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Abstract

The cooling of a surface can be achieved by the impingement of spray, which is a free 
surface flow of droplets ejected from a spray nozzle. Spray cooling can provide uniform 
cooling and handle high heat fluxes in both single phase and two phases. In this chapter, 
spray cooling is reviewed from two aspects: the entire spray (spray level) and droplets 
(droplet level). The discussion on the spray level is focused on the spray cooling perfor-
mance as a function of fluid properties, flow conditions, surface conditions, and nozzle 
positioning. The advantages and barriers of using spray cooling for engineering applica-
tions are summarized. The discussion on the droplet level is focused on the impact of 
droplet flow on film flow, which is the key flow mechanism in spray cooling. Droplet 
flow involves single droplet, droplet train (continuously droplets broke up from jet flow), 
and droplet burst (droplet groups affecting at a constant frequency), and local cooling 
enhancement due to droplet flow is discussed in details. Future work and unresolved 
issues in spray cooling are proposed.

Keywords: spray cooling, spray property, enhanced surface, droplet train,  
droplet burst, flowing film

1. Introduction

Thermal management becomes increasingly important and challenging as the increase of 

power/heat density is taking place in many engineering applications, products, and industrial 
sectors. One example is the electronics industry. Advances in semiconductor manufacturing 
technology create more compact integrated circuits for electric devices. The latest Fin Field 
Effect Transistor (FinFET) technology contributes to the reduction of fabrication node from 
22 nm in the year of 2012 to the current 10 nm, and even to 5 nm in 2021. Using a 10 nm 
FinFET manufacturing process, Apple A11 chip could contain 4.3 billion transistors on a die of 
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~87 mm2, which is 30% smaller than the last version A10. In addition, thermal design power of 
electric chips, the maximum amount of heat removal from the electric chips, shows an increas-

ing trend. As heat power density continues to grow, heat removal, also referred to as thermal 
management, is important for maintaining the temperature to meet material and safety con-

straints. In turn, the development and maintenance of electric devices rely on how effectively 
the heat is dissipated from the devices. The choice of cooling technology is a complicated 
systems work in high-power electronic, not only for fitting in the heat removal requirement 
from low power density to high power density, but also for considering the cooling efficiency, 
power load, overall power consumption of the cooling subsystem, and the cost of cooling infra-

structure. This chapter focuses on fundamental heat removal capacities of cooling technology.

Different cooling technologies vary in their heat removal capacities, which are summarized 
in Figure 1. For low heat flux removal requirement, air-cooling, which removes the heat from 
the hot surface by airflow, is widely applied. The cooling performance can be enhanced by 
expanding the surface area or increasing the flow of air over the surface. The first approach 
is known as air free convection, while the second approach is air-forced convection. In com-

parison with free convection, the fluid motion in forced convection is generated by external 
source, for enhancing the local convection. In computers, cooling fins are added to heat sink for 
expanding the surface area, while a fan is attached to the cooling fins to enhance air convection. 
Heat flux by forced air convection can reach ~35 W/cm2 while only ~15 W/cm2 by free air con-

vection (see Figure 1). Due to the increase of power density, many micro-electronic and power 
electronic devices now are in the range of heat flux beyond the air cooling capacity. Effective 
liquid cooling solutions are needed for thermal management of the high-heat-flux devices.

Figure 1. Heat removal capacity by applying different cooling technologies that is characterized by two parameters: 
Highest heat flux and heat transfer coefficient [1–4].
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Spray cooling is one effective solution, which has the huge potential in handling the high heat 
fluxes in high-power electronics such as supercomputer, lasers, and radars. Spray cooling 
has several advantages over other cooling techniques. In comparison with air-cooling and jet 
impingement cooling, spray cooling owns a high heat flux removal capacity. Spray cooling 
can transfer heat in excess of 100 W/cm2 using fluorinerts and more than 1000 W/cm2 using 

water (see Figure 1). Due to high heat flux removal capacity, spray cooling allows precise 
temperature control with low fluid inventory [5]. Besides, spray cooling has uniform cool-
ing temperature distribution over the entire spray-covered surface. This is because the entire 
spray-cooled area is receiving fresh liquid coolant droplets. For jet impingement cooling, the 
coolant flows radially outwards from the impingement spot. The radial flow has non-uniform 
temperature, and the largest subcooling and the optimal local cooling occur at the stagnation 

point. The non-uniform cooling results in non-uniform surface temperature in the cooling 
area, which could be significant for high heat fluxes.

However, there are still some barriers for applying spray cooling for engineering applications. 
Significant pumping power is needed to achieve large pressure drop through spray nozzle to 
produce fine spray, but the low cost is first priority in commercial application of cooling 
technologies. Another fact that the design and fabrication of spray nozzle do not follow the 
identical industry standard makes the unpredictable spray characterization. Hence, it is hard 
to get a universal correlation of spray characterization to cooling performance, which also 
limits the implementation of spray cooling. Additionally, in comparison with the jet nozzle, 
nozzle orifice through the spray coolant is even smaller, increasing the possibility of orifice 
clogging and the occurrence of the dry-out area on the heated surface [6]. In spite of these 
barriers, spray cooling is still a popular cooling technology and many successful applica-

tions were reported for supercomputer (CRAY X-1) [7], laser diode laser arrays [8], microwave 

source components [9] and NASA’s reduced gravity aircraft [10].

In spray cooling, liquid coolant is emitted from a pressurized nozzle and breaks up into 
numerous droplets. The small droplets land on the cooled surface, where the flow of drop-

lets becomes a thin liquid film radially flowing on the surface (see Figure 2a). The cooling 
is achieved through the convection heat transfer from the cooled surface to the film flow 
being impacted by continuous flow of droplets, nucleate boiling on the cooled surface, 
liquid conduction inside the film flow, and interfacial evaporation from the liquid film to 
the surrounding air. Spray cooling provides uniform cooling that can handle high heat 
fluxes in both single phase and two phases. The cooling performance as a function of spray 
characterization, flow conditions, surface conditions, and nozzle positioning was widely 

discussed in past decades. These studies focused on the relationship between the spray 
cooling performance and the entire spray flow. However, in these spray-level studies, the 
understanding of cooling mechanism of spray droplets is missing. At the droplet level, the 
impact conditions are classified into a few categories (see Figure 2b): (a) impact of single 

droplet on dry surface appearing in nucleate boiling, transition boiling and film boiling, (b) 
impact of single droplet on stationary film where the radial velocity of the film is close to 
zero, such as stagnation zone, (c) impact of single droplet on radially flowing film and (d) 
impact of droplet burst on flowing film (droplet groups that frequently impact the surface). 
Although spray impingement cannot be simply considered as the superposition of single 
droplets due to the interaction of the neighboring droplets [11], the study of local cooling 
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performance at droplet level is still significant to the understanding of spray cooling mecha-

nism, especially for the condition of the local film dominated by the droplet flow. Therefore, 
the research outcomes of spray cooling are reviewed from two aspects: the spray level and 

the droplet level.

2. Spray cooling at the spray level

Spray cooling can handle high heat flux in the constrictive space of electronic package when 
comparing to air-cooling, pool cooling, and jet cooling. This is because numerous fresh drop-

lets generated by spray nozzle randomly affect the entire surface, and directly transfer the 
heat from surface to the coolant. The difference of fluid dynamics between spray impact and 
other cooling methods is a key factor affecting the mechanism of local heat transfer and result-
ing in different cooling performance. The first step of studying spray-cooling mechanism is 
to observe what happened on the heated surface. Numerous fundamental studies have been 
conducted theoretically and experimentally, which focus on the key parameters affecting 
impact dynamics and the relevant heat transfer mechanism. There are four aspects that have 
been demonstrated to significantly affect cooling performance, including spray characteriza-

tion, nozzle positioning, phase change and enhanced surface [5, 6, 9].

