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Abstract

Cardiovascular diseases such as stroke, coronary artery disease, and thrombosis remain a 
global health burden. Understanding the mechanism of these diseases paves the way for 
development of prophylactics/therapeutics. It is well known at cellular levels; the patho-
physiology of most of the cardiovascular disease involves a complicated yet coordinated 
signaling networks triggered in response to either cellular or tissue levels of hypoxic 
milieu. Information related to types of hypoxia and signaling mechanism associated to 
such complications if complied and presented in a comprehensive manner shall prove 
relevant in proposing common therapeutic targets for wide array of cardiovascular com-
plications. The relative functional roles of hypoxia-triggered signaling pathways are also 
an area of current research. Based upon these facts, this chapter discusses the types of 
hypoxia and role of hypoxia-mediated signaling pathways in various types of commonly 
occurring cardiovascular disorders.

Keywords: hypoxia, signaling, cardiovascular disorders, thrombosis, therapeutics

1. Introduction

Oxygen concentration below the tissue specific physiological levels is termed as ‘Hypoxia’. 
Depending upon the cause of oxygen scarcity, hypoxia can be classified into Hypoxic hypoxia 
(occurs due to deficiency in oxygen exchange in lungs or arises due to reduced partial pres-

sure of oxygen in air), Anemic hypoxia (arises when the transport of oxygen is affected), 
stagnant hypoxia (due to delayed blood renewal, or insufficient blood flow) or histotoxic 
hypoxia (body is not able to use the available oxygen) [1]. Among its various types, stagnant 

hypoxia and hypoxic hypoxia are most common types associated with pathophysiology of a 

variety of cardiovascular disorders (CVDs) such as hypoxic milieu developing in veins due to 

reduced blood flow promotes thrombus formation [2, 3], whereas, environmental hypoxia at 
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high altitude exposures also promotes a prothrombotic tendency [4, 5]. Physiological altera-

tions are ultimately orchestrated as a myriad of changes at both cellular and molecular levels. 

These changes involving the activation of transcription factors (Hypoxia-inducible Factors-1, 
NF-kB), their downstream signaling pathways, generation of reactive oxygen species and 
many other molecular adaptive responses in cells, also contribute toward the development 

of diseased phenotype. A better understanding of these signaling pathways would lead to 
the identification of putative targets for development of therapeutics and prophylactics to 
reduce the burden of CVDs. The current chapter discusses the hypoxia-associated patho-

physiological changes toward disease progression and major transcription factors playing a 

role in hypoxic conditions, the signaling and molecular events involved in commonly occur-

ring CVDs. Expanding the understanding of the hypoxia-associated molecular-signaling 

pathways and cross-talk between them will provide new avenues of therapeutic opportunity 

of the disease.

2. Master regulators of hypoxia responsive factors

2.1. Transcription factors

2.1.1. Nuclear factor (NF)-kβ

Nuclear factor (NF)-kβ is a eukaryotic transcription factor that mediates inflammatory pro-

cesses through Rel family of proteins and was originally described as a nuclear factor required 

for immunoglobulin k light-chain transcription in B cells [6]. Normally, in most of the cells, 

NF-kβ lies in its inactive state by binding to the inhibitor IkB and is retained in cytoplasm. 

Upon sensing an inflammatory stimulus, IkB undergoes ubiquitin-mediated degradation and 
NF- kβ translocation takes place to the nucleus [7]. Inside the nucleus, NF-kB regulates the 
transcription of a number of genes. NF-kβ plays a central role in inflammatory processes 
by orchestrating the expression of numerous factors (cytokines, adhesion molecules and 

enzymes) [8, 9].

Activation of NF-kβ also occurs in cardiovascular tissue with a concomitant increase in expres-

sion of iNOS (inducible nitric oxide synthase) protein. Increased NF-kβ activity in circulating 

neutrophils and raised plasma levels of NF-kβ, controlled gene products, soluble E-selectin 

and soluble vascular cell-adhesion molecule-1(VCAM-1) are a response to hypoxia in patients 

of obstructive sleep apnea syndrome (OSAS) [10].

2.2. Hypoxia-inducible factor-1 (HIF-1)

HIF-1 is a heterodimeric transcription factor consisting of a constitutively expressed-β sub-

unit and an α-subunit containing an oxygen dependent degradation (ODD) domain [11]. 

