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Abstract

This chapter will address the main omics approaches used in studies involving the genus 
Corynebacterium, Gram-positive microorganisms that can be isolated from many diverse 
environments. Currently, the genus Corynebacterium has more than 130 highly diversified 
species, many of which present medical, veterinary and biotechnological importance, 
such as C. diphtheriae, C. pseudotuberculosis, C. ulcerans and C. glutamicum. Due to the 
wide application in these fields, several omics methodologies are used to better elucidate 
the species belonging to this genus, such as genomics, transcriptomics and proteomics. 
The genomic era has contributed to the development of more advanced and complex 
approaches that enable the increase of generated data, and consequently the advance on 
the structural, functional and dynamic knowledge of biological systems.

Keywords: Corynebacterium, genomic era, genomics, transcriptomics, proteomics

1. Introduction

The genus Corynebacterium was proposed by Lehman and Neumann in 1896, to describe a 

type strain bacillus Corynebacterium diphtheriae. However, antecedent to its final taxonomic 
classification, C. diphtheriae had already been described as synonymous species such as 

Microsporon diphthericum, Bacillus diphtheriae, and Pacinia loeffleri. After its classification, the 
species was again described as the synonym Mycobacterium diphtheriae by Krasil’nikov in 

1941 [1]. Afterward, the genus came to accommodate other bacterial species that presented 
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similar form and/or pathogenicity mechanisms [2]. Currently, the genus has 110 valid spe-

cies, of which 132 species have synonymous species and 11 subspecies [1].

Frequently, members of the genus Corynebacterium have a rod morphology, being Gram-

positive, immobile, nonsporulated, presenting an aerobic growth, and producers of the cata-

lase enzyme. They are part of the normal skin microbiota and mucous membranes of several 

hosts, being present also in the environment (soil, water, among others). Bacteria of this genus 

still share characteristics like G+C content (47–74%), oxygenase enzyme production, and no 

production of the enzyme collagenase. In addition, their cell wall is thick, and it has the pres-

ence of mycolic acids, peptidoglycan and arabinogalactan, also saturated and unsaturated 

fatty acids [3].

Bacterial species affiliated with this genus can be classified as: pathogenic, opportunistic 
and saprophytic. The strains of medical and veterinary interest are commonly divided in 

two groups: diphtheria and nondiphtheria. The diphtheria group, producer of the diph-

theria toxin (TD) encoded by the viral tox gene, present in the DNA of β lysogenic bacte-

riophages [4]. Among this group, we can mention three species: C. pseudotuberculosis, C. 

diphtheriae and C. ulcerans [5]. Nondiphtheria species, as agents of infection, are considered 

opportunistic pathogens, because they are present in the skin normal microbiota, and in 

the human nasopharynx [6]. The species Corynebacterium jeikeium, Corynebacterium urealyti

cum and Corynebacterium resistens are considered opportunistic [7]. Nonpathogenic strains, 

such as Corynebacterium glutamicum, Corynebacterium efficiens, Corynebacterium crenatum and 

Corynebacterium variabile, have biotechnological importance in the production of amino acids 

and in the cheese industry [8].

2. Main species of medical and biotechnological importance

2.1. Corynebacterium diphtheriae

Diphtheria is a disease of acute and transmissible evolution within local and systemic mani-

festations, affecting the upper respiratory tract, and has been one of the main causes of death, 
especially in children, in different continents, even in countries with immunization programs. 
C. diphtheriae was isolated mainly from humans, however it has been isolated from other 

hosts, such as horses, cats and dogs [9].

