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Abstract

Metals have unique characteristics such as variable coordination modes, redox activity, 
and reactivity being indispensable for several biochemical processes in cells. Due to their 
reactivity, their concentration is tightly regulated inside the cells, and abnormal concen-
trations are associated with many disorders, such as cancer. As such metal complexes 
turned out to be very attractive as potential anticancer agents. The discovery of cisplatin 
was a crucial moment, which prompted the interest in Pt(II) and other metal complexes 
as potential anticancer agents. This chapter highlights the state of the art on metal com-
plexes in cancer therapy, highlighting their uptake mechanisms, biological targets, toxic-
ity, and drug resistance. Finally, based on the importance of selective target of cancer 
cells, drug delivery systems will also be discussed.

Keywords: cancer therapy, metal complexes, mechanism of action, clinical trials, 
platinum, ruthenium, copper

1. Introduction

Metal compounds are of undeniable importance to medicine, either for their toxicity or 

for their effectiveness in disease treatment. In ancient Egypt, copper was used to reduce 
inflammation and iron to treat anemia [1]. In modern medicine, noticeable discoveries of 

metal-based compounds marked the last centuries such as K[Au(CN)
2
], by Robert Koch, at 

around 1890, to treat tuberculosis; arsphenamine developed in the 1910s to cure syphilis; and 

Cisplatin discovered by Barnett Rosenberg in the late 1960s as an anticancer agent [2]. The 
latter marked a milestone in drug discovery for inorganic complexes, revolutionizing cancer 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Figure 1. Schematics of metal complex mechanisms of action that promotes cell death.

treatment and shifting focus to rational design to improve metal-based drugs, where other 

coordination compounds (e.g., gold, ruthenium, titanium, and copper) were also explored 

with some reports of (pre)clinical and clinical candidates [3, 4].

Transition metals, such as zinc, iron, and copper, are involved in several biological processes, 
from electron transfer to enzyme cofactors meaning that their intracellular concentration is tightly 
regulated, otherwise it can lead to the development of various pathological disorders such as 

Menkes and Wilson diseases associated with copper impairment and accumulation, respectively 

[4]. A common characteristic of these metals is their ability to form reactive oxygen species (ROS), 

which are a part of cellular redox balance and fundamental in cell metabolism, signal trans-

duction for proliferation, differentiation, and cell death, among others [3]. Redox homeostasis is 

controlled by compartmentalizing reactions in the cell in subcellular units such as mitochondria 
and peroxisomes [3]. It is therefore understandable the great impact that metal complexes can 

have on such redox balance. Disturbing the oxidant-antioxidant balance promotes an oxidizing 
environment leading to oxidative stress. When ROS are formed inside the cells, they can induce 

the lipid peroxidation of cell membranes, disrupt the mitochondrial membrane potential pro-

moting membrane depolarization, induce DNA single-strand breaks, and oxidize the cysteine 
residues resulting in protein structural changes [3]. Cancer cells are known to have a different 
redox metabolism from normal cells, with augmented levels of intracellular ROS, mostly due 

to increased metabolic activity and hypoxia, especially in the core of solid tumors [4]. Metal 

complexes, due to their redox properties, have been shown to disturb cellular redox homeostasis 

resulting in enhanced levels of oxidative stress prompting cancer cell death [4–8].

DNA is the main intracellular target for a high number of anticancer metal complexes (e.g., 
cisplatin, carboplatin, and oxaliplatin); however, several other targets are known (Figure 1) [4]. 
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In the following sections, we will summarize the current knowledge on Pt, Au, Ru, Ti, Pd, Ir Cu, 
V, Co, Ga, and Os complexes, highlighting their uptake mechanisms, biological targets, toxicity, 
and drug resistance mechanisms and elucidating how far they are from translation to the clinics 

in cancer therapy.

1.1. Platinum

Platinum-containing complexes revolutionized cancer treatment since the introduction of cis-

platin. Synthesized in 1844, it was used for the first time, more than 100 years later to treat 
patients with testicular cancer with survival rates over 90% [9]. Since then, more than 3000 plati-

num derivatives were synthesized and tested for antiproliferative potential against cancer cells. 
Today, there are six platinum drugs approved in cancer treatment, three of them—cisplatin, 
carboplatin, and oxaliplatin—by Food and Drug Administration (FDA) and used worldwide 
and the other three approved in specific countries—nedaplatin in Japan, lobaplatin in Korea, 
and heptaplatin in China [10]. Platins are the first-line therapeutics in several cancers either 
alone, in combination with radiotherapy, or with other antitumor or antiangiogenic drugs  

[9, 11, 12]. Their cellular effects result from four main steps: (i) internalization, (ii) aquation, (iii) 
formation of DNA adducts, and (iv) cell response (either survival or apoptosis) [13]. Once inside 

the cells, the ligands (chloride in cisplatin, dicarboxylate in carboplatin, and oxalate in oxalipla-

tin) are substituted by water molecules that interact with nucleophilic centers on purine bases 

of DNA, promoting not only cross-linking of the N7 sites of adjacent guanine nucleobases, 
but also interstrand crosslinks, inducing severe structural distortion of the double helix. This 
stalls DNA transcription and arrests the cell cycle at the G2/M transition. DNA repair machin-

ery is recruited, and if unable to repair, cells trigger apoptotic cell death [13]. However, some 

cells enhance their DNA repair activity becoming resistant to cisplatin that have been asso-

ciated with patient’s relapse [14, 15]. Other DNA damage-independent processes have been 
proposed such as destabilization of redox homeostasis by increasing the intracellular levels of 
ROS. Cisplatin metabolism is in part performed by glutathione leading to its decrease, affecting 
NADPH pools, resulting in dysfunctional mitochondrial redox status, and causing ROS [16]. 