Under normoxic conditions, hydroxylation of ODD occurs in an oxygen dependent manner 

rendering α-subunit vulnerable to proteasomal degradation [12]. Therefore, HIF-1 is sup-

pressed in normoxia, whereas under hypoxic conditions, HIF-1 is stable and active, capable 
to bind to the regulatory regions of its target genes and inducing their expression. HIF-1 is 
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the major regulator of oxygen homeostasis, for adaptation to hypoxia involving increasing 

tissue reperfusion, and oxygenation, thereby, overcoming initial hypoxic insult [13]. Even 

under normoxic conditions also HIF-1 regulates the shift to increased glycolysis and anaero-

bic metabolism at low oxygen tensions [13]. HIF-1 regulates a number of target genes (such 
VEGF-1, EPO). Furthermore, mammalian HIF-1α has three isoforms viz. HIF-1α, 2α, and 3α. 

HIF-1α accumulation is the key regulatory subunit for assembly of HIF under low O
2
 condi-

tions. Regulation of HIF-1α occurs post-translationally in response to low O
2
 levels [14, 15].

2.3. Interaction between NF-kβ and HIF-1 pathways

Although, NF-kβ and HIF-1 has independent roles in gene regulation, their cross-talk plays 
equally important role in pathophysiology of a number of diseases. Structurally, there lies an 

active NF-kβ binding site, in the proximal promoter site of HIF-1 gene and NF-kB, regulates 
the basal levels of HIF-1 gene expression [16]. Even under hypoxic conditions, HIF-1 tran-

scription is upregulated through NF-kβ dependent mechanism [17]. Reports are there to show 

that hypoxia-induced transcription of NF-kβ depends upon the presence of HIF-1 and HIF-1 
also directly, regulates neutrophil survival in hypoxia via NF-kβ modulation [18]. Higher 
expressions of HIF-1 are related to increased NF-kβ activity and an enhanced inflammatory 
response [18, 19]. Some of the common gene products are shared by HIF-1α such as eNOS, 

a potent vasodilator whose bioavailability is increased by coordinated action of HIF-1 and 
NF-kB. In OSAS even crosstalk of NF-kβ and HIF-1 also play a central role [20].

3. Hypoxia in various CVDs

3.1. Hypoxia in obstructive sleep apnea syndrome

OSAS have been recognized as a major health problem affecting developed countries. The 
disorder is characterized by obstruction of upper airways during sleep resulting in sleep frag-

mentation and excessive day time sleepiness. OSAS has shown to have a causal relationship 

with CVDs [21–23]. Although pathogenesis of CVDs in OSAS is multifactorial, the proposed 

mechanism by which OSAS predisposes to CVD includes sympathetic excitation, vascular 

endothelial dysfunction, metabolic dysregulation as well as oxidative stress and inflamma-

tion induced by cyclical intermittent hypoxia [24]. Evidences are there to show that inflam-

matory pathways mediate the pathobiology of cardiovascular complications in OSAS. The 

pattern of intermittent hypoxia in patients of OSAS can be either repetitive cycles of hypoxia/
reoxygenation or it can be with prolonged periods of sustained hypoxia allowing for develop-

ment of an adaptive response, associated with increased tissue perfusion and oxygenation 

whereas shorter intermittent hypoxic exposures may also activate inflammatory pathways 
[25, 26]. Intermittent hypoxia directly promotes the production of cytokines and inflamma-

tory cells in OSAS patients. The inflammatory response in OSAS is regulated by NF-kβ and 

HIF-1α. A rise in NF-kβ activity and its downstream product TNF-α has been observed in 

OSAS. Levels of TNF-α has also been found to be higher in serum samples of OSAS patients 

as compared to age and sex matched controls. OSAS patients also show elevated monocyte 
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NF-kβactivity [25]. In OSAS, patients with several nocturnal hypoxemia, HIF-1, can be viewed 
as a pro-inflammatory contributor to hypoxic response by promoting inflammatory cell sur-

vival [27, 28].

3.2. Venous thrombosis: role of valvular stasis-associated hypoxia

Venous Thrombosis involves the formation of a thrombus inside deep veins usually in legs. 