Figure 2. Spray cooling mechanism at the entire spray level (a) and droplet level (b).
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2.1. Spray characterization

Since the earliest study on spray cooling by Toda [12, 13], many researchers put effort on 
spray characterization, the relevant cooling performance and the critical heat flux (CHF) in 
spray cooling. Spray characterization mainly involves droplet size, impact velocity, droplet 
flux, and volumetric flux. However, in experimental studies it is difficult to change only one 
parameter and isolate the remaining parameters. For example, on the cooled surface the 
increase of flow rate of coolant spray is accompanied with the increase of impact velocity and 
volumetric flux with a constant impact area. That is reason that the conclusions made on the 
dominant impact parameter are not consistent in previous studies of spray cooling.

Chen et al. [14] studied effects of three spray parameters of droplet size, droplet velocity and 
droplet flux on CHF. By adjusting spray nozzles, operating pressures, and spray distance 
between the nozzle exit and the heater surface, the effect of one spray parameter was studied 
while the others were kept constant. It was found that the mean droplet velocity is the most 
dominant parameter affecting CHF followed by the mean droplet flux, while the Sauter mean 
droplet diameter (  d  

32
   ) has a negligible effect on CHF. In their later study [15], they further dem-

onstrated the CHF varies with N1/6 and U1/4 (N and U are referred to as droplet flux and impact 
velocity). After determining local spray characteristics and local cooling in the water spray boil-
ing curves, Mudawar and Valentine [16] found the dominant effect of the volumetric spray 
flux as compared to other spray parameters, and CHF was correlated to the volumetric spray 
flux and mean droplet diameter. After applying the dielectric coolant of PF-5052 with a lower 
boiling point of 50°C, Rybicki and Mudawar [4] concluded that the volumetric flux and droplet 
diameter are the most significant spray parameters influencing the spray cooling performance. 
Heat flux increases with increasing volumetric flux for a number of reasons. A larger fluid 
volumetric flux results in higher liquid velocity over the surface. The impact of the droplets 
onto the film can also interact with the liquid film, thinning the local thermal boundary layer.

In single-phase spray cooling, spray droplets land on a radially flowing film. Some researchers 
studied the property of the flowing film and its relation to spray cooling performance. Pautsch 
and Shedd [17] used a non-intrusive optical technique to measure the local film thickness gener-

ated by sprays. The film thickness was found to remain constant when the heat transfer mecha-

nism was dominated by single-phase convection. Beyond the spray impact area, the dry-out 
phenomena appear even when the CHF is not reached. In the nucleate boiling regime, Horacek 
et al. [18, 19] measured the dry-out area, which was characterized by the three-phase contact line 
length, and measured using a Total Internal Reflectance technique. The wall heat flux was found 
to correlate very well with the contact line length. This contact line heat transfer mechanism was 
summarized by Kim [20] as one of main heat transfer mechanisms in the two-phase regime.

2.2. Nozzle positioning

Cooling performance can be influenced by changing the spray positioning. There are two 
significant positioning parameters in the study of spray cooling (see Figure 3): nozzle-surface 
distance  H  (the distance from the nozzle tip to the impact surface), and inclination angle  θ  

(angle between spray axis and the surface normal). Geometrically, the spray impact on a 
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surface is a spray cone insected by the impact surface. In normal spray impact changing noz-

zle-surface distance causes the change of spray covered area (see impact length  L  in Figure 3a), 

the local volumetric flux and film flow and relevant local cooling. Within the small surface 
area around 1 cm2, Mudawar and Estes [22] found that the optimal nozzle-surface distance 
for the maximum CHF is achieved when the spray footprint is exactly enclosed within the 
cooling surface. Recently, in a larger surface area around 5.5 cm2 the optimal spray height for 
the largest area-averaged heat transfer coefficient was found to be smaller than that required 
for covering the entire heater area [21]. The reason is that the maximum local cooling appears 
at the edge of the impact, and the film flow outside the impact area still provides the effective 
cooling. However, this phenomenon is not significant in small heated area.

Some researchers focus on the effects of spray inclination on heat transfer performance. The 
impact area is circular for normal impact  θ =  0   °  , and elliptical for inclined spray impact   0   °  <θ < ( 90   °  − α)  .  
The inclination angle is limited within   90   °  − α . Otherwise, no spray lands on the cooled substrate. 
In experimental tests, the impact area, surface area and heater area are usually concentric, and the 
center is located at (x, y) = (0, 0) (see Figure 3b). Besides, impact length  L  maintains the same for 

studying the inclination influence on the cooling. Silk et al. [23] compared the cooling performance 

of three-inclination impact to normal impact on enhanced surface. It was found on both the flat 
surface and enhanced surface that heat flux increases with the increase of spray angle up to  θ =  15°. 
However, when  θ >  15° the heat flux performance is little changed within the experimental uncer-
tainty. Cooling enhancement by inclined spray is attributed to better liquid drainage through the 
elimination of the stagnation zone, which appears at the center in normal spray impact. Wang 
et al. [24] found that inclination of spray nozzle could enhance heat transfer if optimal orifice-
surface distance is found. However, Visaria and Mudawar [25] indicated that inclination angle 

has minimal impact on the single-phase or two-phase regions of the boiling curve. Increasing 

Figure 3. (a) The 2D geometry is on the central plane (z-x plane) of the cone perpendicular to the impacted surface (x-y 
plane). The positioning of the nozzle is determined by inclination angle  θ  and spray height  H .   H  n    is the required spray 
height by normal impact to cover a given impact length  L . (b) Impact area with constant impact length  L  formed by the 

spray inclined at different angles  θ  [21].
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inclination angle even decreases CHF and maximum CHF is always attained with the spray 
normal to the cooled surface. Rybicki and Mudawar [4] used upward-oriented and downward-

oriented spray nozzles to assess their effects on cooling performance. The experimental results 
showed that the spray orientation has no measurable effects on the global cooling performance in 
both single-phase and two-phase regimes. Cheng et al. [26] found that the inclination angle would 

worsen heat transfer when the spray footprint is smaller than the heated surface. Therefore, the 
conclusions of these studies on spray inclination are contradictory.

There are three reasons addressed for contradictory conclusion of spray inclination. One is 
regarding the different nozzle positioning. As illustrated in Figure 3, two key parameters, 
spray distance and inclination angle, determine the nozzle positioning. However, at a cer-

tain inclination angle some studies [23] applied the constant spray distance, while others [4, 

24, 25] adjusted the distance for the constant impact length. Another reason is related to the 
assumption of one dimensional steady-state conduction through the neck of cartridge heater 
for the surface heat flux calculation. Inclined spray impact causes considerable temperature 
difference on the cooled surface (see Figure 4). Hence, the radial conduction should be taken 
into account for inclined spray cooling. The last reason is from the surface temperature 

Figure 4. Local surface temperature distribution for normal impact (a1) and inclination affect with  θ = 30° (b1). Local 
droplet velocity and the relevant local heat transfer coefficient are plotted along the centerline in (a2) and (b2) [27].
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measurement location. Different radial locations provide different temperature measurement 
due to significant temperature difference in inclined spray cooling.

