its thickness for specific results of intraocular pressure tonometry.” 
Besides that, he proved mathematically that under effect of external and internal 
forces, tangentially directed stress occurs in the cornea, particularly during appla-
nation tonometry [4].

At present, the research of corneal biomechanics is conducted in two main 
directions. Mathematical modeling is generally used for the calculation of param-
eters and prediction of results of keratorefractive surgeries [5–8], as well as for the 
determination of possible procedural errors of applanation tonometry methods 
when biomechanical properties changed as the result of a surgery or a disease [9].

The main obstacle for proper mathematical modeling is anisotropy of the 
cornea. The majority of the proposed models does not consider it, which limits their 
application in practical ophthalmology [10–12].

According to Pinsky et al., the anisotropy of the cornea primarily depends on 
its structural features, that is, specific architectural organization of collagen fibers 
[13]. X-ray structural analysis revealed that collagen fibrils of the central area have 
orthogonal orientation predominantly in vertical and horizontal directions, while 
fibrils of the periphery have tangential orientation [14]. Pinsky et al. developed 
a mathematical model for corneal anisotropy mechanics that accounts for these 
findings [13]. Based on the finite element method, the model allows predicting 
biomechanical response of the cornea to tunnel cutting, radial keratotomy, and 
LASIK [15–17].

In order to determine the possible error margin of applanation tonometry 
methods, several mathematical models have been developed [18]. Liu et al. used 
mathematical modeling to study isolated effects of various biometric and biome-
chanical parameters of the cornea on Goldmann tonometry readings [19]. Kwon 
et al. developed a mathematical model demonstrating the need to take into account 
not only corneal thickness, but also its biomechanical properties when interpreting 
Goldmann tonometry readings [20].

4. Physical (experimental) biomechanics

4.1  Normal (intact) cornea

Experimental studies based on extensiometry revealed distinguishing biome-
chanical anisotropy and heterogeneity of the cornea. Corneal material acquired 
with a radial cut has the best durability and margin of deformation capacity. Those 
parameters decrease with distance from the radial direction. Corneal material 
stretched tangentially shows approximately the same elastic properties along the 
corneal disc. The samples stretched radially appeared to have the highest rigidity. In 
the course of the study, Poisson’s ratio was determined for various parts of the cor-
nea. This ratio characterizes the transverse deformation lateral to stretch direction, 
for radial direction, it was in the range of 0.445–0.450, and for tangential direction, 
it was in the range from 0.290 to 0.310 (middle periphery) and from 0.340 to 0.350 
(perilimbal) [21, 22].

A variety of studies is dedicated to measuring the main elastic and strength 
properties of the cornea, but analysis of the data shows that isolated corneas exhibit 
big spread in the values—from 0.3 to 13.6 MPa. The phenomenon can be attrib-
uted to different experimental conditions and nonlinear nature of biomechanical 
properties of corneal material [23–26]. Andreassen et al. studied the biomechan-
ics of corneal discs with extensiometry; the discs were taken from patients with 
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keratoconus after they underwent penetrating keratoplasty. The study revealed 
significant decrease of mechanical strength properties in pathologically altered 
corneas [27].

Soergel et al. used dynamic mechanical spectroscopy to evaluate viscoelastic 
properties of the cornea in experimental environment. They found that elastic 
and shearing deformation depend on the hydration, time elapsed after death, and 
temperature of the tissue [28].

Wang et al. calculated Young’s modulus by measuring the speed of ultrasound 
transmission through cadaver cornea and processing the data with Fourier 
analysis [29].

Like ultrasound spectroscopy, Brillouin microscopy can determine intrinsic 
viscoelastic properties decoupled from the structural information and applied 
pressure. In contrast, it can measure the local acoustic properties with much higher 
spatial resolution and sensitivity, and the measurement is performed optically with-
out the need for acoustic transducers or physical contact with the cornea [30].

One of the techniques, holographic interferometry, is used to calculate Young’s 
modulus. The method is to some degree similar to videokeratography, that is, 
holographic technologies are used to examine the changes in corneal surface. A 
study conducted on an intact bull’s cornea showed Young’s modulus being two 
orders lower than when measured in an experiment with corneal tissue samples. 
The authors summarized that localization and hydration level plays the primary 
roles during measurement. This method, however, is limited in terms of practical 
use due to requiring maximum permissible laser emission in order for the resulting 
images to be high quality [31].

4.2  Cornea after refractive surgery

Some studies showed significant increase of tangential elasticity of the cor-
nea after it was incised with radial cuts (up to 46.5% with an incision depth of 
0.6 mm), that is, in the direction of the lesser material rigidity [32]. In certain cases, 
the changes led to severe complications in the long-term postoperative period. 
Particularly, it manifested as a significant decrease of eyeball’s resistance to trauma 
with potential disruption of corneal cicatrices and loss of membranes [33].