For all FDA approved platins, the mechanism of action is believed to be very similar, with 

incremental variations [17, 18]. Carboplatin has less toxicity than cisplatin because 1,1-cyclobu-

tanedicarboxylate is a poorer leaving group than chloride lowering its potency being primarily 

used for ovarian cancer treatment [19]. Oxaliplatin was the latest approved platinum drug and 

is a part of the first-line treatment for colorectal cancer. In contrast to cisplatin and carboplatin, 
oxaliplatin features a quelating nonleaving group, 1,2-diaminocyclohexane (DACH) in place of 
the two monodentate amine ligands. It also features a bidentate chelating oxalate leaving group 

ligand [19]. Oxaliplatin does not form adducts as efficient as cisplatin, but the hydrophobicity 
and size of the DACH group make it more efficient in inhibiting DNA polymerization and 
repair [3]. Oxaliplatin cellular uptake is active and through copper transporters 1 and 2 and 

organic cation transporters (OCTs) 1 and 2; the latter explains its efficacy against colorectal can-

cer (with OCTs overexpression) [9]. Nedaplatin features cis ammine nonleaving group ligand 

(glycolate), associated with its greater water solubility. It has less toxicity than cisplatin and 

less nephrotoxic and is mainly used in combination therapy to manage urological tumors [20].

Heptaplatin features malonate as a chelating leaving group ligand and a chelating 

2-(1-methylethyl)-1,3-dioxolane-4,5-dimethanamine nonleaving group ligand, which forms 

a seven-membered chelate ring. It is used for gastric cancer, but its advantage over cisplatin 
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has controversial results in clinical trials [11]. Lobaplatin, a derivative of heptaplatin, fuses a 

cyclobutene ring to the seven-membered chelate ring instead of a dioxolane with an S-lactate 

as a leaving group ligand. It was originally approved to manage patients with chronic myelog-

enous leukemia, small-cell lung cancer, and metastatic cancer showing noncross-resistance to 

cisplatin [21]. Phase I clinical trial is undergoing to expand its use in combination therapy in 

solid tumors [22].

Currently, there are other platinum drugs in clinical trials: satraplatin, picoplatin, and two poly-

mer/liposomal-based platinum drugs—ProLindac and Lipoplatin. Satraplatin, bis-(acetato) 
-ammine-dichloro-(cyclohexylamine) platinum(IV), was enrolled in several Phase I, II 

and III clinical trials mainly in conjunction with other drugs (e.g., docetaxel, paclitaxel, and 
capecitabine), but all have been recently terminated or concluded. Satraplatin was administered 

orally, absorbed by the gastrointestinal mucosa, and reduced in the bloodstream into more than 

six different Pt(II) complexes of which cis ammine dichloride(cyclohexylamine)-platinum(II) 
is the most important and showed anticancer activity against platinum sensitive and resistant 

cell lines. One of the most relevant Phase III trials evaluated a combination of satraplatin and 

prednisone against hormone refractory prostate cancer who had progressed after initial che-

motherapy. In this study, 40% of patients had reduced risk of prostate cancer progression [23].

Picoplatin, cis-ammine-dichloride(2-methylpyridine) platinum(II), has a pyridine ring nearly 

perpendicular to the platinum plane, thus positioning the ligand’s methylpyridine in a posi-

tion that protects the metal center from nucleophilic attacks, specially by thiols. It has shown 
ability to overcome platinum drug resistance [23]. In Phase I clinical trials, picoplatin showed 

some side effects such as neutropenia, thrombocytopenia, nausea, and vomiting; however, 
no neuro- or nephrotoxicity was observed, and in three different Phase II clinical trials, it 
showed reduced efficacy as first- and second-line therapy. It is currently undergoing Phase I 
and Phase II studies as a combination therapy for colorectal cancer [24, 25].

Lipoplatin is a liposomal nanoparticle formulation of cisplatin with dipalmitoyl phosphatidyl 

glycerol (DPPG), soy phosphatidyl choline (SPC-3), cholesterol, and methoxy polyethylene 
glycol (mPEG2000)-distearoyl phosphatidylethanolamine (DSPE). The PEG allows cisplatin 
to evade the immune system increasing the circulation time. Lipoplatin fuses with cancer 

cells through DPPG, a fusogenic lipid embedded in the lipid bilayer allowing the release of 
cisplatin inside the cytoplasm of tumor cells [26]. It has successfully finished Phase III clinical 
trials showing superior effects when in combination with paclitaxel compared to cisplatin. 
Due to enhanced permeability and retention (EPR) effect, the nanoparticles are concentrated 
inside the tumor with 40- to 200-fold higher platinum concentration than healthy tissues [26].

ProLindac is a nanopolymer composed of [Pt(R,R-dach)], the active group of oxaliplatin, 
bound to an hydrophilic biocompatible polymer [hydroxypropylmethacrylamide (HPMA)] 
to better increase tumor targeting by EPR. The polymer segments are connected by amidom-

alonate chelating group and a triglycine spacer. The amidomalonate-platinum chelate bond 
breaks at low pH for releasing platinum complex in the hypoxic tumor microenvironment. 