To obtain surface temperature distribution in inclined spray, some researchers investigated 

local heat transfer by replacing cartridge heater with sputter-coated thin film heater, which 
enables infrared thermography for temperature measurement [21, 27, 28]. All of these studies 
found significant temperature difference on cooled surface for inclined spray cooling (one 
example in Figure 4b1). Gao and Li [27] compared the droplet impact velocity and heat trans-

fer coefficient distribution along centerline for normal impact and inclined spray impact (see 
Figure 4a2 and b2). The impact velocity was captured by a Stereo-Particle Imaging Velocimetry 
system. The trend line of heat transfer coefficient and droplet velocity shows clear correlation. 
For both cases, the locations of maximum droplet velocity coincide with the locations of the 
highest heat transfer coefficient. The further study by Gao and Li [21] indicated the global 

cooling shows slight diminishment for small inclination angle and enhancement for large 

inclination angles. On the central plane of the spray cone, the enhancement and diminishment 
of the local cooling performance are in general agreement with the increase and decrease of 

the spray flux. Thin film heater is not reliable for the surface temperature greater than boiling 
point, and experiments are tested in single-phase region. This is the limitation of thin film 
heater, and the robust heater for boiling test is needed for future study.

2.3. Phase change in spray cooling

Similar to pool boiling curve, the heat transfer curve of spray cooling can be separated to four 
regimes: single phase regime, nucleate boiling regime, transition boiling regime and film boil-
ing regime [12, 13]. In the single phase regime, the heat flux linearly increases with increasing 
surface temperature difference between heater surface and coolant. Forced convection by 
radially moving film and evaporation on unsteady interface of thin film layer, play dominant 
roles in single-phase regime [29]. In the nucleate boiling regime, bubbles begin to repeatedly 
occur at nucleation sites on the heated surface, and the heat flux sharply increases as com-

pared to single-phase cooling. Once the nucleation sites cover the heated surface completely, 
average heat flux will reach a peak value, which is defined as Critical Heat Flux (CHF).

Once reaching the CHF and coming to the transition boiling (decreasing region in the boiling 
curve), the efficiency of heat transfer on the heating surface significantly decreases. Liquid 
coolant absorbs heat from the surface and forms the vapor blanket, so the surrounding liquids 
are hard to get to the heater surface. That is the reason for the sharp decrease of heat flux in 
this regime. In the film, boiling regime an interesting phenomenon is an increasing trend 
of heat flux. Massive heat is generated from the heated surface and radiation heat transfer 
becomes a key heat transfer mechanism between the heated surface and the liquid, so the 
heat flux tends to increase from the Leidenfrost point. Considering the safety limit and fast 
implementation of electronic cooling, researchers’ attention is paid to the theoretical correla-

tion in single phase regime and nucleation boiling regime.

In the single phase regime, Rybicki and Mudawar [4] proposed the correlation for dielectric 

PF-5050 spray, which is

  Nu = 4.7  Re   0.61   Pr   0.32   (1)
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Here  Nu  is the Nusselt number,  Re  is the Reynolds number, and  Pr  is the Prandtl number. 
Karwa et al. [30] developed a heat transfer correlation for full-cone water sprays, which is

  Nu = 20.344  Re   0.659   (2)

The correlation has an accuracy of ±7.3% for varied pressure drops. Heieh and Tien [29] 

studied R-134a spray cooling, and correlated the Nusselt number to the Weber number, size 
distribution and sensible heat effects in the single phase regime, which is

  Nu = 933  We   0.36    ( d  32   /  d  0  )    0.25    (ΔT /  T  
s
  )    0.027   (3)

In the nucleate boiling regime of spray cooling, the heat flux increases with the surface tem-

perature faster than that in single-phase regime. Yang et al. [31] proposed two reasons. In 
nucleation, boiling bubble appears and grows on nucleation sites as the liquid coolant changes 
to the vapor. During the phase change, a larger amount of heat is removed from the heated 
surface, resulting in a temperature drop on nucleation sites. The other reason is attributed 
to the influence of secondary nucleation and evaporation on the heat flux enhancement [32]. 
When the numerous droplets impinge on heated surface, air is entrained into the liquid film, 
forming an air layer underneath the droplets. The air layer reaches the liquid-covered surface 
and finally breaks up into many tiny gas nuclei, which serve as secondary nucleation sites. 
Hence, the number of secondary nucleation sites is proportional to the droplet flux across 
the surface, which was proved in Yang’s experiments [33]. Using water as coolant liquid, 
Mudawar and Valentine [16] proposed the CHF correlation with respect to the local volumet-
ric flux   Q   ′′  , and Sauter mean diameter (SMD) d32:
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In another study by Estes and Mudawar [34], a universal CHF correlation was constructed for 
spray cooling by using Fluorinerts FC-72 and FC-87 as well as the water.
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2.4. Enhanced surfaces

Enhancing spray cooling by changing the surface structure is one effective and low-cost 
approach, which benefits from optimal liquid management and enhancement of local cooling 
efficiency. According to the structure size, enhanced surface is classified into four categories: 
mini-structured surface, micro-structured surface, nano-structured surface, and hybrid-struc-

tured surface. Most of early studies of spray cooling have been conducted on flat surfaces. 
A few of them focus on the effects of surface roughness on cooling enhancement. Pais et al. 
[35] fabricated three rough surfaces using polishing grit with the size range of 0.3–22 μm 

and examined the roughness influence on heat removal capabilities. Tests showed that as the 
surface roughness decreases the CHF increases. CHF is up to 1200 W/cm2 on the surface by 
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Figure 5. (a) Millimetric structured surface [23], (b) micro-structured surface [36], (c) Nano-structured surface [37], (d) 

hybrid micro/nano structured surface [38].

polishing grit of 0.3 μm while only 1000 W/cm2 on the surface by 22 μm grit. This is because the 
large surface roughness implies a thicker film thickness, leading to the later bubble breakup 
and departure, the impeding of vapor escape, the increased resistance to heat flux through 
evaporation on film surface, and the dampening of droplet impingement.

Mini-textured surfaces feature structure size above 1 mm, and the structure types of cubic pin 
fins, pyramids, and straight fins and so on (see Figure 5a). Silk et al. [23] observed that addition of 

finned structure to cooled surface decreases the convective thermal resistance, and increases the 
convection heat transfer relative to the flat surface, since the total wetted surface area is larger on 
the enhanced surface. Although the cubic pin fins and straight fins have the same wetted surface 
area, cooling performance of straight fins surface exceeds that of the cubic pin fins surface. This 
is attributed to liquid management on the heated surface and cooling efficiency on the wetted 
surface area. Xie et al. [39] indicated that the fin arrangement is a dominant factor in enhancing 
heat transfer rather than the wetted surface area. The improper fin arrangement causes the thick 
and slow moving liquid film and thus worsens the local cooling performance. This point of 
view needs further validation by measuring the change of local surface temperature.

Micro/nano or hybrid structured surfaces have been attracted huge attention to spray cool-
ing as micro fabrication technology advances new micro-/nano-engineered surface in the last 

decade (see Figure 5 b, c, d). The experimental studies [36, 39–41] applied micro-textured 
surfaces with surface feature size from 25 to 480 μm, which is close to liquid film thickness but 
larger than average droplet size. Micro-textured surfaces showed slight effect on heat transfer 
enhancement in the flooded region, but greatly enhancing cooling performance in the thin 
film and partial dry-out regions as compared to the flat surface. The study by Zhang et al. [37] 

showed that nanostructured surface has better cooling performance since the contact angle is 
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smallest on the nanostructured surface as compared to micro-structured surfaces and flat sur-

faces. Recently, Chen et al. [38] developed a hybrid micro/nano structured surface by growing 

the ZnO nanowire arrays on the top of etched micro-structured silicon wafer. Test results 
showed that cooling performance of hybrid surface is better than the micro-structured surface 
in boiling regime because of its great wetting capacity and reduction in dry-out surface area. 
If comparing performance of nanostructured surface [37] and hybrid surface [38], there is no 

significant difference in heat flux enhancement relative to the smooth surface.

