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Chapter

Immune Cell Profiling in 
Cancer Using Multiplex 
Immunofluorescence and 
Digital Analysis Approaches
Edwin Roger Parra

Abstract

During the last years, multiplex immunofluorescence (mIF) has emerged as a 
very powerful tool in multiple epitope detection to study tumor tissues. This revolu-
tionary technology is providing an important visual technique for tumor examina-
tion in formalin-fixed paraffin-embedded specimens for a better understanding of 
tumor microenvironment, new treatment discoveries, cancer prevention, as well 
as translational studies. The aim of this chapter is to highlight the use of tyramide 
signal amplification methodology in mIF and image analysis to identify several 
proteins at the same time in one single tissue and their spatial distribution in dif-
ferent tumor specimens including whole sections, core needle biopsies, and tissue 
microarrays. This type of methodology associated with image analysis can perform 
high-quality throughput assay in translational research studies to be applied in 
cancer prevention and treatments.

Keywords: tyramide signal amplification, conventional IHC protocol, 
immunoprofiling, cancer tissues, image analysis, spatial analysis

1. Introduction

In the last years, novel and effective immunotherapies for patients with different 
tumor types are becoming clinically important, because of the remarkable clinical 
efficacy observed with several immune checkpoint inhibitors such as cytotoxic T 
lymphocyte antigen 4 (CTLA-4) and the programed death receptor 1 (PD-1) or its 
ligand (PD-L1) [1–12]. Whereas anti-CTLA-4 antibodies (ipilimumab and tremeli-
mumab), anti-PD-1 antibodies (nivolumab and pembrolizumab), and anti-PD-L1 
antibodies (atezolizumab, avelumab, and durvalumab) have produced remarkable 
results, increasing the survival prognosis in many cancer types, it is still unknown 
why some tumors do not respond to or relapse after this type of treatment. In this 
way, increased observations suggest that tumors rich in tumor-associated immune 
cells (TAICs) may respond to therapies targeting immune system inhibitory or 
stimulatory mechanisms, and tumors with non-TAICs may require additional inter-
ventions aimed at promoting optimal inflammation and innate immune activation in 
the tumor microenvironment [13–15]. Indeed, characterization of different immune 
checkpoints as well as tumor microenvironment in patients with cancer has become 
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a fundamental step in providing evidence for the presence of distinct immunologic 
phenotypes, based on the presence or absence of various immune cells [1, 16, 17] 
that can predict the response to the therapy. In this way, the study of immune check-
points and TAICs and their interaction prompt the need for multiplexed analyses of 
tumor tissues. To address this need, in the last years, multiplex imaging platforms 
have emerged as an important tool to provide critical information about cancer 
microenvironment, prognosis, therapy, and relapse [18–22]. Different components 
in the tumor microenvironment can be examined simultaneously using multiplex 
methodologies, providing insight into biological cross-talk present at the tumor-host 
interface and from subcellular levels to entered cell populations. In addition, the 
precision of these new techniques can be used to evaluate the special distribution of 
multiple biomarkers detected simultaneously, and their coexpressions or interac-
tions between cells are becoming a essential tool to study tumor tissues [22] and to 
ultimately enhance disease diagnosis and better inform timely patient care [23].

Multiplex technologies are being used to identify the presence of multiple bio-
logical markers as immune checkpoint and TAICs on a single tissue sample [24]. The 
multiplex imagining techniques provide unique biological information that in many 
cases cannot be obtained by other imaging methods or by single immunohistochem-
istry (IHC) techniques. As mentioned, individual cells can be accessed with extraor-
dinary fidelity equal to that achievable in the bulk population, such that even rare 
cell populations can be studied to understand their important role in translational 
research, and this knowledge can be applied in cancer prevention and treatment. In 
this chapter, we will discuss one of the most reliable and a very well-known meth-
odology to identify simultaneous biomarkers in formalin-fixed, paraffin-embedded 
(FFPE) specimens as well as its imaging analysis platform as an important tool for 
potential application in future cancer immunotherapy biomarker discoveries.

2. Tyramide signal amplification for multiplex staining in FFPE tissues

Tyramide signal amplification (TSA) was described in the 1990s by Bobrow and 
colleagues [25, 26]. It is an enzyme-linked signal amplification method that is used 
to detect and localize low copy number of proteins present in tissues by conventional 
IHC protocol, using, most commonly, alkaline phosphatase or horseradish peroxidase 
(HRP) enzymatic reaction to catalyze the deposition of tyramide-labeled molecules at 
the site of probe or epitope detection. Tyramides are conjugated to biotin or fluores-
cent labels and revealed by streptavidin-HRP system [27, 28]. The HRP catalyzes the 
formation of tyramide into highly reactive tyramide radicals that covalently bind to 
electron-rich tyrosine moieties close to the epitope of interest on FFPE tissue. Tissue 
surfaces with anchored biotinylated tyramide must be further treated with fluores-
cent- or enzyme-tagged proteins that have a high affinity for biotin, such as streptavi-
din, before microscopic visualization [27, 28]. The detection of the proteins is increased 
more than ten times compared to standard biotin-based staining methods [29].