C. diphtheriae is a rod-shaped bacterium, and its cells can measure from 0.5 to 2.0 μm in size. 

Strains belonging to this species do not produce spores and do not present structures such as 

capsules and flagella [10]. The strains are classified in four biovars: mitis, gravis, intermedius and 

belfanti, based on the infection severity, morphological pattern of the colonies, carbohydrate 
fermentation and hemolysis [9]. These biovars resemble the production of cystinase enzyme 

(Tinsdale medium), and the fermentation of glucose and maltose. Moreover, these biovars 

produce neither the enzymes pyrazinamidase nor urease, and also they are not capable of 

fermenting sucrose. In relation to nitrate reduction, the biovars mitis, gravis and intermedius 

present a positive reaction, and the belfanti biovar presents a negative reaction [11].
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In its original form, C. diphtheriae does not cause diseases and its pathogenicity is related to 

infection by a bacteriophage carrying the tox gene encoding TD. Thus, the lysogenic cell car-

ries the tox gene, highly conserved in the bacterial chromosome through generations [12]. TD 

is a potent exotoxin of protein nature capable of acting in all tissues with special tropism for 

the myocardium, nervous system, kidneys and adrenals [6].

TD acts on the inhibition of protein synthesis causing cell death and it is composed of a single 

polypeptide chain containing two fragments, A and B, connected by a disulfide bond, and 
both are required for intoxication of tissue culture cells. The fragment A possesses the active 

site of TD and it is responsible for the enzymatic activity, while the fragment B is responsible 

for the fixation of the toxin with receptors in the host cells [13].

2.2. Corynebacterium pseudotuberculosis

The bacterium C. pseudotuberculosis presents characteristics such as the production of the 

enzyme nitrate reductase (biovar-dependent) and urease, the fermentation of carbohydrates 

maltose and glucose and the presence of halos of beta-hemolysis in blood agar. As for their 

colonies, they present a size ranging from 0.5 to 0.6 × 1.0 to 3.0 μm, with a whitish and vis-

cous appearance [14]. Biovar ovis, nitrate reductase negative, affects sheep and goats, and 
occasionally swine, causing caseous lymphadenitis, in humans may cause chronic subacute 

lymphadenitis [3]. While biovar equi, which the isolates can reduce nitrate to nitrite, mainly 

infects equines, buffaloes and camelids, causing ulcerative lymphangitis and edematous skin 
disease [15]. Due to its prevalence in animals of economic importance, diseases associated 

with C. pseudotuberculosis strains cause reduction in meat and milk production, wool depre-

ciation, delay in animal development, deficiencies in reproductive indices of the herd, carcass 
condemnation, early discarding and occasional death of animals, also high treatment costs 

and veterinary fees [3].

The virulence of C. pseudotuberculosis is related to three main factors: the cell wall structure, 
its intracellular capacity for macrophage persistence and the production of phospholipase D 

(PLD) as exotoxin, which is considered the main virulence factor of the species [16]. Although 

its main virulence factor is already well established, toxigenic strains of this species can also 

produce TD [17, 18].

The diagnosis of C. pseudotuberculosis in infected animals is performed by the macroscopic 

observation of the superficial abscesses formed, associated to laboratory culture in the selec-

tive media of tellurian agar, bacterioscopy, catalase test (positive for Corynebacterium) and 

biochemical tests [3]. In addition to serological tests such as seroneutralization, indirect 

hemagglutination and Enzyme-Linked Immunosorbent Assay (ELISA), allergic tests and 

tests based on molecular biology such as the polymerase chain reaction (PCR), through the 

conserved genes rrs, rpoB and pld in multiplex PCR [19]. Recently, with addition of the narG 

gene, it is possible to distinguish biovars from the capacity to reduce nitrate [20].

The animals affected by caseous lymphadenitis are usually treated through lymph node 
drainage and isolation of infected animals. Yet, this practice does not completely eliminate 

bacteria, due to the possibility of dissemination to viscera and other internal organs, as well 
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to the great potential of contamination of the environment. In addition, antibiotic treatment 

does not produce satisfactory results due to difficult penetration into the abscess capsule, 
making the treatment unfeasible, emphasizing that prophylaxis is the best method to combat 

the disease [3].

2.3. Corynebacterium ulcerans

C. ulcerans has been described as the etiological agent of several infections in animals, such as 

goats, dogs, cats and cattle. The contact with affected animals is the main form of transmission 
of C. ulcerans to human hosts, causing diphtheria of zoonotic nature. The first cases of human 
infections were related to the consumption of milk contaminated by this microorganism. In 

the 1990s, it was presented as an emerging pathogen in countries of large animal production, 

such as England, Japan, Germany, Denmark, and Brazil [21].