3. Spray cooling at the droplet level

The impact dynamics during spray cooling is complicated as it involves many liquid phe-

nomena, such as spreading, receding, splashing, droplet collision, generation of stationary 

film and radially flowing film, and liquid flooding. All of these impact phenomena result from 
the interaction of droplet flow and film flow on the impact surface. Droplet flow includes 
three types: single droplet, droplet train (continuous droplets formed from jet breakup), and 
droplet burst (portion of droplet train selected at a certain frequency). Similarly, film flow 
conditions involve dry surface (no film), stationary film, radially flowing film, or their combi-
nation on the cooling surface (see Figure 6).

Figure 6. Single water droplets with same velocity and diameter (  U  0   = 1.85 m/s,   D  0   =3.2 mm) impact three different 
surface conditions: (a) dry surface, (b) stationary water film, (c) flowing water film [42].
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The droplet and film flow conditions are two flow parameters directly determining the heat 
transfer mechanism of spray cooling. Coolant droplets bring significant temperature differ-

ence between the expanding droplet flow and flowing film, which contributes to the reduc-

tion of thermal resistance inside the film layer and enhancement of heat transfer from the 
heated surface to the flowing flow. Fluid dynamics on the impact surface is responsible for 
the local convection heat transfer. The fast flowing film transfers more heat to downstream. 
Thin film thickness reduces the thermal boundary layer and encourages evaporation from 
the liquid interface. Therefore, the fluid dynamics study of droplet affecting film enables 
us to get insight into thermal results of droplet impact on the film-cooled hot surface, and 
further understand spray cooling performance. The relevant literature is reviewed based on 
the droplet flow condition: single droplet impact, droplet train impact, and droplet burst 
impact.

3.1. Single droplet impact cooling

3.1.1. Impact on dry surfaces

The dry surface usually appears in two-phase spray cooling, which is shown by the change 

of contact line length. The researchers reported that the critical heat flux in spray cooling 
is achieved at the greatest contact line length. On dry surface, droplet impact dynamics on 
droplet-covered surface area is essential to local cooling performance. The process of a liq-

uid droplet impact was divided by Rioboo et al. [43] into five successive phases: kinematic, 
spreading, relaxation, wetting, and equilibrium. Most research work has been focused on 
spreading and relaxation. In the spreading phase, contact line expands radially until reach-

ing a maximum spreading, which is determined by droplet initial diameter, impact velocity, 
surface tension, viscosity, and wettability of the solid surface (Li et al. [44]). The maximum 
spread diameter is of critical importance in spreading phase. Clanet et al. [45] found that on 

a super-hydrophobic surface the maximal spread is significantly dependent on the viscosity 
of liquid droplets and scales as a function of Weber number~We1/4. van Dam and Clerc [46] 

found a significant difference of maximum spread between substrates with small and large 
contact angles, showing the significant influence of wettability in the later stage of impact. A 
lower air pressure was found to suppress the droplet spreading, leading to a smaller maxi-
mum spread [47].

Some analytical models were proposed to predict impact process, most of which were based 
on the energy conservation of the impact droplet. Chandra and Avedisian [48] developed an 

empirical correlation of viscous dissipation, including estimated spreading time, simplified 
dissipation function, and estimated volume of viscous dissipation. Gao and Li [49] proposed 

a theoretical model based on the actual dynamic shape of the droplet that could success-

fully predict the maximum spreading diameter and receding diameter during the recoiling 
process. Some of the researchers put efforts on the investigation of splash using varied dry 
surfaces. Surface roughness and textures were demonstrated to influence the splash limit  
[50, 51]. Droplet impact on a moving surface was found to show different splash and non-
splash phenomena as compared to stationary surfaces [52]. Previous studies on splash 
 threshold under different surface conditions are summarized in Table 1.
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On heated dry surface, Bernardin et al. [55] mapped the boiling curve of droplet impact cool-

ing as the same as the spray cooling. In the regime of single-phase liquid cooling, Pasandideh-
Fard et al. [56] observed that increasing impact velocity would enhance heat flux around the 
impact area. This is because the raising droplet velocity promotes droplet spreading, thus 
increasing the wetted area on the heated substrate. However, increasing droplet impact veloc-

ity slightly enhances heat flux at the impact point. Batzdorf et al. [57] proposed a theoretical 

mode to predict the heat transfer rate during the droplet impact. The theoretical prediction 
is more accurate when the liquid Prandtal number  Pr >5, since the droplet evaporation is not 

taken into account in the model. The predicted heat transfer rate shows a quick increase to the 
peak value and then the slow decreasing.

On superheated surface with temperature over 200°C, Tran et al. [58] found three significant 
phenomena after droplet impact: contact boiling (droplet contacts with the surface), film boiling 
(vapor layer formed underneath the droplet), and spray film boiling (vapor layer and tiny drop-

lets ejected upward) (see Figure 7a). Their experiments showed that the maximum spreading of 
a droplet impact follows a universal scaling with the Weber number (~We2/5), which is steeper 

than that on nonheated surface (~We1/4) [45]. The steeper curve on heated surface results from a 
driving mechanism, which is caused by the evaporating vapor radially expanding and pushing 
liquid outward. Staat et al. [59] indicated that the Leidenfrost transition temperature shows little 
dependence on the Weber number of affecting droplet, but the transition to splashing shows a 
strong dependence on the surface temperature. Adera et al. [60] reported the formation of non-

wetting droplets on a super-hydrophilic micro-structured surface by slightly heating the surface 
above the saturation temperature of the droplet fluid, which is contributed by the increased 
thermal conductivity and decreased vapor permeability of the structured region. In experi-
mental study of Jung et al. [61], the transient temperature distribution during droplet spread 

was detected using infrared thermography. In contact boiling, the droplet coolant contacts the 
surface and the maximum heat flux is quick to reach at early impact stage ~2 ms at impact point. 
In film boiling, non-wetting surface appears at the early impact, and the maximum heat flux 
is even lower than that in contact boiling due to the existence of vapor layer underneath the 
droplet. On heated surface, the study of simultaneous impact of multiple droplets is few, which 
needs further discussion of droplet collision influence on contact line and local evaporation. This 
benefits the understanding of two-phase spray cooling and optimization of cooling efficiency.

Surface conditions Threshold parameter K Critical value K
c

References

Dry surface (WeRe1/2)1/2 57.7 Mundo et al. [50]

We0.5Re−0.391 0.8458 Vander Wal et al. [53]

Moving dry surface WeRe1/2(1−2.5   
 U  
s
  
 ___ 

 U  
0
  
   Re−1/2)2 5700 Bird et al. [52]

Stationary liquid film (WeRe1/2)0.8 2100 Cossali et al. [54]

We0.5Re0.17 63 Vander Wal et al. [53]

Flowing liquid film WeRe1/2(1 +    h ̄    
f
     U ¯    

f
  2  ) (1 +    h ̄    

f
     U ¯    

f
   )1/2 3378 Gao and Li [42]

Table 1. Summary of splash thresholds under different surface conditions [42].
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3.1.2. Impact on stationary films

Stationary film occurs in the center of normal spray impact, or locates where the spray nozzle 
axis insects with the impact surface in inclined spray (see Figure 2). On a stationary film, most 
researchers focused on spread process and splash formation mechanism after impact. Yarin 
and Weiss [62] developed a quasi-one-dimensional model, which predicts the existence of 
a kinematic discontinuity in the velocity and film thickness distribution. The discontinuity 
corresponds to the emergence of an uprising liquid sheet. Roisman and Tropea [63] general-

ized Yarin’s theory for the case of arbitrary velocity vectors in the liquid films both inside 
and outside the crown. Yarin and Weiss [62] experimentally found the crown radius from the 
impact center could be expressed as a function of the non-dimensional spreading time. Two 
empirical parameters existing in their model was given by the later study of Cossali et al. [64]. 
Droplet impact on a stationary film may or may not result in the splash. Finding the threshold 
condition for splash impact has been the focus of a few experimental studies. Cossali et al. 
[64] tested drops of various mixtures of water and glycerol affecting a thin liquid film and 
proposed an empirical parameter for predicting the occurrence of splash impact. For thick 
films, Cossali et al. [54] and Rioboo et al. [65] found a critical value of the threshold parameter, 

i.e.   K  
c
   =2100, above which splash impact occurs (see Table 1). To the authors’ acknowledge few 

study has been conducted on heat transfer of single droplet impact on heated stationary film. 
For very thick stationary film, it likes a pool and the relevant heat transfer mechanism can be 
found in the study of pool boiling.