Such thrombus can break off and travels in circulation and may lodge at pulmonary vascu-

lature leading to Pulmonary Embolism, which may cause death. As per current understand-

ing the luminal thrombus in veins develops in the presence of increased stasis and hypoxia 

resulting from the outgrowth of a progressively occlusive thrombus extending from valve to 

lumen [2, 29]. Evidences for the role of stasis (reduced blood flow), include clinical scenario 
like long term immobilization due to hospitalization. Pressure of stasis in venous valves is 

supported by the observation that contrast media used in venography lingers in the veins for 

up to 60 min after the procedure in the elderly with a clear gradient of increasing stasis with 

age [30]. Further, pO
2
 measurements in sinuses of dogs by Hamer et al. have established that 

prolonged stasis leads to severe hypoxia at venous valvular sinus. A steeply declining pO
2
 

gradient from 5 to 1 kPa was observed after 2 h of stasis [31]. However, the anatomical loca-

tion of the severe hypoxia and thrombus initiation were same site [29]. Changes in blood flow 
pattern are attributed to generation of hypoxia. Role of HIF-1α is venous thrombus is contra-

dictory and interplayed. An earlier study revealed that HIF-1α stimulates, vein recanalization 

and thrombus resolution [32] however, study by Gupta et al. suggest that HIF-1α plays a role 

in thrombus development [33].

3.3. Pathways associated with ischemia-associated thrombosis

Reduced blood flow in veins (also called as stasis), is associated with reduced intravascular 
O

2
 tension and thrombus progression. However, only reduced levels of O

2
 have not been 

found sufficient to trigger fibrin clot formation. Although interplay of hypoxia with differ-

ent cell types, majorly mononuclear phagocytes and polymorphonuclear leucocytes, can 

contribute, the association between hypoxia and hypoxemia has remained strong, despite 

extensive mechanistic explanations [3, 34]. In thrombotic episodes, hypoxemia is found severe 

in proximity to venous valve cusps and nascent thrombi develop on apparently intact endo-

thelial surface at the parietal aspect of valve cusps during hypoxemia [3]. In addition, in vivo 

exposures to intermittent hypoxia/reoxygenation are also associated with thrombus forma-

tion. Under such settings, hypoxia/hypoxemia is sufficient to cause venous thrombosis. Stasis 
leads to ischemia that is associated with a myriad of changes in vascular microenvironment, 

increased vascular permeability [3].

In a mice model of hypoxia-induced thrombosis, administration of blocking Ab to tissue factor 

(TF) suppressed fibrin deposition [35]. This observation was also supported by the evidence 

generated when TF expression was analyzed in hypoxic murine lungs. Hypoxic exposure 
produced ~20 fold rise in TF transcripts in hypoxic lungs in comparison to normoxic ones 
[36]. In such cases, early growth receptor-1 (egr-1) has been identified as the primary driv-

ing motif for hypoxia-induced TF transcriptional upregulation. The biological importance of 
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egr-1 has also been validated in in vivo model system where egr-1 null animals when exposed 

to hypoxia showed a minimal rise in TF mRNA levels with no change in antigen levels in com-

parison to normoxia exposed controls [37]. Earlier evidences indicate that oxygen deprivation 

promotes egr-1 synthesis due to binding of ternary complex factor to serum response element 

(SRE) sites in egr-1 promoter region [38]. Egr-1 also plays a central role in monocyte expres-

sion of TF under hypoxia. Expression of egr-1 initiated mechanism in pathologic changes 
associated with hypoxia point toward novel strategies to prevent these events, that is, target 

egr-1 rather than directly targeting coagulation mechanism. These series of events producing 

exposure of TF in hypoxemic vasculature especially in mononuclear phagocytes and smooth 
muscle cells provide a new biologic context to consider mechanisms underlying and possible 

interventions to prevent hypoxia-induced thrombosis.

3.4. Hypoxia signaling in inflammation and tissue regeneration, with role in chronic 
obstructive pulmonary disease (COPD) (studies with zebrafish models)

Most of the in vitro studies have been complemented by in vivo model systems to obtain a 

more physiologically relevant setting to understand the inter-relationship of hypoxia and 
disease. Rodents are most widely used. Mice and rats are highly amenable to manipulation 

and are small enough to fit into hypoxic chambers for longer periods of time. With advent of 
technology and in present era, Zebra fish are also used as a new whole-organism model of 
disease to understand the complex physiology involved [39]. One of the primary reasons is 

that zebrafish have optically transparent larvae; an opportunity to visualize disease processes 
in vivo using fluorescence microscopy. In addition, high-throughput drug screening can be 
done easily by addition of small molecule compounds to the embryo in water [40]. An injury 