As for its biochemical characterization, C. ulcerans presents features such as the production of 

the enzyme gelatinase, inability to reduce nitrate and virulence factors, including toxic lipids 

associated with the cell wall, which may mediate bacterial resistance to phagocyte attack.  
C. ulcerans is capable of producing PLD, as well as C. pseudotuberculosis [22]. The third viru-

lence factor for C. ulcerans is the production of the diphtheria toxin. C. ulcerans strains infected 

by bacteriophage carriers of the tox gene are the major responsible for clinical cases in humans 

and animals [23].

The diseases related to these strains show symptoms as frequent nasal bleeding, skin lesions 

similar to cutaneous diphtheria, necrosis and mucosal ulceration, granulomatous pulmonary 

nodules, lymph node involvement and the occurrence of cellular death [24].

Although diphtheria by C. ulcerans is associated with its TD production, vaccination using 

the diphtheria toxoid has an unknown efficacy. This fact is due to the knowledge limitation 
of the bacterium molecular epidemiology. This limitation is mainly related to the structure of 

the tox gene, which has specific differences when compared to both interspecific (C. diphthe

riae tox gene) and intraspecific in C. ulcerans [21].

2.4. Corynebacterium glutamicum

Bacterial strains belonging to C. glutamicum species are commonly found in the environment, 

in habitats such as soil. This bacterium is rod-shaped, capable of reducing nitrate to nitrite, 

facultative, mesophilic anaerobic and capable of carbohydrates fermentation. As a generally 

recognized as safe (GRAS) microorganism, it is widely used in the biotechnology industry, 

for its ability to produce amino acids like L-glutamate and L-lysine, used as flavor promoters 
and food additives [25]. More than 2.5 million tons of lysine is produced annually by mutant 

strains of C. glutamicum, for animal nutrition, applications in the pharmaceutical, cosmetics, 

fuel and polymer industries [26].

The nutrients used for industrial fermentation by C. glutamicum include glucose, fructose 

and sucrose, derived from corn starch, cassava or wheat, as well as cane molasses and beet 

molasses. Obtaining sugar from raw materials and agroindustry wastes is very common in 
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countries with high agricultural production, such as China, the United States and Brazil, its 

use reduces the industrial production process. Additionally, C. glutamicum strains are ideal 

for large-scale fermentation processes, since they are resistant to oscillations in oxygen ten-

sion and in the substrate supply, which often occurs in these industrial processes [25].

One of the factors considered in the selection of strains is the maximum theoretical yield of a 

cell within production of lysine from glucose. This yield should turn around 75% conversion 

of carbohydrate into final product. Metabolic flux analysis, considering the main metabolic 
pathways that can be used by C. glutamicum to produce lysine, indicate that the theoretical 

yield is increasing, producing more than two million tons of amino acids per year [27].

3. Genomics

3.1. The impact of next sequencing technologies on genomics of the genus 

Corynebacterium

Forty years ago, the advent of DNA sequencing by Sanger method began to revolutionize 

genome studies [28]. The first genomes to be sequenced were viruses and organelles. In 1995, 
Craig Venter and colleagues published the two first complete bacterial genomes: Haemophilus 

influenzae and Mycoplasma genitalium [29, 30]. Later, several sequencing projects were created, 

which transformed the biology as a whole, by means of allowing to decipher complete genes 

and later whole genomes using the methodology developed by Sanger and colleagues in 1977 

[31].

The publication of the first draft of the human genome in 2001 prompted companies to 
develop new sequencers that would provide more speed and accuracy, as well as cost and 

labor savings [32]. Since 2005, new sequencing technologies, called next-generation sequenc-

ing (NGS) or high-performance sequencers, have been able to generate gigabases (Gb) of 

data in a few days, (e.g. Illumina, Ion Torrent, Single Molecule Real Time-SMRT, PacBio, and 

Oxford Nanopore) [33]. Hence, the public domain databases have had, since registered the 

emergence of NGS platforms, an exponential increase in the number of deposited biological 

sequences, with more than 144,000 bacterial genomes already registered [34].