3.1.3. Impact on flowing films

The interaction between droplet flow and film flow is fundamental fluid dynamics in single-
phase spray cooling or nucleate boiling (see Figure 2b). Impact dynamics was addressed 
in some researches. Alghoul et al. [66] presented an experimental investigation of a liquid 

Figure 7. (a) Phase diagram of water droplet impact on a superheated surface [58], (b) plot of the maximum spreading 
diameter versus weber number [58].
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droplet affecting onto horizontal moving liquid films. An asymmetrical crown shape was 
observed due to the effect of the moving film. Che et al. [67] demonstrated the on inclined 

falling flow asymmetrical crown shape is also formed after droplet impact. Gao and Li [42] 

further analyzed the early evolvement of droplet impact based on experiments and theoreti-
cal model (see Figure 6c). Once droplet lands on the film, the droplet flow quickly spreads 
and pushes the liquid outwards, causing the uprising liquid sheets. However, crown sheet 
is asymmetric owing to the collision mechanism on crown base. At the early stage of droplet 
impact, the direction of spreading flow is opposite to that of film flow at the upstream of 
impact point, while their direction is the same at the downstream. Uprising crown sheet may 
splash, which is dependent of the instability of the sheet rim. The stretching rate of crown 
sheet is a key factor influencing the rim instability. Analysis was conducted to derive equa-

tion of stretching rate, finding that the highest stretching rate appears at the location which 
droplet spreading flow is right opposite to the film flow, and the location is also the most 
probable location of splash. The value of splash threshold was provided to estimate whether 
splash occurs or not. The secondary droplets from splash fly away from the cooled surface, 
which do not contribute to the cooling performance. In other words, suppression of splash 
occurrence should benefit cooling enhancement.

The late study of Gao and Li [68, 69] further observed the whole development of droplet 

impact on flowing film, and demonstrated its relation to the local cooling. The impact pro-

cess is observed by high-speed video, showing two states: spreading state, replacing state. 
In spreading state, the droplet flow spreads and gradually slows down until reaching the 
maximum spread. After that, the droplet flow is pushed towards the downstream and eventu-

ally replaced by the film flow. The measured temperature also shows two stages: response 
stage when the temperature quickly decreases, and recovery stage in which the temperature 
recovers to the steady state. An enhancement factor was proposed to indicate convection 
enhancement relative to the steady-state cooling. The peak enhancement is used to consider 
enhancement influence of impact velocity, droplet size and film flow rate, which is propor-

tional to the square root of the ratio of the droplet flow rate to the film flow rate~   ( U  
0
    D  

0
   /  Q   ′ )    1/2  

. However, the conclusion made cannot be directly applied to spray cooling. One reason is 
that the film flow was generated by external source rather than by droplet flow itself. Another 
reason is that averaged cooling performance around the impact area was not involved.

3.2. Droplet train impact cooling

One possible phenomenon in spray cooling is that fresh droplets continuously impact the 
surface at a certain frequency. The droplet flow is defined as the droplet train flow. The fluid 
dynamics behind this is the interaction of continuous droplet train flow with the flowing 
film formed on the heated surface. To investigate heat transfer of spray cooling from this 
aspect, a few studies have been conducted on the heat transfer of continuous droplet train 

impinging on hot surfaces. Qiu et al. [70] demonstrated surface temperature influence on 
the impact dynamics. Prior to the steady state, the droplet film spreads on the heated sur-

face, and the surface temperature enhances the spreading rate of the flowing film when the 
surface temperature is over the boiling point. With the increase of the surface temperature 
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Figure 8. The impact dynamics of droplet train at different surface temperature and the droplet velocity is 15.2 m/s [70].

the steady-state film-wetted area decreases, and eventually maintains constant after the 
temperature is greater than 190°C. Besides, the temperature also affects the splashing angle 
(see Figure 8). A stable splashing angle marked by red line is established at higher surface 
temperature greater than 192°C. The later study of Qiu et al. [71] showed that the inclina-

tion of the droplet train decreases the splashing angle and increases the averaged secondary 

droplet size.

Soriano et al. [72] presented an experimental observation of multiple droplet train impinge-

ment. Impact spacing between multiple droplet streams would affect spreading and splashing 
in impact regimes, and the optimal cooling performance was achieved when the film veloc-

ity was not disturbed by adjacent droplet streams. Zhang et al. [73, 74] further demonstrated 

that both impact spacing and impingement pattern significantly affect local and global cooling 
performance on the hot surface. In comparison with the circular jet impingement cooling, the 
droplet train impingement achieves a better cooling performance for various impingement pat-
terns. The same conclusion was made when comparing the cooling performance of droplet 
train and jet impingement on flowing film that cools the hot surface [75]. Through piezoelectric 
nozzles more groups of jet flow were generated and broke up to droplet train for cooling the hot 
surface [76], and the maximum heat flux reaches~ 170 W/cm2 with the nozzle diameter of 25 μm. 
However, unclear impact dynamics and its relation to local cooling need the further study.
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3.3. Droplet burst impact cooling

Our recent studies try to understand spray cooling from droplet burst aspect [75, 77]. Different 
from droplet train cooling, it assumed that in spray cooling droplet groups impact the surface 

at a constant frequency rather than droplet train. Each droplet group is defined as a droplet 
burst, and each burst contains a constant number of droplets, which is called burst size. The 
frequency at which droplet bursts are generated is called the burst frequency. The generation 
mechanism of droplet burst was first proposed by Gao and Li [75, 77] and implemented in 

tests. A droplet generator combined with controlled interrupter is applied for droplet burst 
generation. A droplet train is ejected from droplet generator with droplet frequency   f  

0
   , and a 

circular sector (aluminum plate) with a central angle θ serves as the interrupter. The droplet 
burst flow is generated by periodically interrupting a droplet train flow into a flow of droplet 
groups (see Figure 9). For each rotating of interrupter, there is only one droplet burst through 
the interrupter, so that the burst frequency is equal to the rotating frequency of interrupter   f  

b
   .  

The burst size  n  is determined by the burst frequency and central angle of interrupter  n =  f  
0
   

(1 − θ / 2π)  /  f  
b
   . For example in Figure 9 (e),  n  = 6 when    f  

0
   = 1000 Hz,    f  

b
   = 13.5 Hz,  θ  = 330°.

Figure 9. Droplet burst flows are generated by interrupting a droplet train flow (  f  0   = 1000 Hz) using an interrupter with 
an angle θ = 330° and varied frequencies   f  b   : (a) 18.3 Hz, (b) 13.5 Hz, (c) 25.0 Hz, (d) 30.1 Hz, and (e) schematic of a droplet 
burst flow with  n = 6 [75, 77].
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Figure 10. (a) Impact dynamics of a drop burst flow affecting the film flow; (b1) surface temperature distribution 
at  t =  0 s; (b2) & (b3) temperature change; (c1) heat transfer coefficient at  t =  0 s; (c2) & (c3) change of heat transfer 
coefficient [75, 77].