Luminescent polariscopy revealed that after radial keratotomy, the main 
mechanical strain fell on the middle periphery of the cornea, particularly on the 
bottom of keratotomic incisions. An increase of intracameral pressure (analogue to 
intraocular pressure) raises the strain on peripheral part of the cornea and off-loads 
its central part, which can cause hypermetropic shift in refraction [34].

However, with the appearance and widespread implementation of excimer laser 
technologies for correction of refraction errors, such risks have greatly decreased.  
It can be attributed to different mechanisms of corneal refraction change, that is, its 
thinning in the central area.

Experimental studies on biomechanical properties of the cornea after excimer 
laser intervention indicate that thinning of the cornea in 6.0-mm optic zone for 
more than 15–20% results in significant changes of its mechanical properties. 
In terms of clinical relevance, the most meaningful change appears to be the 
significant (mean 20%) decrease of breaking load for experimental samples in 
comparison to the control samples. Additionally, changes in deformation properties 
of the cornea after laser ablation should also be taken into consideration, which 
manifested as lowered amount of movement the punch had to do before the cornea 
broke in experimental eyes in comparison to the control subjects in average by 
10.72% [35].
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However, the mechanical properties of the data obtained using an isolated 
cornea cannot objectively reflect the parameters of the tissues in natural environ-
ment. Adequate information on the biomechanical state of the cornea can only be 
obtained from a living eye.

5. Clinical biomechanics

5.1 Normal (intact) cornea

Clinical studies on the biomechanical properties of the relatively healthy cornea 
have been conducted since the middle of the twentieth century, but those methods 
remained widely unused due to various reasons.

In 1937, Friedenwald suggested that rigidity coefficient could be calculated 
based on a logarithmic dependence between IOP changes and eye volume employ-
ing differential tonometry with Schiotz tonometer [36]. Friedenwald depicted the 
relation between pressure and volume in a coordinate system. As was shown by 
further clinical studies, the proposed coefficient strongly depends on the corneal 
curvature and thickness, as well as on the IOP level [37]. According to research 
results, the parameter suggested by Friedenwald—the rigidity coefficient—was 
inaccurate in eyes with deviations in biomechanics (thickness and curvature) from 
the norm. It was also strongly influenced by IOP.

In 1936, S. F. Kalfa proposed a method of elastotonometry, that is, differential 
tonometry with four Maklakov tonometers weighing 5, 7.5, 10, and 15 g. Connecting 
the dots marked on a coordinate system forms an elastotonometric curve, which 
appears ascending line. The difference in mm Hg between the starting and end-
ing points of the curve, that is, between IOP value obtained using 5.0 and 15.0 g 
tonometers, is called elasto-ascent. Essentially, Friedenwald’s rigidity coefficient 
and S. F. Kalfa’s elasto-ascent are different expressions of the same thing. In norm, 
the two figures are closely related, albeit not functionally [38].

There are a number of techniques described by their authors as potential 
intravital methods for examination of biomechanical properties of the cornea, but 
they have not been adopted into clinical practice: electronic speckle interferometry 
[39], dynamic cornea visualization [40], corneal applanation and indentation [41], 
ultrasound elastometry [42], and photoelasticity method [43].

As an alternative to holographic interferometry, a noncontact, nondisruptive 
method of electronic speckle interferometry was suggested; it is equally sensitive 
because it employs close wavelength for measurement. Advantages of the method 
include the absence of requirement of photographic hologram recording, which 
simplifies the procedure and enables real-time acquisition of corneal surface shift 
data using a television camera. The method is recommended for evaluation of 
changes in corneal biomechanics after excimer laser refractive surgery [39].

Grabner et al. proposed a method of dynamic visualization of the cornea. It involves 
applying dosed pressure to the central area of the cornea during videokeratography by 
means of a special indenter and subsequent analysis of the topographic pattern. As the 
result, high correlation between the bending curve and depression depth was found. 
The form of the curve was noted to be affected by central corneal thickness, intraocular 
pressure, and patient age. Moreover, bending curves were different in keratoconus 
patients, as well as in patients who had underwent keratorefractive surgeries [40].

Chang et al. studied biomechanical properties of the cornea in vivo using corneal 
applanation and indentation on rabbit and human eyes, regarding the cornea as a 
transversely isotropic material. The study showed normal Young’s modulus to vary 
from 1 to 5 MPa and transverse shift modulus from 10 to 30 KPa [41].
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Some authors used photoelasticity method to evaluate mechanical stress in the 
cornea involving the measurement of its polarization and optical properties [43].