Currently, the genus Corynebacterium has more than 265 genome projects registered in public 

databases. According to the GOLD website, a database that provides project information in 

all three domains of life, Corynebacterium genome deposits date back to 2007 [35]. Since then, 

the increase of these data positively impacted the development of studies with transcriptomic 

and proteomic approaches, in order to provide a better understanding of several molecular 
processes from different corynebacterial species.

3.2. Comparative genomics studies

The remarkable growth of the number of complete genomes provided the advance in the com-

parative analyzes between genomes, allowing studies in large scale. Comparative genomics 
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provide a global understanding of the gene repertoire of a given species or genus, in order to 

elucidate the essential genes that are involved in processes such as replication, transcription 

and translation, in addition to the genes considered as accessory, that are also important for 

the characterization of variabilities in their genetic patterns, as well as allows the analysis of 
the genomic plasticity [36].

In another aspect, comparative analyzes between different strains within the same phylo-

genetic clade make it possible to recognize similarities and differences among genomes, to 
clarify which sequences are capable of diverging phenotypic changes in organisms, and to 

elucidate the mechanisms of virulence among pathogenic organisms or in in the case of envi-

ronmental microorganisms. From this premise, the pan-genome concept emerged [37].

Regarding C. ulcerans, a study was conducted with 19 strains identifying 4120 genes compos-

ing the pan-genome, of which 1405 were present in the core genome and 2715 present in the 

accessory genome, where proteins involved in the pili formation and the tox gene were found 

in a large part of the genomes. Furthermore, variations between the transmembrane proteins 

and proteins secreted among the different species have been identified, contributing to the 
variability of the pathogenicity between them. This study made a greater understanding pos-

sible, regarding the knowledge around the virulence of this emerging pathogen [38].

The pan-genome is constituted by the core genome, which configures the genes present 
among all analyzed strains; the accessory genome that shares genes between two or more, 

but not all, strains and includes the genes the bacteria needs to survive in a specific envi-
ronment, in addition to species-specific genes belonging to a single lineage, which can be 
acquired via horizontal transfer [37, 39]. The representatives of the genus Corynebacterium 

become an interesting object of studies of comparative genomics and evolution, due to its 

diverse lifestyles [40].

This approach was used in C. jeikeium by comparing 17 plasmids from different clinical iso-

lates, which identified that plasmid pK43 can act as a natural vehicle for gene transfer con-

ferring antimicrobial resistance between multiresistant strains and possibly between other 

members of the corynebacteria group, such as C. diphtheriae [41].

In C. pseudotuberculosis, the pan-genome of 15 strains revealed differences between the biovars 
of this species, in which the biovar ovis presented clonal behavior, while the equi group has 

a greater genetic diversity [42]. Recently, a study with strains isolated from equines was 

analyzed and corroborated the diversity of the biovar, also presenting a wide repertoire of 

resistance genes and virulence factors such as: beta-lactamases, recombination endonucleases 
and phage integrase [43].

In a comparative analysis between Corynebacterium jeikeium, Corynebacterium urealyticum, 

Corynebacterium kroppenstedtii, Corynebacterium resistens and Corynebacterium variabile, it was 

possible to identify 83 regulatory genes, being 56 of transcriptional DNA binding regulators 

and nine sigma factors. Furthermore, 44 regulatory proteins were identified that were pres-

ent in the core genome. These genes shared by the strains are involved in the generation of 

short-chain volatile acids, which are related to the odor formation process of the human body, 

showing the importance of this approach in lipophilic corynebacteria [44].
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Codon deviation studies can aid in the understanding of the evolutionary molecular basis 

through parameters such as gene expression, amino acid conservation and codon-anticodon 

interaction. These factors reveal the type of selective pressure in eukaryotic and prokaryotic 

genes. In order to understand the molecular evolution of the genus Corynebacterium, com-

parative analyzes of G + C content and codon use were carried out relating different species, 
revealing evolutionary relationships that allowed divergence between the groups of patho-

genic and nonpathogenic corynebacteria [40].