to blood vessel is often associated with tissue hypoxia when blood flow is restricted in local-
ized milieu. Even, inflammation can occur and recruitment of immune cells at the injury site 
occurs and clearance of damaged cells takes place to prevent infection [41]. Innate immune 

cells (leucocytes) are the first one to respond to injury and sense change in local oxygen levels. 
This inflammatory response is highly regulated by HIF, signaling, contributing to the regula-

tion of immune activity and lifespan of leucocytes, as timely resolution of inflammation is also 
necessary otherwise failure to timely resolution may result in inflammatory diseases such as 
COPD [42, 43]. Once inflammation is resolved, tissues thus regenerate and homeostasis is 
restored. In zebrafish models, cardiomyocytes regeneration is dependent upon HIF-1α signal-

ing by virtue of which cardiomyocytes can survive and regenerate with an injury of 20% of 

heart tissue thereby identifying HIF-1α as a potential therapeutic target [44, 45].

3.5. Hypoxia in heart and cardiac dysfunction: role of reactive oxygen species (ROS)

Myocardial gene expression highly depends upon the levels of O
2
. O

2
 levels change either dur-

ing isolated hypoxia or ischemia-associated hypoxia, as a result gene expression patterns are 
altered. In experiments, conducted with myocardial infarction-induced mice, HIF-1α stability 

was found to reduce infarct size and decrease the number of apoptotic cells [46]. The pos-

sible explanation is an upregulation of cardiotrophin-1 (member of IL-6 family) by HIF-1α in 

hypoxic environment. Further, impaired cardiac muscle contractility due to reduced calcium 
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ion uptake by cardiomyocytes along with certain amount of dilation in muscles was the addi-

tional factor involved [47–49]. This elevated HIf-1α levels may lead to better cardiomyocyte 
survival under hypoxia.

In addition to the regulatory role of transcription factors, formation of ROS is another major 

event occurring under oxygen regulation conditions. ROS participates as a benevolent mol-

ecule in cell signaling processes and can induce irreversible cellular damage. Formation of 
ROS in heart or other tissues may occur by several mechanisms either by xanthine oxidase 

(XO), NAD(P)H, oxidases, and cytochrome P450, or by auto-oxidation of catecholamines and 
by uncoupling of NO synthase (NOS) [50–52]. Presence of unpaired e- on NO facilitates its 

reaction with O
2
- to form peroxynitrites (ONOO−), an oxidant. Further, Formation of ROS is 

also induced by cytokine stimulus, growth factors such as angiotensin II (ATII), PDGF and 
TNF-α [50, 53]. As an adaptive response, production of ROS is counterbalanced by several 

enzymatic (such as superoxide dismutase (SOD), Catalase, Thioredoxin) and non-enzymatic 

mechanisms (intracellular oxidants such as vitamins E, C, β-carotene, ubiquinone lipoic acid 

and glutathione) [54–56]. Deletion of Thioredoxin reductase leads to cardiac abnormalities 

and even cardiac death, secondary to severe dilated cardiomyopathy [57]. Activation of ROS 

occurs in response to various stressors and in failing heart as well (Table 1).

3.6. Hypoxia-mediated inflammation in atherosclerosis

Inflammation and hypoxia are integral parts in development of atherosclerosis. Data from 
recent reports suggest that HIF-1α is involved in the pathogenesis of atherosclerosis. Smooth 

muscle cells extracted from coronary arteries showed that HIF-1α increased activity was related 

to increased VEGF expression required for proliferation of smooth muscle cells (SMC) [70]. 

Moreover, hypoxia also produces HIF-1α dependent increase in macrophage migration inhibi-

tory factor (MIF)-required for escalation of migration increased proliferation of vascular SMCs 
during progression of atherosclerosis [71]. In developing atherosclerosis chronic inflammation 
and various types of cells (SMC, EC monocytes/macrophages, and T lymphocytes) are involved 

in plaque formation [72]. Even, the oxygen supply from the luminal blood strongly affects the 
cells of blood vessel wall [73]. In developed atherosclerosis, tissue hypoxia occurs at the plaque 

lesion and HIF-1α expression occurs at the macrophage rich center of plaque [72, 74].

HIF-1α also upregulates the expression of low density lipoprotein receptor related pro-

tein-1 (LRP1) associated with cholesterol independent progression of atherosclerosis [75]. 