Scoping a large amount of clinical data, Edmund calculated Young’s modulus 
adhering to the hypothesis that the final form of cornea is the outcome of coun-
teraction between tissue elasticity and intraocular pressure. The modulus values 
were significantly lower in keratoconus eyes when compared to norm. The study 
also showed significant difference between healthy and ectatic patients in relative 
distribution of stress in the central and peripheral areas of the cornea, which can 
help with the understanding of keratoconus pathogenesis. However, this method 
generally does not find much use in clinical practice [44].

The one method most widely used in present day clinical practice involves ocular 
response analyzer (ORA)—a device that analyses corneal biomechanical proper-
ties based on bi-directional corneal applanation by an air pulse [45]. The method’s 
authors proposed to evaluate biomechanical response of the cornea by quantifying 
the differential inward and outward corneal response to an air pulse and thus obtain-
ing two parameters—corneal hysteresis (CH) and corneal resistance factor (CRF). 
Corneal hysteresis characterizes the viscoelastic properties of the cornea responsible 
for the partial absorption of the air pulse energy. Corneal resistance factor is a 
derived parameter with high correlation to central corneal thickness that reflects the 
elastic properties of the cornea.

Multiple studies have confirmed the usefulness of bi-directional corneal appla-
nation for the evaluation of biomechanical properties of the cornea: they rise with 
the increase of the corneal thickness [46, 47]. Corneal hysteresis was in the average 
10.8 ± 1.5 mm Hg and corneal resistance factor—11.0 ± 1.6 mm Hg. Statistically, a 
significant difference in the mean values of CH and CRF between groups of vary-
ing age was absent, with the exception of patients older than 60 years for whom 
the values were on lower. It is possible that the phenomenon reflects the changes in 
elastic properties of the cornea associated with age, but the authors also note the 
potential influence of other parameters (intraocular pressure and anterior-posterior 
axis length) that were disregarded in the study [48]. The comparison of CH and 
CRF in children and adults did not reveal any age-related differences [49].

Studying the diurnal variations in CH and CRF parameters revealed their hourly 
stability, while minor changes observed between the morning and evening measure-
ments can be explained by diurnal IOP fluctuations [50]. CH and CRF correlated 
strongly with corneal thickness and to a lesser degree with an amount of astigma-
tism. No correlation was found with keratometry, age, gender, spherical equivalent, 
or IOPcc [51]. Moreover, ORA shows good repeatability of biomechanical and 
tonometry measurements [52].

Avetisov et al. studied the possibility of applying the dynamic pneumo-impression 
of the cornea approach to the existing corneal biomechanical properties analyzer 
(ORA). The fundamental principle was that at the curvature start point laying on the 
border of the impression area, the pneumatic jet is subject to the counter-force of IOP 
and corneal elasticity, in equal amounts. At the moment of maximum impression, the 
pneumatic jet is mainly countered by corneal elasticity—due to the maximum deforma-
tion of the cornea. As the result, a parameter named elasticity coefficient was calculated 
characterizing the elastic behavior of the cornea regardless of the IOP level [53].

The same principle was used in CorVis device (Oculus, Germany), in which 
corneal deformation responding to a pulse of air is monitored with high-speed 
Scheimpflug camera. The device can help to measure a whole range of parameters 
that characterize the particularities of corneal deformation during the impression 
process. It records the process between the initial and the second applanations 
involving the cornea recovering its initial form, captures the maximum indentation 
point, and measures IOP [54, 55].
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5.2  Keratoconic cornea

Intravital measurement of biomechanical properties of the cornea in keratoconus 
patients performed with dynamic bi-directional pneumo-applanation showed lower 
CH and CRF values than in healthy eyes. Apparent negative correlation between the 
CH and CRF parameters and the degree of keratoconus were also evident [56].

Additionally, CH was significantly higher than CRF in the keratoconus group. 
The authors suggested the CH decrease of less than 8 mm Hg in conjunction with 
positive CH-CRF difference to be considered a stronger sign of keratoconus than 
isolated decrease of CH. Glaucoma patients showed reverse tendency: CRF value 
was higher than CH [57].

Studying the parameters obtained with dynamic Scheimpflug analysis (Covis ST) 
showed the possibilities of the examination method for differential diagnostics of 
patients suspected of keratoconus or with early keratoconus from patients with normal 
cornea [58].

5.3  Cornea after refractive surgery

Intravital measurements of biomechanical properties of the cornea after 
excimer laser surgery performed using dynamic bi-directional pneumo-applanation 
also confirmed the loss of corneal strength. In patients who had underwent LASIK, 
examination showed decrease of IOP-related parameters such as corneal compen-
sated IOP, as well as parameters reflecting the biomechanical properties. Along with 
that, significant correlation was observed between the amount of myopia correction 
and the deterioration of the biomechanical properties [59].

Another study analyzed the results of dynamic bi-directional pneumo-applana-
tion of the cornea and assessed the correlation between CH decrease and ablation 
depth in three patient groups: after photorefractive keratectomy, after LASIK with 
mechanical corneal flap creation, and after LASIK with femtosecond flap creation. 
The authors found that the strongest correlation was present in femto-LASIK group, 
while in the two other groups, it was significantly lower [60].