ProLindac showed activity against cisplatin resistant cell lines [27]. Clinical trials showed no 
acute significant adverse effects. ProLindac has currently finished Phase II in combination 
with paclitaxel in the second-line treatment of pretreated advanced ovarian cancer with 66% 
of all patients achieving disease stabilization [27].
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Despite all advances, platinum complexes still suffer from severe side effects as well as intrinsic 
or acquired multidrug drug resistance (MDR), limiting its applications. To surpass this, novel 
strategies are being explored. Some examples include the “rule-breaking” platinum compounds: 
complexes with glucose ligands, complexes that display trans geometries [28], positively 

charged molecules, Pt(IV) prodrugs that become reduced to Pt(II) inside the cells, and photo-

active molecules, among others [6, 29]. Of those we will highlight three approaches, first the 
tentative to vectorize Pt(II) to cancer cells through glucose as a ligand. Cancer cells overexpress 
glucose transporters making them an ideal target for active therapy [29]. Patra and coworkers 

showed that this is a viable conjugation with increased accumulation of platinum in tumor cells 
and comparable efficacy in vivo with oxaliplatin [29]. Later, Lippard et al. described a Pt(IV)-

(D)-1methyltryptophan conjugate coupled with an indoleamine-2,3-dioxygenase (IDO) ligand. 
IDO is an inhibitory immune checkpoint target that enhances antitumor immune response, 

thus increasing the efficacy of common chemotherapeutics and radiotherapy. This prodrug 
killed hormone-dependent, cisplatin resistant, and human ovarian cancer cells, by deregulat-

ing the autocrine-signaling loop IDO-AHR-IL6 and paving the way to new platinum immune-
chemotherapy [30]. A photoactive platinum(IV) anticancer complex trans-[Pt(N

3
)

2
(OH)

2
(Py)

2
] 

was used in photodynamic therapy. Upon irradiation with blue light, it binds to amino acid 

residues of thioredoxin, a multifunctional enzyme that regulates gene transcription, redox sig-

naling, and cell growth, inhibiting cell apoptosis, overexpressed in several cancers, leading to 

an increase oxidative stress persistent for more than 48 h in vitro, with a potent antiproliferative 

activity. The complex might be suitable for treatment of peripheral cancers such as bladder and 
esophageal [10, 31].

1.2. Ruthenium

Ruthenium complexes are already recognized as an effective alternative to platinum com-

plexes, providing different mechanisms of action, different spectrum of activities, and poten-

tial to overcome platinum associated MDR [32]. Ruthenium has numerous properties: (i) they 
can exist in multiple oxidation states (II, III, and IV), all accessible under physiologic condi-

tions, an advantage in the reducing environment of cancer tissues; (ii) they have the ability 

to coordinate ligands that can modulate their activity and have the same kinetics of ligand 

substitution in aqueous medium as that of Pt(II) complexes [33]; (iii) they have the possibility 

of occupying a large number of spatial positions due to its octahedral coordination geometry 

allowing to explore more and different ligands compared to platinum complexes; (iv) they 
reduced toxicity compared to platinum compounds and attributed to their ability to mimic 
iron binding to serum transferrin [34, 35] with higher selectivity for their targets due to selec-

tive uptake by the tumor compared with healthy tissues [36].

In the last year, several ruthenium compounds have been synthetized, and their antiprolifera-

tive activities and mechanism of action against several tumors characterized [8, 37–39], where 

cell membrane changes, cell death due to intrinsic apoptosis pathway and/or autophagic path-

way, ROS induction, inhibition of topoisomerase I and II might be the cause of their cytotoxic-

ity/antiproliferative activities [8, 39–44]. KP1019, trans-[Ru(In)
2
Cl

4
] [InH] (In = indazole), is 

known to bind transferrin and causes apoptosis through the mitochondrial pathway promot-

ing the formation of ROS [45]. [Ru(bpy)(phpy)(dppz)]+ has found to be very cytotoxic against 

cancer cell line, the high affinity that presents for DNA leads to damages in the transcription 
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factor NF-κB [46]. DW1/2 inhibits PI3K and GSK3-β, which leads to apoptosis mediated by 
the mitochondrial and p53 pathways [34]. Several Ru(II) complexes demonstrate high-binding 

affinity to DNA [47–49]. Some of these complexes appear to act by intercalation in the tumor 

cells, although in some cases it has been demonstrated that they can operate by DNA pho-

tocleavage [50–52]. Ruthenium complexes with polypyridine ligands such as 2,2-bipyridine 

(bpy), 1,10-phenanthroline (phen), and 2,2′:6,2″-terpyridine (terpy) ligands have been largely 
explored as molecular DNA probes due to their photophysical properties and the ability of 
polypyridyl ligands to intercalate with DNA [35, 38, 53–55]. This type of ligands stabilizes 
the ruthenium metal ion in the oxidation state (II), resulting in solution-stable complexes of 

aqueous solution. Polypyridine ligands can confer photoluminescent properties to Ru(II) com-

plexes, through a charge transfer between the metal and the ligand [56].