For the impact of one droplet burst (see Figure 10), at  t =  0 s the local film flow has completely 
recovered from the impact of the previous droplet burst, but the temperature around the 

impact area is still lower than the film cooling temperature, showing residual effect from 
the previous droplet burst. As shown by the changes of   T  

s
    and  h  in Figure 10 (b) and (c), the 

cooling enhancement is growing in extent and expanding in area at the early stage of droplet 
burst impact.

For the impact of one droplet burst flow, the temperature at impact point is measured. 
Temperature measurement shows that the burst flow causes the temperature to quickly 
decrease, and then the temperature fluctuates with the constant fluctuation frequency and 
amplitude in full-developed stage. The fluctuation frequency is equal to the burst impact 
frequency. The temperature at the impact point remains lower than the film cooling tempera-

ture without droplet burst impact. Heat transfer coefficient shows three development stages 
of the convection: affecting, restoring, and restored. During the restored stage, local cooling 
has returned to the film cooling. The restored stage may not exist if the time interval between 
bursts  τ , is short (see Figure 9). This is because prior to reaching the restored stage the next 
droplet burst is coming, and local convection heat transfer goes to the next affecting stage.
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The comparison of burst flows shows that the trough value of the fluctuating temperature,   T  
min

   ,  

decreases with increasing  n . The temperature fluctuation amplitude,   T  
max

   −  T  
min

   , is dependent 

of burst size  n  and the time interval  τ . The mean temperature is related to the number 
flow rate of the burst flow, indicating the number of droplets landing on the surface per 
second. The mean temperature decreases with increasing the number flow rate. Increasing 
the droplet impact velocity leads to the formation of stronger rising liquid sheets during 
the impact process. Significant increase of impact velocity reduces cooling enhancement 
due to the local loss of coolant caused by the rising liquid sheets and splashing. These 
conclusions made based on droplet burst cooling are good for the understanding of drop-

let characterization influence on cooling performance in spray cooling. The volumetric 
flux and droplet velocity are coupled in spray impingement. The larger volumetric flux 
is accompanied by the higher impact velocity. Determining which one is the dominant 
parameter is not reasonable in spray cooling performance. Observation of droplet burst 
cooling shows that the larger volumetric flux and proper impact velocity bring the better 
cooling enhancement.

4. Conclusion

Spray cooling is one effective cooling technology for handling high-power density and high 
heat flux removal requirement. In spray cooling, liquid coolant is emitted from a pressur-

ized nozzle and breaks up into numerous secondary droplets affecting heated surface that is 
covered by radially flowing film. The cooling is achieved through the convection heat transfer 
from the heated surface to the film flow, nucleate boiling, liquid conduction inside the film 
flow, and interfacial evaporation from the liquid film. Based on research outcomes reported 
in the literature, spray cooling technology is reviewed from two aspects: the spray level and 

the droplet level. In the spray level, these studies emphasize the cooling performance to spray 
property. Some key properties are summarized in this chapter, involving spray characteriza-

tion, nozzle positioning, phase change, and enhanced surface. In the droplet level, the studies 
focus on local heat transfer associated with droplet impact conditions, which are classified 
into a few categories: impact of single droplet on dry surface, stationary film, flowing film, 
impact of droplet train, and impact of droplet burst. Although spray impact cannot be simply 
considered as the superposition of single droplets, the studies in droplet level provide experi-
mental and theoretical basis to explain what happened on heated surface and the relevant 
local heat transfer mechanism in spray cooling.

Author details

Xuan Gao and Ri Li*

*Address all correspondence to: sunny.li@ubc.ca

School of Engineering, The University of British Columbia, Kelowna, BC, Canada

Spray Impingement Cooling: The State of the Art
http://dx.doi.org/10.5772/intechopen.80256

45



References

[1] Glassman BS. Spray cooling for land, sea, air and space based applications, a fluid man-

agement system for multiple nozzle spray cooling and a guide to high heat flux heater 
design [Thesis]. University of Central Florida; 2005

[2] Sienski K, Eden R, Schaefer D. 3-D electronic interconnect packaging. In: Proceedings 
of IEEE Aerospace Applications Conference; 10 February 1998; Aspen, CO, USA. DOI: 
10.1109/AERO.1996.495896

[3] Sung MK, Mudawar I. Correlation of critical heat flux in hybrid jet impingement/micro-
channel cooling scheme. International Journal of Heat and Mass Transfer. 2006;49: 
2663-2672. DOI: 10.1016/j.ijheatmasstransfer.2006.01.008

[4] Rybicki JR, Mudawar I. Single-phase and two-phase cooling characteristics of upward-
facing and downward-facing sprays. International Journal of Heat and Mass Transfer. 
2006;49:5-16. DOI: 10.1016/j.ijheatmasstransfer.2005.07.040

[5] Gao X. Drop impact in spray cooling [thesis]. The University of British Columbia; 2017. 
DOI: 10.14288/1.0357196

[6] Liang GT, Mudawar I. Review of spray cooling-part 1: Single-phase and nucleate boil-
ing regimes, and critical heat flux. International Journal of Heat and Mass Transfer. 
2017;115:1174-1205. DOI: 10.1016/j.ijheatmasstransfer.2017.06.029

[7] Shedd TA. Next generation spray cooling: High heat flux management in compact 
spaces. Heat Transfer Engineering. 2007;28:87-92. DOI: 10.1080/01457630601023245

[8] Huddle JJ, Chow LC, Lei S, Marcos A, Rini DP, Lindauer SJ, Bass M, Delfyett PJ. Thermal 
management of diode laser arrays. In: 16th IEEE Semiconductor Thermal Measurement 
and Management Symposium; 23 March 2000; San Jose, CA, USA. DOI: 10.1109/
STHERM.2000.837078

[9] Yan ZB, Zhao R, Duan F, Wong TN, Toh KC, Choo KF, Chan PK, Chua YS. Spray cooling. 
In: Ahsam A, editor. Two Phase Flow, Phase Change and Numerical Modeling. Rijeka: 
Intechopen; 2011. pp. 285-310

[10] Silk EA, Golliher EL, Selvam RP. Spray cooling heat transfer: Technology overview and 
assessment of future challenges for micro-gravity application. Energy Conversion and 
Management. 2008;49:453-468. DOI: 10.1016/j.enconman.2007.07.046

[11] Tropea C, Roisman IV. Modeling of spray impact on solid surfaces. Atomization and 
Sprays. 2000;10:387-408. DOI: 10.1615/AtomizSpr.v10.i3-5.80

[12] Toda S. A study of mist cooling (first report: Investigation of mist cooling). Heat Transfer: 
Japanese Research. 1972;1:39-50

[13] Toda S. A study of mist cooling (second report: Theory of mist cooling and its funda-

mental experiments). Heat Transfer: Japanese Research. 1974;3:1-44

[14] Chen RH, Chow LC, Navedo JE. Effects of spray characteristics on critical heat flux in 
subcooled water spray cooling. International Journal of Heat and Mass Transfer. 2002; 
45:4033-4043. DOI: 10.1016/S0017-9310(02)00113-8

Advanced Cooling Technologies and Applications46



[15] Chen RH, Chow LC, Navedo JE. Optimal spray characteristics in water spray cooling. 
International Journal of Heat and Mass Transfer. 2004;47:5095-5099. DOI: 10.1016/j.
ijheatmasstransfer.2004.05.033

[16] Mudawar I, Valentine WS. Determination of the local quench curve for spray-cooled 
metallic surfaces. Journal of Heat Treating. 1989;7:107-121

[17] Pautsch AG, Shedd TA. Adiabatic and diabatic measurements of the liquid film thick-

ness during spray cooling with FC-72. International Journal of Heat and Mass Transfer. 
2006;49:2610-2618. DOI: 10.1016/j.ijheatmasstransfer.2006.01.024