Isolated creation of corneal flap was also found to cause minor changes in 
corneal refraction [61]. Roberts explained the phenomenon with a theory stating 
that after lamellar dissection, the corneal biomechanics change in such a way so that 
severed fibrils contract causing traction in the direction of limbus. With that, cen-
tral corneal area deflates under the action of released fibrils inducing the so-called 
“hypermetropic” shift [62, 63].

In parallel, a comparison of changes in biomechanical properties of the cornea 
after superficial and intrastromal keratectomy was done using OCULUS Corvis 
(Germany) tonometer. Both types of keratectomy were found to cause statistically 
significant decrease of biomechanical parameters [64].

Despite the existing methods of measuring biomechanical properties of the 
cornea and the developed biomechanical models, the detection of ectasia after 
excimer laser vision correction varies from 0.04 to 0.6% of cases, but according to 
some researchers, the numbers may be an underestimation [65, 66].

Iatrogenic keratectasia is known to develop due to two factors: an ectatic corneal 
disease that was undiagnosed in the preoperative stage and excessive thinning of 
the cornea [67]. In the first case, early detection of keratoconus poses objective 
challenges [68, 69].

At the same time, even when keratoconus was timely diagnosed, the selection 
of candidates for keratorefractive surgeries is still difficult, and the evaluation of 
corneal biomechanics by means of dynamic bi-directional pneumo-applanation 
does not yield the necessary data.
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6. Correction of corneal biomechanical properties

Presently, the most common method of correcting (strengthening) biomechani-
cal properties of the cornea is corneal cross-linking [70].

The first specialists who in the 90s of the twentieth century created corneal 
cross-linking method for treating keratoconus were Wollensak, Spoerl, and Seiler 
[71]. They developed the protocol (“Dresden protocol”) for using this method of 
strengthening the cross-link bonds of collagen for treating progressive keratoconus 
involving riboflavin and ultraviolet A irradiation of the corneal stroma (UVA with a 
wavelength of 370 nm for peak absorption of riboflavin) [72].

Careful preclinical experimental validation showed that the combination of 
riboflavin and UVA leads to a significant improvement of biomechanical stability of 
the cornea (increase of elastic modulus approximately by 300%) and the formation 
of large collagen molecular aggregates, including the appearance of cross links—
predominantly between the fibril surface molecules and also between proteoglycans 
in the interfibrillar space [73–75].

In the following decades, the corneal cross-linking technique has seen wide-
spread clinical application with indications for its usage expanding significantly. 
Effectiveness of the method for strengthening biomechanical properties was 
confirmed for the treatment of not only progressive keratoconus, but also pellucid 
marginal degeneration and iatrogenic ectasia caused by excimer laser surgery [76].

An important suggestion has been made recently for reinforcing the effect of 
corneal cross-linking—to combine the procedure with implantation of corneal 
segments [77, 78]. Comparative studies of different treatments—individually and 
in combination—showed the most pronounced effect to be from the combination 
therapy starting with the implantation of corneal segments and followed by cross-
linking, and not in the reverse order. Such combination therapy also helps to achieve 
better results (weakening of manifest refraction and keratometric indicators) in 
cases with keratectasia after excimer laser surgery [79].

There is another method described in the literature as directed laser ablation; it 
involves biomechanical approach to ablation calculations. Vaporization of the tissue 
thus happens on the middle periphery, which contains certain relatively flat spots, 
and not in the central (thin) area. The rationale is that thinning of the area leads 
to steepening of the cornea subsequently flattening the unablated area, which has 
more optical power [80]. It should be noted that in clinical practice, this method 
requires very careful consideration and cautiousness due to insufficient studies on 
its after effects.

Furthermore, a multimodal approach involving implantation of intrastromal 
rings, CXL, and laser ablation in different configurations may provide not only 
stability of corneal topography, but also positive refraction result, thanks to the 
combination of all the methods’ advantages [81–85]. That said, the lack of estab-
lished standards and clinical recommendations for combining different methods for 
the correction of corneal biomechanical properties may lead to various complica-
tions and unexpected aftermaths; it should be kept in mind when planning such 
treatment.

7. Conclusion

In summary, clinical relevance of studying biomechanics of the fibrous tunic 
is difficult to overestimate. The diversity of methods used for examination of 
biomechanical properties of the cornea means there is no single method that could 
fully satisfy the needs of practical ophthalmology. Further studies are necessary to 
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develop simple, available, and sufficiently informative method for clinical assess-
ment of ocular biomechanics. Moreover, the demand for techniques of correcting 
biomechanical properties keeps growing, and so this field of research has wide 
potential.
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