In fact, bone marrow transplantation of muscle specific HIF-1α deficient mice reduced the 
plaque burden in aorta of Ldlr−/− mice. Furthermore, expression of inflammatory genes 
(M1 macrophage accumulation) was also suppressed in HIF-1α deficient mice [76]. It is also 

known that tissue hypoxia in plaque lesion is not a consequence of increased plaque bur-

den but a consequence of HIF-1α signaling-mediated M1 macrophage activation [72, 77].

3.7. Congenital heart diseases (CHD): role of spatially differential hypoxia

CHDs are the major inborn abnormality with major role of environmental factors. The role 
of non-physiological hypoxia during early pregnancy also induces CHD. Reports are there to 
show that cells in the mouse heart tube are hypoxic while cardiac progenitor cells (CPCs) in the 

secondary heart field are normoxic. This spatial difference in the oxygenation of developing 
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heart serves as a signal to regulate the expansion of CPC and cardiac morphogenesis. The 

response is also mediated by HIF-1α, where HIF-1α forms a complex with notch effector HES 
family bHLH transcription factor 1 (HES 1) and protein deacetylase sirtuin1 (SIRT1) at the 
ISL1 gene (islet gene) where ISL1 repression occurs in hypoxic heart tube or as a response to 

ectopic hypoxic response and prevents CHDs. Thus this is an example where spatial differ-

ence in physiological hypoxia maintains the homeostasis for CPCs and provides mechanistic 

explanation for non- congenital CHDs [78].

3.8. Pulmonary arterial hypertension (PAH)

PAH is clinically manifested as elevated BP in pulmonary artery with resulting right ven-

tricular heart failure [79, 80]. Hypoxia is known to elicit pulmonary vasoconstriction and 
arterial remodeling [81, 82]. Hypoxic exposures are the commonly used murine models of 
PAH. Recently, pulmonary endothelial specific HIF-2α deficient mice showed tolerance to 
hypoxia-induced PAH as compared to HIF-1α deficient or control mice [83]. As a molecular 

mechanism HIF-2α regulates NO production in pulmonary vasculature via induction of argi-

nase-1, thereby indicating that HIF-2α-Arginase-1 axes may be used as a therapeutic target to 

improve NO availability in PAH [83].

3.9. High-altitude hypoxia and thrombosis

An imbalance between tissue demand and actual oxygen supply also develops due to envi-

ronmental hypoxia or reduced oxygen content in ambient air [4]. Such episodes are commonly 

Disease ROS related mechanism References

Heart failure function (In 
ischemic syndrome, heart 

failure is a sequelae of 

myocardial ischemia and 

necrosis is a major cause of 

death worldwide)

ROS contributes to the formation of oxidized LDL, the key molecular 

player in progression of atherosclerosis. Even the activation of MMPs 

by ROS contributes to plaque rupture initiating coronary thrombosis 

and occlusion

[58–60]

Myocardial infarction ROS plays a role in necrosis and reperfusion, injury. Overexpression 

of SOD (an antioxidant molecule), reduces the infarct size. Evidences 

that ROS play an important role in myocardial infarction (MI). 

Around 20% of patients suffering from MI, often develop heart 
failure which is also determined by the healing and remodeling 

patterns of ventricles. The latter highly depends upon ROS. Even 
inhibition of XO with allopurinol diminishes ROS production in 

myocardium and attenuates maladaptive LV remodeling, leading to 
post MI cardiac function.

[61–65]

Cardiac hypertrophy (cardiac 

hypertrophy often serves as 

a maladaptive precursor to 

heart failure)

ROS activates either directly or indirectly many extracellular factors 

as well as downstream signaling pathways that mediate hypertrophic 

growth response to these factors. Molecules such as PKC, MAPKs, 

p38, JNK, ERK1/2, Akt, Tyrosine kinase, NF-kB. For instance, AgII-
induced hypertrophy is mediated by induction of extracellular signal, 

whereas direct activation involves ROS-mediated activation of PKC 

via oxidation of cysteine residues.