[18] Horacek B, Kiger KT, Kim J. Spray cooling using multiple nozzles: Visualization and 
wall heat transfer measurements. IEEE Transactions on Device and Materials Reliability. 
2004;4:614-625. DOI: 10.1109/TDMR.2004.838399

[19] Horacek B, Kiger KT, Kim J. Single nozzle spray cooling heat transfer mechanisms. 
International Journal of Heat and Mass Transfer. 2005;48:1425-1438. DOI: 10.1016/j.
ijheatmasstransfer.2004.10.026

[20] Kim J. Spray cooling heat transfer: The state of the art. International Journal of Heat and 
Fluid Flow. 2007;28:753-767. DOI: 10.1016/j.ijheatfluidflow.2006.09.003

[21] Gao X, Li R. Effects of nozzle positioning on single-phase spray cooling. Inter-
national Journal of Heat and Mass Transfer. 2017;115:1247-1257. DOI: 10.1016/j.
ijheatmasstransfer.2017.08.095

[22] Mudawar I, Estes K. Optimizing and predicting CHF in spray cooling of a square sur-

face. Journal of Heat Transfer. 1996;118:672-679. DOI: 10.1115/1.2822685

[23] Silk EA, Kim J, Kiger K. Spray cooling of enhanced surfaces: Impact of structured surface 
geometry and spray axis inclination. International Journal of Heat and Mass Transfer. 
2006;49:4910-4920. DOI: 10.1016/j.ijheatmasstransfer.2006.05.031

[24] Wang YQ, Liu MH, Liu D, Xu K, Chen YL. Experimental study on the effects of spray 
inclination on water spray cooling performance in non-boiling regime. Experimental 
Thermal and Fluid Science. 2010;34:933-942. DOI: 10.1016/j.expthermflusci.2010.02.010

[25] Visaria M, Mudarwar I. Theoretical and experimental study of the effects of spray incli-
nation on two-phase spray cooling and critical heat flux. International Journal of Heat 
and Mass Transfer. 2008;51:2398-2410. DOI: 10.1016/j.ijheatmasstransfer.2007.08.010

[26] Cheng WL, Liu QN, Zhao R, Fan HL. Experimental investigation of parameters effect on 
heat transfer of spray cooling. Heat and Mass Transfer. 2010;46:911-921. DOI: 10.1007/
s00231-010-0631-5

[27] Gao X, Li R. Local heat transfer of spray cooling on a thin film heater. In: 8th International 
Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion; 16-19 
December 2016; Chengdu, China

[28] Freund S, Pautsch AG, Shedd TA, Kabelac S. Local heat transfer coefficients in spray cooling 
systems measured with temperature oscillation IR thermography. International Journal 
of Heat and Mass Transfer. 2008;51:2398-2410. DOI: 10.1016/j.ijheatmasstransfer.2006. 
09.028

Spray Impingement Cooling: The State of the Art
http://dx.doi.org/10.5772/intechopen.80256

47



[29] Hsieh S, Tien C. R-134a spray dynamics and impingement cooling in non-boiling 
regime. International Journal of Heat and Mass Transfer. 2007;50:502-512. DOI: 10.1016/j.
ijheatmasstransfer.2006.07.023

[30] Karwa N, Kale S, Subbarao PMV. Experimental study of non-boiling heat transfer 
from a horizontal surface by water sprays. Experimental Thermal and Fluid Science. 
2007;32:571-579. DOI: 10.1016/j.expthermflusci.2007.06.007

[31] Yang J, Chow LC, Pais MR. Nucleate boiling heat transfer in spray cooling. Journal of 
Heat Transfer. 1996;118:668-671. DOI: 10.1115/1.2822684

[32] Mesler R. A mechanism supported by extensive experimental evidence to explain high 
heat fluxes observed during nucleate boiling. AICHE Journal. 1976;22:246-252. DOI: 
10.1002/aic.690220204

[33] Yang J, Pais MR, Chow LC. Critical heat-flux limits in secondary gas atomized liquid spray 
cooling. Experimental Heat Transfer. 1993;6:55-67. DOI: 10.1080/08916159208945369

[34] Estes KA, Mudawar I. Correlation of Sauter mean diameter and critical heat flux for 
spray cooling of small surfaces. International Journal of Heat and Mass Transfer. 
1995;38:2985-2996. DOI: 10.1016/0017-9310(95)00046-C

[35] Pais MR, Chow LC, Mahefkey ET. Surface roughness and its effects on the heat trans-

fer mechanism in spray cooling. Journal of Heat Transfer. 1992;114:211-219. DOI: 
10.1115/1.2911248

[36] Hsieh CC, Yao SC. Evaporative heat transfer characteristics of a water spray on micro- 
structured silicon surfaces. International Journal of Heat and Mass Transfer. 2006;49: 
962-974. DOI: 10.1016/j.ijheatmasstransfer.2005.09.013

[37] Zhang Z, Jiang PX, Christopher DM, Liang XG. Experimental investigation of spray 
cooling on micro-, nano- and hybrid-structured surfaces. International Journal of Heat 
and Mass Transfer. 2015;80:26-37. DOI: 10.1016/j.ijheatmasstransfer.2014.08.085

[38] Chen JN, Xu RN, Zhang Z, Chen X, Ouyang XL, Wang GY, Jiang PX. Phenomenon and 
mechanism of spray cooling on nanowire arrayed and hybrid micro/nano structured 

surfaces. Journal of Heat Transfer. 2018;140:112401. DOI: 10.1115/1.4039903

[39] Xie JL, Tan YB, Duan F, Ranjith K, Wong TN, Toh KC, Choo KF, Chan PK. Study of 
heat transfer enhancement for structured surfaces in spray cooling. Applied Thermal 
Engineering. 2013;59:464-472. DOI: 10.1016/j.applthermaleng.2013.05.047

[40] Sodtke C, Stephan P. Spray cooling on micro structured surfaces. International Journal of 
Heat and Mass Transfer. 2007;50:4089-4097. DOI: 10.1016/j.ijheatmasstransfer.2006.12.037

[41] Zhang Z, Jiang PX, Ouyang XL, Chen JN, Christopher DM. Experimental investigation 
of spray cooling on smooth and micro-structured surfaces. International Journal of Heat 
and Mass Transfer. 2014;76:366-375. DOI: 10.1016/j.ijheatmasstransfer.2014.04.010

[42] Gao X, Li R. Impact of a single drop on a flowing liquid film. Physical Review E. 
2015;92:053005. DOI: 10.1103/PhysRevE.92.053005

Advanced Cooling Technologies and Applications48



[43] Rioboo R, Tropea C, Marengo M. Outcomes from a drop impact on solid surfaces. 
Atomization and Sprays. 2001;11:155-166. DOI: 10.1615/AtomizSpr.v11. i2.40

[44] Li R, Ashgriz N, Chandra S. Maximum spread of droplet on solid surface: Low Rey nolds 
and Weber numbers. Journal of Fluids Engineering. 2010;132:061302. DOI: 10.1115/ 
1.4001695

[45] Clanet C, Beguin C, Richard D, Quere D. Maximal deformation of an impacting drop. 
Journal of Fluid Mechanics. 2004;517:199-208. DOI: 10.1017/S0022112004000904

[46] van Dam DB, Clerc CL. Experimental study of the impact of an ink-jet printed droplet on 
a solid substrate. Physics of Fluids. 2004;16:3403. DOI: 10.1063/1.1773551

[47] Tsai P, Hendrix M, Dijkstra R, Shui L, Lohse D. Microscopic structure influencing mac-

roscopic splash at high Weber number. Soft Matter. 2011;7:11325-11333. DOI: 10.1039/
C1SM05801K

[48] Chandra S, Avedisian CT. On the collision of a droplet with a solid surface. Proceedings 
of the Royal Society A. 1991;432:13-41. DOI: 10.1098/rspa.1991.0002