4. Transcriptomics

The genomic approach allowed to know the sequence of DNA of a certain organism, though, 

only this knowledge does not define the gene function to external stimuli. A protein to be syn-

thesized primarily needs the DNA to be transcribed into an RNA molecule, later translated 

into a protein molecule. However, the genes are not active all the time in the cell, and they are 

expressed when necessary to act in cellular biological process. The set of genes are expressed 

in a cell under a certain physiological condition or stage of development at a specific time is 
called transcriptome [45].

Studies that address the transcriptome technique aim the analysis of the collection of all 

transcripts and provide information about the regulation of the genes, too allow inferring 

functions of uncharacterized genes, helping to understand the biology of the organism ana-

lyzed. One of the applications obtained by this approach is the usage of the data generated 

to provide more information about the host defense response to the survival and prolifera-

tion of bacterial pathogens, which enables an understanding of the pathogenesis of infectious 

diseases [46].

Due to the diverse applications of transcriptomics, new technologies and high-throughput 

methods have been developed for large-scale analysis, such as hybridization-based method 

(Microarray) and sequencing-based methods such as RNA sequencing [47].

Microarray technology is considered a large-scale method because it generates the expression 

profile of thousands of transcripts simultaneously. Studies with microarray technology have 
identified clusters of genes that are involved in specific physiological responses, through the 
variations of environmental conditions faced by microorganisms [48], such as ammonia limi-

tation. This compound is used as a source of nitrogen that is essential for almost all complex 

macromolecules in bacteria. A study analyzed the response of C. glutamicum in ammonia-lim-

iting medium, demonstrating that there was alteration in the expression of 285 genes, many 

of which encode transport proteins and proteins involved in metabolism, nitrogen regulation, 

energy generation and protein turnover [49].

Other studies with C. glutamicum were carried out aiming to evaluate the level of gene expres-

sion essential to the survival of the bacteria in stress environments. The transcriptional pro-

file of this species under growth conditions with citrate as a source of carbon and energy 
compared to glucose demonstrated that citM and tctCBA encoding citrate uptake systems 

were induced, while the ptsG, ptsS and ptsF genes encoding the glucose capping system were 
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repressed. Additionally, genes encoding tricarboxylic acid, malic enzyme, PEP carboxykinase, 

gluconate-glyceraldehyde-3-phosphate dehydrogenase and ATP synthase cycle enzymes 

were induced [50].

The microarray technique provided an advance in the research with important organisms, 

such as the members of the genus Corynebacterium. Nevertheless, this technique has some 

limitations, such as high noise interference, inability to detect transcripts with a low number 

of copies per cell, low coverage of transcripts, and dependence on prior knowledge about the 

genome for the preparation of the probes, consequently generating little information about 
the transcript sequence [47].

As a result of these limitations and the advent of NGS platforms, a promising alternative 

technique was developed, RNA-seq. Through this technique, it was possible to obtain more 

accurate, fast and reliable analyzes from cDNA sequencing. The advantages of this method 

are: low occurrence or absence of interference, detection of small transcripts that would not be 
detected by other methods, low cost and reduction of time and work to prepare the samples. 

RNA-Seq is considered an ideal tool for the analysis of complete transcriptomes and is applied 

in the exploration of expression profile, and characterization of differentially expressed genes. 
Thus, it represents an important tool to uncover the mechanisms of virulence and pathogenic-

ity in microorganisms [51, 52].