[66–69]

Table 1. Different diseases associated to ROS signaling.
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found on exposure to high altitude, mountain climbing or while traveling through air travel, 

(commercial flights). In commercial flights, when cabin pressure reduces and becomes equiva-

lent to an altitude of 1.5–2.5 km hypoxia is often followed by reoxygenation in majority of such 

cases, serves as an exacerbating factor for thrombus development in veins [84, 85]. In an earlier 

study, such observations have been recorded with simulated mouse models where hypoxia-

reoxygenation is known to promote thrombosis in mouse model of DVT thereby validating 

incidence of DVT under H/R conditions. The mechanistic explanation given is that hypoxia 
promotes the secretion of Weibel-Palade bodies, thereby initiating thrombosis in stenosis model 
[5]. In addition, a recent report also elucidated the possible early factors for hypoxia-induced 

venous thrombosis; however, in these cases, animals were exposed to hypoxia/normoxia post-

thrombus induction (by ligation method) and the study has reported the role of novel regu-

lators NLRP3-Caspase-1-IL-1β signaling axis under the transcriptional regulation of HIF-1. 
Using the pre-clinical rat model for hypoxia-induced thrombosis, the investigators have clearly 

demonstrated that under hypoxic environments (as found at high altitude), NLRP3-Caspase-1-

IL-1α signaling axis could serve as therapeutic target to prevent thrombogenesis under hypoxic 

settings. Nonetheless, the translational potential of these pre-clinical observations were also 
made evident in patients of altitude induce venous thrombosis obtained from army soldiers 

posted at regions of High altitude [33]. In another parallel study, aimed to investigate the role 

of hypoxia-induced platelet hyper-reactivity, platelet specific novel regulator protein ‘calpain’ 
was found to be involved in promoting prothrombotic tendency on ascension to high altitude 

[86]. A genome wide expression analysis of genes in patients of high altitude-induced venous 

thrombosis revealed that the progression of venous thrombus formation is attributed to the 
differential expression of hypoxia responsive genes in response to environmental hypoxia [87].

4. HIF-1–independent responses

These responses become functional to promote ATP conservation by limiting energy consum-

ing processes such as ribosome biogenesis ion channel activity. Such types of responses include 

mTORC1 & UPR pathways-mediated regulation of mRNA translation [88]. Responses include 

inhibition of protein synthesis by affecting the assembly of active eukaryotic initiation factor 
(eIF) 4F & eIF2-GTP-met-tRNA ternary complex. mTOR is a highly conserved serine/threonine 
kinase which integrates environmental stimuli to regulate metabolism, translation & structural 

organization in cell in response to growth factors and O
2
 availability [89, 90].

mTOR occurs in two distinct complexes. mTORC1 (comprising of raptor and GBL/mLST8) 

and mTORC2 (raptor and GBL/mLST8). mTORC1 plays a role in ribosome biogenesis, mRNA 

translation, and nutrient import. mTORC2 regulates Akt catalysis and actin organization. 

Hypoxia regulates the translational activity via involvement of mTORC1 and C2-mediated 
action. The activity of mTORC1 is regulated by different types of kinases (upstream such as 
PI3K/Akt/MAPK) by phosphorylation of tuberous sclerosis complex (TSC) [90].

4.1. Biological manifestation of mTORC1 pathways in cardiovascular cells

Cells of cardiovascular system respond to hypoxic environments by exhibiting increased 

growth and program of vascular remodeling operating in tissues and cells (SMC, EC, fibro-

blasts), involving signaling pathways (mTORC1 mediated and its downstream targets) [91, 92].
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In the cell types of pulmonary artery, adventitial fibroblasts proliferation occurs under reduced 
O

2
 conditions [93]. Signaling pathways include MAPK, PKC. In fact, hypoxic exposure leads 

to mTORC1 activation as in aortic SMC [92]. Along with mTORC1 activation, P70S6K activity 

and 4E-BP1 phosphorylation increase, thus affecting the rate of protein synthesis changing 
with hypoxic gradient [94].

Ischemia is characterized by exposure of cells to O
2
 followed by O

2
 availability that produce 

interesting effects on mTORC1 pathway. In experimental models of ischemia/reperfusion 
cells showed failure in response with mTORC1 inhibition. Additionally, reperfusion also 

resulted in increased mTORC1 signaling with increased P70S6K and 4E-BP1 phosphorylation. 

mTORC1 signaling during ischemia imparts/contributes to withstand the associated stresses 

and help in recovery following ischemic insult [95].

5. Conclusion

Activation of hypoxia-induced signaling mechanisms form an integral component in 

development of widely known CVDs (Figure 1). These mechanisms are activated as an 

adaptive response toward hypoxia, and involve a coordinated action of Transcription 

Figure 1. Commonly known CVDs with pathophysiology as a function of hypoxia signaling mechanisms.
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factors (HIF-1, NF-kβ), reactive oxygen species and downstream effector molecules, which 
can serve as therapeutic targets to control the development of the related disease.
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