Perkin Elmer developed the Opal™ workflow (Figure 1), which allows simultane-
ous staining of multiple biomarkers within a single paraffin tissue section. Multiplex 
immunofluorescence (mIF) allows researchers to use antibodies raised in the same 
species, and different panels combined with different targets can be created using this 
technology [21, 27]. The approach, in the manual protocol, involves detection with 
fluorescent TSA reagents, followed by microwave treatment that removes the primary 
and secondary antibodies between cycles and any nonspecific staining that reduces 
tissue autofluorescence for each antibody cycle. The correct ordering of the differ-
ent antibodies in a panel is still challenging and is only solved by trial and error to 
obtain a perfect staining. In the automated protocol using Leica Bond RX or another 
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autostainer, the time of staining is reduced drastically when compared with manual 
staining. The possibilities for mIF are expanding our knowledge of tumor immune 
contexture (Figure 2) in different types of cancers. Mapping the tumor microenvi-
ronment and the predictive and/or prognostic value of immune checkpoint expres-
sion on malignant cells and TAICs has been carried out in patients with melanoma, 
lung cancer, breast cancer, gastric cancer, Hodgkin lymphoma, and others by mIF 
[30–34]. Similar to other multiplex techniques, in the TSA mIF method, our experi-
ence showed that the approach to different targets requires diligent optimization, first 
in conventional chromogenic IHC validation and then in the simplex IF, before mIF 

Figure 1. 
Tyramide signal amplification workflow. After primary antibody (Ab), the HRP-conjugated secondary 
antibody binds to an unconjugated primary antibody specific to the target/antigen of interest. Detection 
is ultimately achieved with a fluorophore-conjugated tyramide molecule that serves as the substrate for 
HRP. Activated tyramide forms covalent bonds with tyrosine residues on or neighboring the protein of interest 
and is permanently deposited upon the site of the antigen. The method allows for serial cycles of the primary/
secondary antibody pairs, while preserving the antigen-associated fluorescence signal, making this process 
amenable to multiple rounds of staining in a sequential fashion.

Figure 2. 
(A) Vectra® and (B) Polaris™ scanner systems, (C) low magnification image, showing the selection of five 
intratumoral areas of interest to be analyzed, (D) composite image of lung cancer tissue showing seven color 
markers to identify different cell populations, (E) tissue segmentation (epithelial and stromal compartments), 
and (F) cell populations’ immune phenotyping.
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staining in control tissues. The use of specific, very well- standardized, and validated 
antibodies, as well as the careful use of other components, as right antibody titration, 
incubation time, and antigen retrieval during staining, is important to obtain good 
and reproducible results using different panels [27]. The use of very well-known con-
trol tissues during each staining and for each created panel that allows all the markers 
is important and essential to detect possible staining errors during the process in each 
mIF panel. Properties of the FFPE material, such as sample age, method of preserva-
tion, storage conditions, and tissue type, are very important factors to be considered 
to obtain high-quality mIF staining and good data. Pathologists play a key role in 
making sure that tissue samples collected are appropriate for diagnostic and research 
purposes. The tissues need to be processed adequately, that is, fixed in 10% formalin 
and stored in good conditions to avoid antigenic deterioration that can influence the 
process when targeting several proteins using this methodology. Type of tissue, is 
another important factor to be considered, sometimes as a limitation factor for a qual-
ity staining with this technique. We observed that some tissues that have abundant 
fat as breast tissue or cartilage in some type of cancers or bone component that were 
submitted a decalcification procedures, are more challenges during the mIF stain-
ing, showing frequently artifacts of staining like background, folds, caused by tissue 
detached and unspecific or not clear staining on the cells, causes by the decalcification 
procedures. Antibodies with very good performance in decalcified tissues are limited, 
and those need an exhaustive validation in IHC before creating a new panel to stain 
these samples. No less important, the size of the sample is another factor to be con-
sidered during mIF staining; small biopsies as core needle biopsies (CNBs) less than 
1.0 × 0.2 cm are more challenging and have high probability to be lost during standard 
mIF staining than bigger tissues as whole sections (~1.0 × 1.0 cm). The minimum 
number of malignant tumor cells required for mIF marker analysis has not been 
well established and is another factor to be considered during staining and analysis. 