Cellular uptake of ruthenium complexes may occur through two mechanisms, energy depen-

dent (endocytosis and active transport) and energy independent (facilitated diffusion and 
passive diffusion) [40]. For example, the complex [Ru(phen)

2
(mitatp)]2+ exhibited significant 

antitumor activity against several tumor cells, and flow cytometry experiments showed that 
the ruthenium compounds penetrate the cell membrane and accumulate in the nucleus, 

leading to cell cycle arrest and apoptosis [57]. The ruthenium compound [Ru(DIP)
2
(dppz)]2+ 

showed cellular uptake through an energy-independent process [58]. Transferrin is used to 
transport iron centers into the cell, where the cancer cells have a high number of transferrin 

receptors compared to healthy cells [59]. Ruthenium complexes are transported by transferrin 

into cells by binding to two ruthenium centers. Upon entry into cells, the complex is released 

at acidic pH. For example, KP1019 can use iron transport systems to locate itself inside the 

cell, binding to the DNA with a preference shown for G and A residues [36].

Several other ruthenium(II) metal complexes have been described in the literature that offers 
the possibility of designing molecules suitable for binding to specific biological targets, due 
to the fact that they exhibit a wide range of coordination numbers and possible geometries 

that allow the spatial organization of the different anions and organic ligands (for a review, 
See [60–64]). Examples with in vitro and in vivo antitumor activities are ruthenium(II) (η6-

arene) complexes, such as [Ru (η6-C6H6) (dien)] Cl (dien = ethylenediamine), and RAPTA, 
ruthenium(II)-arene complexes with the monodent ligand PTA (PTA = 1,3,5-triaza-7-phos-

phoadamantene) [46–48]. Stable bidentate chelating ligands (e.g., dien), more hydrophobic 

arene ligand (tetrahydroanthracene), and chloride ligand were associated with complexes 

with increased activity [65]. The RAPTA family comprises a monodent ligand PTA and the 
η6-arene ligand. Recently, the RAPTA-C complex has been shown to reduce the growth of 
primary tumors in preclinical models in ovarian and colorectal carcinomas through an antian-

giogenic mechanism [66]. RAPTA-C binds selectively to the nucleus of the histone protein in 
the chromatin, resulting in the chloride binding of the ligands, and the inhibition of moderate 

growth in primary tumors in vivo is translated [67]. Sadler and coworkers studied ruthenium 

complexes (II)-arene with dien ligands ([Ru (n-6-arene) Cl (dien)] and demonstrated to be 
stable and soluble in water, exhibiting anticancer activity both in vitro and in vivo, including 

activity against cisplatin-resistant cancer cells. The dien ligand was used because of the simi-
larities presented with the ammonium ligands in cisplatin, which are thought to contribute 

for cytotoxicity, forming a hydrogen bond with the DNA [68].
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Of the numerous ruthenium complexes with antitumor action studied, only five Ru(III) com-

plexes have entered clinical trials: trans-[RuCl
4
 (DMSO) (Im)] [ImH] (NAMI-A, Im = imidaz-

ole), KP1019, NKP-1339 (KP1019 sodium salt), KP1339, and Ru(II)-based therapeutic TLD1433 
[35, 69]. NAMI-A is an antimetastatic compound that reduces the metastases and prevents 
the spread of secondary tumors [70, 71], whereas KP1019 is a cytotoxic compound effective 
against primary tumors [72]. NAMI-A and KP1019 are prodrugs that are activated in vivo by 

reduction to Ru(II) and well tolerated in clinical applications. The exact mode of action of both 
complexes is not clear, but it is known that they interact with DNA. NAMI-A and KP1019 
successfully completed Phase I clinical trials; however, NAMI-A was recently withdrawn 
after Phase II due to its poor efficacy [69, 73]. In addition, the combination of gemcitabine 

with NAMI-A allows entry into a new Phase II [70], but the combination was not well toler-

ated by patients and did not continue to Phase III [73]. KP1019 demonstrated low solubility 

that limited further development. NKP-1339 is a GRP78-targeted ruthenium-based anticancer 
compound and administered intravenously with promising results in solid tumors, such as 

colorectal carcinoma and neuroendocrine tumors [74]. The results obtained so far in clini-
cal trials with some of these Ru(III) drug candidates fostered the increased interest in Ru(II) 

candidates for cancer therapy [40]. Recently, TLD1433, a mixed ligand Ru(II)-polypyridyl 
compound, entered Phase I of clinical trials for nonmuscle invasive bladder cancer treatment 

with photodynamic therapy (PDT) [75].

The interaction between the compounds and the plasma proteins is recognized as a crucial 
step in the access to bioavailability of metal complexes [32, 76, 77]. Serum albumin is the 

major protein in blood plasma acting as the carrier and distributor of many drugs because 
of its ability to bind reversibly to a variety of exogenous compounds [78, 79]. Their binding 
may increase solubility and prolong the in vivo half-life of the compounds, with a specific 
drug release at the target [77, 79, 80]. The interaction between compounds and proteins is 
usually analyzed by electronic absorption and fluorescence quenching. As various drugs 
bind to proteins in plasma, there has been an increasing investigation in the field of plasma 
protein binding (PPB). Ru(II) compounds bind preferentially to human serum albumin 
(HSA) and serum transferrin (Tf). These binding affinities showed that HSA appears to be 
the better partner [81]. KP1019 is known to strongly bind to serum proteins and hamper 

P-glycoprotein-mediated efflux, making this ruthenium therapeutic attractive for multidrug-
resistant tumor therapy [82]. RAPTA-C has shown a binding affinity to thioredoxin reductase 
and cathepsin B [83].