[49] Gao X, Li R. Spread and recoiling of liquid droplets impacting solid surfaces. AICHE 
Journal. 2014;60:2683-2691. DOI: 10.1002/aic.14440

[50] Mundo C, Sommerfeld M, Tropea C. Droplet-wall collisions: Experimental studies 
of the deformation and breakup process. International Journal of Multiphase Flow. 
1995;21:151-173. DOI: 10.1016/0301-9322(94)00069-V

[51] Xu L. Liquid drop splashing on smooth, rough, and textured surfaces. Physical Review E.  
2007;75:056316. DOI: 10.1103/PhysRevE.75.056316

[52] Bird JC, Tsai SSH, Stone HA. Inclined to splash: Triggering and inhibiting a splash 
with tangential velocity. New Journal of Physics. 2009;11:063017. DOI: 10.1088/1367- 
2630/11/6/063017

[53] Vander Wal RL, Berger GM, Mozes SD. The splash/non-splash boundary upon a 
dry surface and thin fluid film. Experiments in Fluids. 2006;40:53-59. DOI: 10.1007/
s00348-005-0045-1

[54] Cossali GE, Coghe A, Marengo M. The impact of a single drop on a wetted solid surface. 
Experiments in Fluids. 1997;22:463-472. DOI: 10.1007/s003480050073

[55] Bernardin JD, Stebbins CJ, Mudawar I. Mapping of impact and heat transfer regimes of 
water drops impinging on a polished surface. International Journal of Heat and Mass 
Transfer. 1997;40:247-267. DOI: 10.1016/0017-9310(96)00119-6

[56] Pasandideh-Fard M, Aziz SD, Chandra S, Mostaghimi J. Cooling effectiveness of a water 
drop impinging on a hot surface. International Journal of Heat and Fluid Flow. 2001; 
22:201-210. DOI: 10.1016/S0142-727X(00)00086-2

[57] Batzdorf S, Breitenbach J, Schlawitschek C, Roisman IV, Tropea C, Stephan P, 
Gambaryan-Roisman T. Heat transfer during simultaneous impact of two drops onto a 

Spray Impingement Cooling: The State of the Art
http://dx.doi.org/10.5772/intechopen.80256

49



hot solid substrate. International Journal of Heat and Mass Transfer. 2017;113:898-907. 
DOI: 10.1016/j.ijheatmasstransfer.2017.05.091

[58] Tran T, Staat HJJ, Prosperetti A, Sun C, Lohse D. Drop impact on superheated surfaces. 
Physical Review Letters. 2012;108:036101. DOI: 10.1103/PhysRevLett.108.036101

[59] Staat HJJ, Tran T, Geerdink B, Riboux G, Sun C, Gordillo JM, Lohse D. Phase diagram 
for droplet impact on superheated surfaces. Journal of Fluid Mechanics. 2015;779:R3-R1. 
DOI: 10.1017/jfm.2015.465

[60] Adera S, Raj R, Enright R, Wang EN. Non-wetting droplets on hot superhydrophilic 
surfaces. Nature Communications. 2013;4:2518. DOI: 10.1038/ncomms3518 (2013)

[61] Jung J, Jeong S, Kim H. Investigation of single-droplet/wall collision heat transfer char-
acteristics using infrared thermometry. International Journal of Heat and Mass Transfer. 
2016;92:774-783. DOI: 10.1016/j.ijheatmasstransfer.2015.09.050

[62] Yarin AL, Weiss DA. Impact of drops on solid surfaces: Self-similar capillary waves, 
and splashing as a new type of kinematic discontinuity. Journal of Fluid Mechanics. 
1995;283:141-173. DOI: 10.1017/S0022112095002266

[63] Roisman IV, Tropea C. Impact of a drop onto a wetted wall: Description of crown for-
mation and propagation. Journal of Fluid Mechanics. 2002;472:373-397. DOI: 10.1017/
S0022112002002434

[64] Cossali GE, Marengo M, Coghe A, Zhdanov S. The role of time in single drop splash on 
thin film. Experiments in Fluids. 2004;36:888-900. DOI: 10.1007/s00348-003-0772-0

[65] Rioboo R, Bauthier C, Conti J, Voue M, De Connick J. Experimental investigation of splash 
and crown formation during single drop impact upon wetted surfaces. Experiments in 
Fluids. 2003;32:648-652. DOI: 10.1007/s00348-003-0719-5

[66] Alghoul SK, Eastwick CN, Hann DB. Normal droplet impact on horizontal moving films: 
An investigation of impact behaviour and regimes. Experiments in Fluids. 2011;50:1305-
1316. DOI: 10.1007/s00348-010-0991-0

[67] Che ZZ, Deygas A, Matar OK. Impact of droplets on inclined flowing liquid films. 
Physical Review E. 2015;92:023032. DOI: 10.1103/PhysRevE.92.023032

[68] Gao X, Li R. Cooling enhancement of drop impact on flowing liquid film. In: The 2nd 
Thermal and Fluids Engineering Conference and 4th International Workshop on Heat 
Transfer; 2-5 April 2017; Las Vegas, Nevada, USA. DOI: 10.1615/TFEC2017.hte.018061

[69] Gao X, Kong LJ, Li R, Han JT. Heat transfer of single drop impact on a film flow cooling 
a hot surface. International Journal of Heat and Mass Transfer. 2017;108:1068-1077. DOI: 
10.1016/j.ijheatmasstransfer.2016.12.106

[70] Qiu L, Dubey S, Choo FH, Duan F. Splashing of high speed droplet train impinging on a 
hot surface. Applied Physics Letters. 2015;107:164102. DOI: 10.1063/1.4934531

Advanced Cooling Technologies and Applications50



[71] Qiu L, Dubey S, Choo FH, Duan F. The transitions of time-independent spreading 
diameter and splashing angle when a droplet train impinging onto a hot surface. RSC 
Advances. 2016;6:13644. DOI: 10.1039/C5RA26314J

[72] Soriano GE, Zhang TL, Alvarado JL. Study of the effects of single and multiple periodic 
droplet impingements on liquid film heat transfer. International Journal of Heat and 
Mass Transfer. 2014;77:449-463. DOI: 10.1016/j.ijheatmasstransfer.2014.04.075

[73] Zhang TL, Alvarado JL, Muthusamy JP, Kanjirakat A, Sadr R. Numerical and experimen-

tal investigations of crown propagation dynamics induced by droplet train impinge-

ment. International Journal of Heat and Fluid Flow. 2016;57:24-33. DOI: 10.1016/j.
ijheatfluidflow.2015.10.003

[74] Zhang TL, Alvarado JL, Muthusamy JP, Kanjirakat A, Sadr R. Heat transfer character-

istics of double, triple and hexagonally-arranged droplet train impingement arrays. 
International Journal of Heat and Mass Transfer. 2017;110:562-575. DOI: 10.1016/j.
ijheatmasstransfer.2017.03.009

[75] Gao X, Li R. Impact of a drop burst flow on a film flow cooling a hot surface. 
International Journal of Heat and Mass Transfer. 2018;126:1193-1205. DOI: 10.1016/j.
ijheatmasstransfer.2018.06.042

[76] Chen H, Cheng WL, Peng YH, Zhang WW, Jiang LJ. Experimental study on optimal 
spray parameters of piezoelectric atomizer based spray cooling. International Journal 
of Heat and Mass Transfer. 2016;103:57-65. DOI: 10.1016/j.ijheatmasstransfer.2016.07.037

[77] Gao X, Li R. Heat transfer of drop burst impact on a flowing film. In: 16th International 
Heat Transfer Conference; 10-15 August 2018; Beijing, China

Spray Impingement Cooling: The State of the Art
http://dx.doi.org/10.5772/intechopen.80256

51