Specimen 

type

Size (cm) Viable 

tumor 

cells (N)

Necrosis 

(%)

Fat/cartilage/bone (%) Adequacy 

for mIF 

staining*

Whole 

section

>1.0 × 1.0 >100 0 or <10 0 or <10 of any 

component

100% in our 

series

Whole 

section

>1.0 × 1.0 >100 0 or >10 >50 of any component 80% in our 

series

Small 

biopsies

>1.0 × 0.2 >100 0 or <10 0 or <5 of any 

component

100% in our 

series

Small 

biopsies

<1.0 × 0.2 >100 <10 <50 of any component 70% in our 

series

Small 

biopsies

<1.0× 0.2 <100 >10 >50 of any component 50% in our 

series

TMA (by 

core)

>0.1 >100 0 or <5 0 or <5 of any 

component

100% in our 

series

A preliminary quality control to establish the samples by a pathologist is strongly recommended to optimize the 
preparation of tissue for multiplex immunofluorescence staining and ultimately to guaranty a quality data. Each 
case needs to be considered separately and can be influenced by several characteristics. In general, the quality of the 
samples including the fixation process of the FFPE tissues, storage and cutting procedures, will influence the quality 
of multiplex staining (*). There are, however, according to our experience, different tissue characteristics that need 
to be considered as challenges for staining and analysis, and these are considered sometimes as limitations of the 
staining. By understanding much better these tissue limitations, we can avoid wasted effort, resources, and funds of 
the laboratory as well as preserve the high-quality data obtained by this technique.

Table 1. 
Quality criteria’s samples for multiplex immunofluorescence.
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According our experience, samples with at least more than 100 malignant cells are 
preferred, to avoid errors in the interpretations of different markers, especially when 
the targets of study are malignant cells. Necrotic areas in more than 50% of the entire 
sample can compromise the quality of the staining and when compromise the quality 
of the sample and the staining need to be considered judiciously by the pathology as 
excluded criteria to preserve the quality of the analysis and data (Table 1). The qual-
ity control of pathology, as a first step, is essential to avoid wasted effort, resources, 
and funds of the laboratory and to preserve the high-quality data obtained by this 
methodology.

3. Image approaches and data analysis

Although the methodology of TSA is available for FFPE material and can enable 
multiparametric readouts from a single tissue section, they sometimes have limited 
scalability and throughput, related to limited number of markers allowed per panel 
compared with other multiplex methodologies like imaging mass cytometry and 
multiplexed ion beam imaging [35, 36]. The scanner system (Figure 2) Vectra® 
[27] from PerkinElmer provides high quality of scanning with high-resolution 
and multiband filter cubes that provide greater flexibility associated with the 
multispectral camera, to match with the sample. The new generation of scanner 
Polaris™ (PerkinElmer) scan system supports multiple filters using tunable LED 
excitation, similar to confocal microscope, and the captured signals are assembled 
in a composite image [37]. After acquiring the panoramic low-magnification images 
at ×4 or ×10, the specimens can be sampled using different ROI sizes by the pheno-
chart (PerkinElmer) software viewer to scan high-resolution images at ×20 or ×40. 
Although, the scanner system Vectra®-Polaris™ can capture different regions of 
interest (ROIs) using the filters and the multispectral camera at high quality resolu-
tion [36], it is still impossible to accelerate the process of scanning or scan the whole 
tissue section as a unique image for the analysis. The time for scanning the sample 
is variable and depends on the number of markers used in the panel, number of 
ROIs captured per sample, and size of the ROI and can take from minutes to several 
hours according these parameters [38] (Table 2). According our experience, the TSA 

Magnification Scanner ROI (Vectra®)/(PolarisTM)  

(seven markers)
Vectra® (Time/

minutes)

PolarisTM (Time/

minutes)

4×* ~9 – Panoramic view

10×* ~18 ~13 Panoramic view

20× ~6 ~5 1×1 (669×500 μm)/(931×698 μm)

20× ~12 ~14 2×2 (1338×1000 μm)/(1862×1396 μm)

20× ~22 ~35 3×3 (2007×1500 μm)/(2793×2094 μm)

40× ~4 ~8 1×1 (334×250 μm)/(465×249 μm)

40× ~10 ~20 2×2 (669×500 μm)/(931×698 μm)

40× ~19 ~36 3×3 (1004×750 μm)/(1396×1047 μm)

The time for scanning the sample is variable and depends on the number of markers used in the panel, number of 
regions of interest (ROI) captured per sample, and size of the ROI using Vectra® or PolarisTM system, as well as 
whether the system stores the image locally or in a server.*Available only in Vectra®.