More recently, nanotechnology has provided numerous nanoplatforms that may act as 

vehicles for the active and more specific deliver of ruthenium(II) complexes toward cancer 
cells, namely Ru(II)—selenium nanoparticles, Ru(II)—gold nanomaterials, and Ru(II)—silica 
composite [39, 78–80]. Recently, Ru(II)-polypyridyl/thiol-selenium nanoparticles were found 
to be a powerful theranostic system, acting simultaneously as an imaging agent while foster-

ing cancer cell death [84]. Chen and collaborators described a nanoparticle/Ru(II) polypyridyl 
system that is able to release a DNA-binding agent [Ru(bpy)

2
(H2O)

2
]2+ upon laser irradiation 

[85]. In this sight, this nanosystem might improve ruthenium complex stability, distribution, 

and delivery specifically toward cancer cells providing a new avenue as a future therapeutic 
strategy [86].
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1.3. Copper

Copper is an essential element in the organism, important for the function of enzymes and pro-

teins involved in energy metabolism, respiration, and DNA synthesis [87]. This metal acts as 
a catalytic cofactor in several enzymes and is involved in hemoglobin formation, xenobiotics, 
catecholamines biosynthesis, collagen crosslinking, and oxidation-reduction reactions in which 

it reacts with molecular oxygen for the production of free radicals [87]. Copper-dependent 
enzymes, such as cytochrome C oxidase, superoxide dismutase, ferroxidases, monoamine 
oxidase, and dopamine b-monooxygenase, are involved in ROS neutralization. In addition, 
efflux of anticancer drugs such as cisplatin employs specific copper efflux transporters ATP7A 
and ATP7B, together with multidrug efflux pumps belonging to the ABC superfamily [e.g., 
P-glycoprotein (Pgp, ABCB1) and multidrug resistance protein 2 (MRP2, ABCC2)] [88, 89].

Copper complexes are the most studied transition metal complexes for their antitumor proper-

ties because endogenous metal ions may lead to less systemic toxicity. The properties of the 
copper complexes are determined by the nature of their ligands, which themselves may exhibit 

antiproliferative activity [87]. Several Cu(II) complexes with a variety of ligands containing N, S, 
or O have been developed, demonstrating different mechanisms for their antitumor activity [6, 

90, 91]. The ligands neutralize the electrical charge of the copper ion and facilitate the transport of 
the complex through the cell membrane, interacting noncovalently with proteins or intercalating 

into the DNA molecule [92]. Copper complexes are capable of inducing DNA breaks through 
hydrolytic or oxidative cleavages [93–97]. Recently, a copper(II) complex [Cu(C

20
H

22
NO

3
)

2
]·H

2
O 

was synthesized, and its mechanism of action evaluated by spectroscopic methods, showing 
that the complex binds to calf-thymus DNA through a partial intercalation and presents a static 
quenching process as binding mechanism. The cytotoxicity evaluation in cancer cell lines showed 
an enhanced cytotoxicity compared with the Schiff base ligand; thus, a positive synergetic effect 
may be occurring [98]. Horman et al. developed functionalized Cu(II) cyclen complexes with 
three (2-anthraquinonyl)methyl substituents that efficiently inhibited DNA and RNA syntheses 
resulting in high cytotoxicity accompanied by DNA condensation/aggregation phenomena [99]. 

Sigman et al. reported the first set of copper complexes with phen ligand with good cytotoxic 
activities [100]. The complex with two phen ligands is capable of cleaving the DNA by binding to 
the deoxyribose units, acting as a chemical nuclease [101]. Trejo-Solis et al. synthesized a class of 
Cu(II) complexes having the general formula [Cu (NN) (AA)] NO

3
, wherein NN is phen or bipy, 

and AA is a nitrogen-oxygen donor or oxygen-oxygen donor ligand that is capable of inducing 

autophagy and programmed cell death cells by activation of ROS and JNK in glioma cells [102]. 

Another study demonstrated the antitumor properties of phen Cu(II) complexes with different 
alkyl chains. One of them showed a promising anticancer activity as well as antimetastatic and 

antiangiogenic potential, evidencing the versatility of Cu(II) complexes for cancer therapy [103].

A complex of Topo-I inhibitors, [Cu (N) L] Cl (N = phen, bipy or 5,50-dimethyl-2,20-bipyridine; 
L = doubly 5-triphenylphosphonium-methyl)-salicylaldehyde deprotonated hyde-benzoyl 
hydrazone, exhibits good cytotoxic activity against human lung and prostate adenocarci-
noma cell lines [104], with the most active compound of this family being the one containing 

the fen motif.

Proteasome inhibition is another mechanism by which copper complexes exercise their antitu-

mor activity. For example, Cu(II) complexes containing phen, 8-hydroxyquinolinate, pyrrolidine 
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dithiocarbamate, or (pyridine-2-ylmethylamino)-methylphenolate have been shown to induce 

apoptosis by proteasome inhibition [105].

Copper complexes with thiosemicarbazone ligands have antitumor activity by inhibiting 
enzymatic activity and inducing cell apoptosis [106]. A Cu pro-drug derived from thiosemi-
carbazone based on the His146 residue in the IB subdomain of palmitic acid (PA)-modified 
human serum albumin (HSA-PA) was able to kill cancer cell by targeting DNA and proteins. 
Also, the efficient delivery of the Cu pro-drug was improved when the leaving group was 
replaced with His146 and coordinated with Cu2+ to form the HSA − PA complex. The HSA-PA 
complex showed better tolerance and a higher drug accumulation in the tumor, a stronger 
capacity for inhibiting tumor growth, and a lower toxicity in other tissues [107].