Relating to this, two studies with C. pseudotuberculosis simulating the stress conditions faced 

by the bacterium during infection in host were performed. The first study was with strain 
C. pseudotuberculosis 1002, biovar ovis, which underwent three stress conditions: thermal, 
acidic and osmotic. Most of the identified targets were related to oxidation and reduction, 
cell division and cell cycle, and the stimulon of the three stresses presented induced genes that 

participate in the mechanisms of virulence, defense against oxidative stress, adhesion and 

regulation, revealing that they have important role in the infection process [53]. The other 

study, with strain 258, biovar equi, was performed using the thermal stress condition, similar 

to the conditions performed on strain 1002. Herein, 113 genes were considered induced, in 

which hspR, grpE, dnaK and clpB were highlighted due to its expression rates and participation 

in the mechanism of adaptation of the pathogen to high temperatures [54].

Recently, the first analysis of RNA-Seq with C. diphtheriae was developed, in which it was 

sought to investigate the alteration of the transcription profile between a wild strain and a 
ΔdtxR mutant, also to detect the operon structures from the transcriptome data of the wild 

type strain. The authors revealed that approximately 15% of the genome was differentially 
transcribed and that DtxR may also play a role in other regulatory functions, in addition to 

regulating the metabolism of iron and diphtheria toxin. Finally, they identified 471 operons 
subdivided into 167 sub-operon structures [55].

One of the representatives of the genus that had the gene expression regulation most studied 

is C. glutamicum. The RNA-Seq approach elucidated the regulatory mechanisms of several 

industrially relevant compounds, such as the dissolved oxygen concentration (DO), which is 

important in industrial microbial processes, providing new information on the relationship 

between oxygen supply and bacterial metabolism [56].
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In relation to the production of amino acids, L-lysine-producing C. glutamicum ATCC21300 

obtained 543 differentially expressed genes compared to wild type C. glutamicum 

ATCC13032, highlighting bioA, bioB, bioD, NCgl1883, NCgl1884, and NCgl1885 involved in 

metabolism or transport of the biotin, of which the bioB gene was hyper expressed about 

20-fold, and when it was discontinued, lysine production was reduced to approximately 

76% and the genes NCgl1883, NCgl1884, and NCgl1885 were repressed [57]. Genes involved 

in the production of L-valine were also analyzed, in which 1155 differentially expressed 
genes were identified, where ilvBN, ilvC, ilvD, and iLvE were hyperexpressed, resulting in 

the improvement of the carbon flux used to produce valine. Thus, the work involving this 
approach helps to better understand C. glutamicum for the generation of biotechnological 

products [58].

The RNA-Seq technique also can be applied for identification of operon structures, although 
this approach requires a reliable genome annotation and low gene rate with unknown func-

tion. Through these data, transcription initiation sites (TSSs) can be identified and corrected, 
allowing a more detailed analysis of the promoters and classifying them according to their 

location in relation to the protein coding regions (CDs). For example, see [59, 60].

5. Proteomics

The central base of molecular biology involves understanding how cells work and interact 

among each other. These cellular processes occur through the activity of biomolecules that act 

together throughout specialized mechanisms. This whole process involves storing the genetic 

information in the DNA molecule and the unidirectional flow of this information to the RNA 
and proteins. Proteins make up a large part of the cell molecular machinery, and the overall 

analysis of them provides the information needed to understand how cells work. This analy-

sis is referred to as proteomics [61].

In 1995, the term “proteome” was taken as the set of proteins produced by a cell or tissue at a 

given time and condition [62]. As early as 1996, the term “proteomics” appeared to define the 
large characterization of all protein contents of a cell line, tissue or organism [63]. The study 

of the proteome currently refers not only to the knowledge of the protein content of a given 

organism in a given condition, but also includes the quantification, location, modifications, 
interactions and function of these proteins [64, 65].