Table 2. 
Approximate time for image scanning using Vectra® or the PolarisTM scanner system.
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staining system for mIF when combined with multispectral image analysis software, 
such as InForm (PerkinElmer), can provide a powerful tool for analysis of multiple 
markers in one single slide [21, 39]. However, there are many available software in 
the market that can be used for the analysis of mIF images generated by the InForm 
software from the Vectra®-Polaris™ scanner systems, and it is important to know 
that the InForm software is essential to generate the individual unmixed tyramide 
fluorochrome with a positive signal without noise or aberrant background staining 
and with high resolution performance across the different ROIs from the scanning 
systems [40]. For the analysis, image analysis software need to be accessible (Table 3),  
with easy automated capabilities of detection, including tissue segmentation, 
compartmentalization of the staining (e.g., nuclear, membranous, or cytoplasmic) 
(Figure 2), and spatial colocalization of cell distribution, critically important to 
study different markers included in different panels (Figure 3). In the same way, 
comprehensive evaluation using this different image analysis software is needed not 
only for clear antigen demarcation and good staining procedures but also for good 
interpretation of the results. Pathologists are very important and need to standardize 
the possible interobserved variation [41, 42] when using different image analysis 
platforms during the colocalization of proteins.

4. Multiplex immunofluorescence staining from translational research

Despite the evolution in the last years, in different levels of cancer research, 
concerning prevention, diagnosis, therapeutic options, and follow-up methods, 
cancer diseases are still the major public health problem worldwide [43]. Profiling 
immune cells is currently a powerful metric for tumor subclassification and predict-
ing clinical outcomes. A great variety of cancer research screening tools is applied 
to diagnose tumors and has been established for different tumors. Simultaneous 
quantification of more than one biomarker at the same time has become more 
and more interesting in cancer research using different multiplex technologies. 
Multiplex TSA can allow different biomarkers in one single slide, targeting different 

Vendor Program name Method Availability

PerkinElmer InForm Color-based colocalization, tissue, cell 

segmentation

Licensed

Definiens Tissue Studio Imaging segmentation, marker intensity 

measurement, and statistical analysis

Licensed

Indica Labs HALO Membrane, colocalization, immune cell 

proximity, spatial analysis

Licensed

Visiopharm Visimoph 

Tissuemorph

Signal intensity, area, counting objects, 

statistical analysis

Licensed

Spot Imagine Spot advanced Color-based colocalization Licensed

FARSIGHT Nucleus Editor Multichannel-based object identification/

toolkit

Free

NIH Image J Color-based, user interactive segmentation Free

HistoRx AQUAnalysis Signal intensity per unit area and per layer Licensed

CompuCyte iCyte Nucleus segmentation or phantom 

contouring, measuring associated signals

Licensed

Table 3. 
Image analysis software systems available for multiplex immunofluorescence.
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systemic processes, such as inflammation, immunocheckpoints, angiogenesis, or 
cell death using tumor markers (Figure 3), to improve cancer prevention, diagnos-
tic accuracy, and treatment. We demonstrated that this method can offer important 
advantages, such as high-throughput performance, low material requirement, wide 
range of applications, and cost- and time-effective multiplex for several parameters 
in different panels [23, 44, 45]. Several biomarkers can be cancer-specific since 
malignant cells of different histologic types can produce different patterns of 

Figure 3. 
Microphotographs of representative examples of multiplex immunofluorescence in tumor tissues using different 
markers, (A) lung adenocarcinoma, (B) lung squamous cell carcinoma, (C) malignant melanoma, and 
(D) lung squamous cell carcinoma. ×20 magnification.
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proangiogenic factors, growth factors, and immune cells that are tumor related. The 
study of biomarker panels (Figure 3) and its spatial distribution (Figure 4) can be 
used for early diagnosis and assessment of therapy response [46]. This methodol-
ogy can represent an ideal method to realize personalized therapies using efficient 
mIF panels and help to understand much better the cancer microenvironment, 

Figure 4. 
Microphotographs of representative examples of spatial-distribution visualization of different phenotypes 
analyzed. (A) distribution of individual cells using X and Y positions, (B) spatial localization of selected cells, 
and (C to F) distance measurements between malignant cells (MCs) and different cell populations.
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highlighting the benefit for exploring immune evasion mechanisms and finding 
potential biomarkers that allow researchers to assess the mechanism of action and 
predict and track response [47].

5. Conclusion

The detection of multiple markers in the same tissue section can provide impor-
tant and efficient means to apply this technology in disease diagnosis, prevention, 
and translational research. Multiplex immunoflourescence platforms have emerged 
more and more from translational research labs toward the clinic, increasing the 
opportunity to study and understand much better the tumor-immune interac-
tions. This methodology and different image analysis strategies can give important 
information about immune cells’ coexpression and their spatial-pattern distribution 
in the tumor microenvironment. Development of multiplex immunoflourescence 
based-TSA system requires a very well-trained multidisciplinary team includ-
ing pathologists, oncologists, and immunologists. In addition, this methodology 
requires automation to provide efficient and fast information as well as easy analysis 
methodologies for research pathologists that currently use this method.
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