Casiopeína IIgly, one of the most promising drugs, shows a strong inhibition of cell prolifera-

tion against a glioma C6 cell line, in vivo as well as in vitro. This drug promotes cell death 
by an increase of ROS, with the consequence mitochondria damage followed by apoptosis 

caused through, caspase dependent and caspase independent pathways. Cas IIgly prevents 
malignant cells to continue with their life cycle, by inhibiting estrogen-mediated G1/S cell 
cycle progression [108, 109]. Currently, Cas IIIia is in Phase I clinical trials in Mexico, and 
experimental evidences demonstrated that the main mechanism of action is related to genera-

tion of ROS and DNA damage, through intercalation process [110].

Copper complexes are normally water insoluble. Therefore, the use of polymers/nanoparticles 
with suitable size can increase cellular internalization, distribution, and targeting of tumor 
cells with reduced toxicity in healthy cells. Intramolecular copper containing amphiphilic 

hyperbranched polytriazoles (mPEGhb-S-S-PTAs) was synthesized via Cu(I)-catalyzed azide-
alkyne cycloaddition (CuAAC) reaction, forming copper-triazole coordination polyprodrugs 
that were used to delivery copper and for label-free cellular bioimaging, a novel theranostic 

(diagnostic and therapy simultaneously) application toward cancer therapy [111].

1.4. Vanadium

The major molecular targets for anticancer effects of vanadium compounds are the breakdown 
of cellular metabolism through the generation of ROS, GSH depletion, changes in cellular 
organelles, some pathways of signal transduction, and caspases, which can lead to cell cycle 

arrest and cell death. Pombeiro et al. synthesized two water-soluble heterometallic potassium-
dioxidovanadium(V) complexes, with an antiproliferative potential toward human colorectal 

carcinoma, lung, and breast adenocarcinoma cell lines. They demonstrate that the complex 
has a very high cytotoxic potential in the HCT116 cell line, a positive trait for future in vivo 

studies [112].

Vanadocene is a metallocene with a metal ion sandwiched between two cyclopentadienyl 

rings. Vanadocene dichloride, [VCp
2
Cl

2
], was the first vanadocene that showed interesting 

results in preclinical studies [113]. This complex showed a strong activity in vitro against 

several tumor cells. In addition, in vivo studies demonstrated antitumor properties with 

vanadocene dichloride [114]. Some vanadocene derivatives present cytotoxic effect against 
T-lymphocytic leukemia cells, where the mechanism used evolves the DNA damage and p53 
activation [115]. On the other hand, vanadocenes are effective agents against human testicular 
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cell lines [36]. Vanadocenes containing fen ligands are promising anticancer agents, due to 

their high anticancer activity, solubility, and stability [37]. Currently, there are two com-

plexes under preclinical trial [VCp
2
Cl

2
] and Metvan, bis(4,7-dimethyl-1,10-phenanthroline) 

sulfatooxovanadium(IV). Metvan induces cell damage through apoptosis in several cell lines, 

with a special cytotoxic in ovarian and testicular cancer cell resistant to cisplatin. In vivo mod-

els, Metvan shows a promising anticancer activity on glioblastoma and breast cancer [116]. 

Cortizo et al. developed a delivery system of vanadium(IV) with aspirin (VOAspi) functional-
ized with poly(beta-propiolactone) (PbetaPL) films. VOAspi-PbetaPL film inhibited cell pro-

liferation of UMR106 osteosarcoma cells in a dose-response manner [117].

1.5. Iridium

Iridium complexes are emerging as a class of anticancer agents. Novohradsky et al. stud-

ied the mechanisms of new cytotoxic iridium(III) complex in cancer cells. A half-sandwich 

cyclometallated Ir(III) complex [(η5-Cp*)(Ir)(7,8-benzoquinoline)Cl] bearing a C^N chelating 
ligand was designed and studied its uptake in ovarian cancer cells [118]. The temperature 
dependence and the coincubation with different substrates (such as ouabain, 2-deoxy-D-
glucose and oligomycin, verapamil, reversan, and buthionine sulfoximine) indicate that an 

energy-independent passive diffusion and an energy-dependent transport play a partial role 
in the complex accumulation. Moreover, the competition experiments with CuCl

2
 suggested 

an involvement of Ctr1 pathway in the compound’s uptake. The authors highlighted the 
importance of ATP-dependent processes and transport proteins, such as Na/K-ATPase for 
accumulation of Ir complexes. The iridium complexes may exert anticancer efficacy through 
various mechanisms including modulation of cellular redox reactions and inhibition of protein 

kinases. Recently, the cyclometalated iridium(III) complexes have gained increasing attention 
in bioimaging and biosensing applications due to their luminescence properties, for example, 

large Stokes shifts, long-lived luminescence, high quantum yields, and cell permeability [119].