This area has three strands: expression, structural and functional. Expression proteomics 
generally involves studies to investigate the pattern of protein expression in abnormal cells. 
This classification encompasses studies of qualitative and quantitative expression analysis 
of total proteins under two different conditions. The second analyzes the three-dimensional 
conformation and structural complexities of functional proteins. This strand makes it possible 

to identify all the proteins of a complex system and characterize the possible interactions of 

these proteins and protein complexes. Functional proteomics reveals the function of proteins 

based on their interactions with specific protein complexes and the detailed description of cell 
signaling pathways to which they are involved [66].
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The most used methods for the identification and quantification of proteins are those based 
on mass spectrometry (MS). This technique allows the detection of compounds by the separa-

tion of the ions through mass-charge ratio. As each compound has a unique fragmentation 

pattern, the samples are ionized and separated with further identification of this pattern. 
Generally, two MS-based methods are currently most commonly used. The first method 
involves two-dimensional electrophoresis (2-DE) followed by staining, selection and MS. The 

other method involves isotopic markers to label proteins, separation by multidimensional 

liquid chromatography and MS analysis [65, 67, 68].

A typical proteomic experiment involves the step of preparing the sample, consisting of sepa-

rating and isolating the proteins from the cell lysates, followed by separation of the protein 

mixture, and then the individual portions can be analyzed. Analysis may involve the bottom-
up strategy and the top-down strategy. The first involves obtaining the peptides by enzy-

matic digestion of protein solutions and the subsequent separation of these peptides by liquid 

chromatography and MS analysis. In contrast, the top-down strategy involves the analysis of 

intact proteins by MS. For the quantitative determination of proteins two approaches are most 

commonly used: two-dimensional electrophoresis followed by staining, selection and iden-

tification by MS; and isotopic markers followed by protein separation by multidimensional 
liquid chromatography and MS [68, 69].

Proteomics studies involving the genus Corynebacterium mainly comprise studies with C. glu

tamicum, due to, in large part, its industrial importance in the production of amino acids. This 

species is investigated in relation to its genetics and physiology and, consequently, a diversity 

of information about its molecular biology and biochemistry available, including a variety of 

proteomic techniques. In consequence of the membrane organization with high concentration 

of mycolic acids, C. glutamicum has been used as a model for development and new proteomic 

technologies [70].

Proteomics analysis have also been used as an alternative to traditional molecular meth-

ods for the characterization of poorly known bacteria, especially those of clinical interest, 

by reason of the ability of these methodologies to provide a fast and reliable identifica-

tion of these species. The matrix-assisted laser desorption/ionization-time of flight mass 
spectrometry (MALDI-TOF-MS) technique was able to detect strains of Corynebacterium 

argentoratens, Corynebacterium confusum, Corynebacterium coyleae, Corynebacterium imitans, 

Corynebacterium kroppenstedtii, Corynebacterium mucifaciens, Corynebacterium riegelii and 

Corynebacterium ureicelerivorans isolated from different clinical samples, such as blood, 
wounds and abscesses, also from respiratory, genitourinary, digestive tract, among others. 

These analyses show that there is a tendency for clinical laboratories to integrate pro-

teomics in order to obtain faster and more sensitive results for the diagnosis of infections 

caused by rare bacteria [71].

In the case of pathogenic corynebacterial species, the repertoire of secreted and surface-

exposed proteins, the exoproteome, have been documented because of their potential to act as 

antigenicity and virulence factors, since these molecules are promptly exposed to the host cells, 

making they are suitable for the use of vaccine and drug targets. A recent study investigated 
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both surface and extracellular proteome of two C. ulcerans strains, where NanoLC-MS/MS 
was performed to analyze the set of proteins, which were similar expression patterns of puta-
tive virulence factors [72].

The mapping of the extracellular proteome of C. diphtheriae through 2-DE and MALDI-
TOF-MS detected proteins present in pathogenicity islands. According to these tests, possibly, 
the exoproteome of this pathogen is constituted of two distinct classes. The first involves 
molecules that have functions in the cytoplasm related with cell viability, such as protein 
synthesis and folding and detoxification mechanisms. The second class appears to be actively 
secreted and includes iron transporters and possible virulence factors that can be used in new 
vaccines [73].

The exoproteome of C. pseudotuberculosis has also been extensively characterized in the past 
years [74]. The use of transposon-binding proteins was investigated through a method of 
data-independent LC-MS acquisition (LC-MSE), used for proteins identification and quanti-
fication that was applied to compare the exoproteome of two biovar ovis C. pseudotuberculosis 
strains, C231 and 1002, where there were found 44 presents in both isolates in a total of 93 
extracellular proteins [75].