1.6. Titanium

Since the 1970s, when the first titanium complex arises, a series of complexes containing tita-

nium, Ti, as a metal center have been synthesized and characterized, and some of them were 
shown to possess a wide spectrum of antitumor properties. Indeed, titanium complexes such 

as titanocene dichloride and octahedral species budotitane are promising anticancer results 

being translated to (pre)- and clinical trials. Preclinical trials had shown efficacy in a broad 
of tumors [113, 120]. Budotitane was investigated in Phase I trial, and pharmacokinetic study 
administered as i.v. infusion twice weekly with a starting dose of 100 mg/m2. However, no 

response was observed, but 17 of 18 patients have been resistant as they had received prior 
chemotherapy [121]. Titanocene dichloride showed promising results in Phase I trials with 
patients suffering from various cancer types. In one study, 40 patients with refractory solid 
malignancies the titanocene dichloride revealed a two minor responses (in bladder carcinoma 

and in nonsmall cell lung cancer), with dose-limiting toxicity side effect was nephrotoxicity 
[122]. Phase II trials were conducted at 270 mg/m2 every 3 weeks with 14 patients suffering 
from metastatic renal-cell carcinoma [123]. However, no significant response was noted, and 
the effectiveness of the treatment was limited in both cases. The instability under physiological 
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condition and low solubility in aqueous media were the reasons of low activity in Phase II 

trials [124]. On the other hand, it was found that titanocene dichloride binds to DNA through 
the phosphate backbone, inhibiting DNA synthesis and leading to cell death [125]. The bind-

ing studies allowed to conclude that the cellular uptake of titanocene dichloride can be medi-

ated by the iron transferrin transporter protein [126].

1.7. Gallium

The biological activity of gallium(III) arises from chemical similarity with iron(III). They have 
similar ionic radius, ionization potential, and electronic affinity [127]. However, the principal 

difference is that Ga(III) is nonreducible, whereas Fe(III) is reduced to Fe(II) under physiological 
condition [63].

Clinical Phase I and Phase II studies were performed on gallium nitrate, gallium chloride, 
and gallium maltolate. The first-generation gallium nitrate demonstrated, in several clinical 
trials, efficacy against bladder cancer and urothelium carcinoma, but these studies were dis-

continued due to ocular toxicity. The most promising results, come from the combination 
with vinblastine and ifosfamide, in a Phase II trial GA were effective in metastatic urothelial 
carcinomas at a dose of 300 mg/m2/24 h for 5 consecutive days. However, the duration of the 
responses was short at 20 weeks. This was associated with a high toxicity, and 11 of 27 patients 
had anemia and renal function alteration [128]. Oral gallium chloride seems to potentiate the 

action of cisplatin and etoposide. Oral gallium maltolate demonstrated higher bioavailability 

than gallium chloride. Preclinical studies have demonstrated synergy between Ga and pacli-
taxel [129]/gemcitabine [130]. Currently, two compounds are in clinical trials, gallium tris-
8-quinolinolate (KP46) and gallium tris-maltolate. KP46 contains the metal chelating agent 
8-hydroxyquinoline and has an inhibitory effect in cell growth proliferation in vitro and in vivo 

superior to gallium salt. An oral formulation of KP46 demonstrates a pattern of cytotoxicity 
with synergism across a broad range of antitumor agents targeting the endoplasmic reticu-

lum in multiple tumor types [131, 132]. Gallium maltolate, (3-hydroxy-2-methyl-4H-pyran-
4-onato) gallium, is an oral formulation for therapeutic use. This compound entry in Phase 
I demonstrated an oral bioavailability of about 27–47%. At doses as high as 3500 mg/day for 
28-day cycles, no dose-limiting toxicity or drug-related adverse effects were observed [133]. 

However, this study was discontinued, and no new results were published. The mechanism 
of action of gallium(III) has been studied, and Ga3+ ions normally compete with Fe3+ for bind-

ing transferrin. Analyzing the biological pathways of gallium(III), it seems that its mechanism 
of action is associated with the inhibition of ribonucleotide reductase (RR). The enzyme RR 
produces during the transition from G1 to S phase of the cell cycle and catalyzes the conver-

sion of ribonucleotides to deoxyribonucleotides [63].

1.8. Osmium

Osmium(II) complexes are the heavier congeners of ruthenium, exhibit slower kinetic than 

ruthenium, and are substitution-inert (Os(II) and Os(III) complexes). In addition, they offer a 
more complex interaction with double-helical DNA. However, the reactivity of the Os(II)-arene 
complexes can be adjusted by the chemistry of the aqueous solution. Sadler et al. synthesized 
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and developed osmium(II) arene complexes and proved their anticancer properties by system-

atically varying the chelating ligand in kinetics and thermodynamic reaction of the complexes 

[134, 135]. These series of N,O-chelates ligands are important choices in the stability and cancer 
toxicity [134, 136]. DNA-binding studies on a series of complexes of the type osmium(II)-arene 
have shown that these complexes bind to polymeric DNA, where some coordinate with gua-

nine and others undergo quantitative reaction with DNA [137].

Recent work from Sadler and coworkers showed the distribution of osmium in cancer cells 

treated with relevant doses of OsII arene azopyridine complex by using X-ray fluorescence 
nanoprobe. This analysis shows localization of Os in mitochondria and not in nucleus and 
mobilization of calcium from endoplasmic reticulum [138]. Osmium compounds have been 

extensively exploited because they are capable to induce the formation of ROS, targeting 

mitochondria, and oxidize NADH to NAD+ that lead to interference in the redox signal-

ing pathways in cancer cells and are capable to interfere with cell cycle [69, 139]. In the last 

year, osmium analogs of the ruthenium anticancer agents, such as RAPTA-C, NAMI-A, and 
KP1019, have been developed. Therefore, osmium complexes demonstrated a good stabil-
ity and inertness toward hydrolysis or ligand substitution. These are promising results for a 
future understanding of the mechanism of action of osmium compounds [134].