Further, the combination of different proteomic methodologies as the 2-DE along with 
MALDI-TOF/TOF allowed the finding of 11 novel molecules in the C. pseudotuberculosis exo-
proteome, noncharacterized on the first comparative work [76]. The integration with in silico 
approaches also gives important insights about the behavior of the exoproteome. Pan-genome 
analysis can be performed to predict the set of exported proteins present in a large number of 
genomes available on public databases [77].

The proteomic map of a C. jeikeium strain was examined through 2-DE and MALDI-TOF-MS, 
through peptide mass fingerprinting (PMF), a high throughput protein identification meth-
odology in which a protein is digested with endoprotease to produce the small constitu-
ent peptides. In this investigation, most spots were associated with functions essential for 
cell viability, such as protein synthesis and energy production, as carbohydrate, lipid and 
nucleotide metabolism. The surface proteins SurA and SurB, the adhesin CbpA and Che 
cholesterol esterase, known to act as virulence factors were also identified in the extracellular 
proteome [78].

In addition to these efforts, structural characterization methods for protein elucidation 
have also been used. The DtxR repressor is activated by transition metal ions and acts on 
the modulation of tox gene expression in C. diphtheriae. Through X-ray crystallography, it 
was possible to determine the general architecture of this biologically active Ni(II) bound 
protein with a resolution of 2.4 Å [79]. In C. pseudotuberculosis, the ArgR protein that acts 
as a regulator of arginine biosynthesis, an important metabolic pathway for bacteria, 
had the C-terminal domain crystal structure determined from X-ray diffraction with a 
resolution of 1.9 Å. The interest in this molecule lies in the fact that it participates in a 
pathway that is absent in its hosts, which makes it a potential target for the design of new 
drugs [80].
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One of the greatest challenges of the postgenomic era is the amount of data generated through 

the different approaches, as well as the functional characterization of proteins. In this context, 
the analysis of protein-protein interaction networks (PPI) has been used for the identification 
of essential proteins and discovery of new therapeutic targets. This computational method 

is based on biological data topology information according to known interaction patterns to 
predict new interactions between molecules, where nodes represent proteins and the edges 

represent the predicted interactions [81].

The inter-specific PPI networks of C. pseudotuberculosis were constructed from proteins 

conserved in multiple pathogens, such as M. tuberculosis, Y. pestis, E. coli, C. diphtheriae 

and C. ulcerans, where the interaction network of the protein acetate kinase (Ack) was 

indicated as a possible new broad-spectrum therapeutic target [82]. Later, another study 

involving the interactome of C. pseudotuberculosis was developed, where the networks 

were constructed, revealing nonhomologous proteins to humans, cattle, goats, sheep and 
horses. The fact that such proteins predicted by the PPI result are essential to the patho-

gen, but not to the hosts, makes them important candidates for use as targets for the 

synthesis of new drugs [83].

6. Conclusion

Corynebacterium comprises several Gram-positive species known mainly for their pathogenic and 

biotechnological potential. Due to the advent of the NGS platforms, several strains of the genus have 

had their genomes sequenced in recent years, providing significant advances in the understand-

ing of pathogenic mechanisms, metabolism, regulation, adaptation and evolution, among other 

aspects of these bacteria behaviors. Through genome projects, it was possible to better understand 
molecular functions and biological processes of several genes, to know the genomic architecture 

of different isolates, as well as to compare them at a DNA level, making these studies essential for 
the execution of more complex approaches. Transcriptomics, for example, has been employed in 

a wide variety of studies in order to fully and clearly understand the modulation of expression 

of genes of interest to different stimuli. Also, proteomic analyses provide a more complete and 
advanced knowledge in the study of biological systems. Hence, the field integration of the genomic 
era has provided valuable insights, aiming at a deeper understanding of various corynebacteria.
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