1.9. Gold

Gold in its elemental form is stable in an extensive range of conditions. Gold oxidation states 
range from −1 to +5, but I and III are the most relevant. The coordination geometry of gold(I) 
complexes is not only generally linear accepting two ligands, but it can also coordinate three 

(trigonal) or four (tetragonal) ligands. Au(I) prefers to bind with thiolates, cyanides, phos-

phines, and soft halides [140]. Mainly due to the success of platinum compounds, and that 

gold(III) is isoelectronic with platinum(II) and forms similar square-planar complexes, a large 

number of gold(I) and gold(III) compounds have been studied for their anticancer activity [6]. 

Till now, auranofin [tetra-O-acetyl-b-D-(glucopyranosyl)thio](triethylphosphine) is the only 
gold compound ever approved. Used since 1985 as oral drug for the treatment of rheumatoid 

arthritis, its side effects, and restricted efficacy, it is only used for severe cases [141]. Some stud-

ies proposed its use as anticancer drug, and it is currently under several Phase I and II clinical 

trials to treat chronic lymphocytic leukemia (NCT01419691), lung cancer (NCT01737502), and 
glioblastoma (Glioblastoma).

The mode of action of auranofin is still not clear, and it is thought to be related with inhibition 
of thioredoxin reductase (TrxR). As gold has a high affinity for thiol and selenol groups, it 
tends to bind to amino acid residues, forming stable, irreversible adducts. TrxR is an essential 
enzyme in many cellular processes, mainly in balancing the redox homeostasis, controlling 
the level of ROS, and preventing DNA damage. As cancer cells tend to overexpress redox 
enzymes, they are mostly affected by auranofin. Selenoproteins, such as TrxR, when inhib-

ited by auranofin compromise the mitochondria, leading to production of ROS that cause 
cellular oxidative stress and ultimately intrinsic apoptosis [141]. Several reports show the 

effect of auranofin against several tumors in vitro, including cisplatin resistant tumors 

[141]. Aurothiomalate is another gold compound, which is currently investigated in Phase 

I clinical trials to treat patients with advanced nonsmall cell lung cancer (NCT00575393). Its 
mechanism of action seems to be linked with protein kinase Ciota, which is overexpressed in 
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nonsmall cell lung cancer, ovarian, and pancreatic cancers, playing a critical role in oncogen-

esis. Aurothiomalate has been shown to inhibit PKCiota signaling having potent antitumor 
activity in preclinical studies [142, 143]. Using the same mechanism, aurothioglucose also 

showed antitumor efficacy in vitro against nonsmall cell lung cancer cells [144]. For the cel-

lular uptake, it was proposed that Au(I) enters the cell through albumin bond or through 

other thiol metabolites [144]. A recent study by Mármol proposes an alkynyl gold(I) com-

plex [Au(C ≡ C-2-NC
5
H

4
)(PTA)] to treat colorectal carcinoma. In their study, using Caco-2 

cells, gold complex enters the mitochondria and disrupts its normal function, triggering the 

necroptosis. Necrose-inducing compounds are mainly interesting as they are an alternative 
chemotherapy for apoptosis resistance tumors [145].

1.10. Other complexes

Cobalt complexes have normally two accessible oxidation states. Co(III) is kinetically inert, 
whereas Co(II) is labile. Some studies demonstrated that Co(III) complexes can act as car-

riers for selective delivery of drugs [69]. However, when Co(III) is reduced to Co(II), the 
molecule is released in its active form and can kill cancer cells [146]. Hexacarbonyl dico-

balt and alkynes exhibit a promising activity of antitumor activity [147]. The activity is 
most pronounced when the alkyne is the propargyl ester of aspirin (CoASS), which inhibits 
the cyclooxygenase enzymes COX-1 and COX-2 [147, 148]. It was shown that CoASS itself 
inhibits COX-1 and COX-2 more strongly than ASA alone and enhanced the cytotoxicity 
against breast cancer cell line [148]. The development of new complexes bearing different 
types of pyrazole-based ligands demonstrated the potential use of these complexes as anti-
proliferative agents [149].

A new compound CoCl(H
2
O)(phendione)

2
][BF

4
] (phendione = 1,10-phenanthroline-5,6-dione) 

(TS265) was demonstrated to induce cell cycle arrest in S phase with a subsequent cell death 
by apoptosis and high cytotoxicity against colorectal carcinoma cell [76]. Fernandes et al. 

evaluated the efficiency of two metal compounds [Zn(DION)
2
]Cl (TS262, DION = 1,10-phen-

anthroline-5,6-dione) and TS265 and the application of AuNPs as a drug delivery system to 
improve the anticancer efficacy of these compounds in a new canine mammary tumor (FR37-
CMT) [150]. The same group formulated a multifunctional nanovectorization system using 
gold nanoparticles to enhance cytotoxic of TS265. This nanoformulation efficient delivered 
the cytotoxic cargo in a controlled selective manner [151]. Two mononuclear NiII and MnII 

compounds with a “scorpionate” type precursor demonstrated to induce damage in ovarian 

cancer cells through ROS accumulation. In addition, the mononuclear NiII compound induced 

mitochondria dysfunction and autophagy cell death [5].

Although the intensive study of transition metals is focused on a specific biomolecular tar-

get, some complexes are developed for other purposes. For example, palladium-porphyrin 

complex (TOOKAD-soluble) acts as a photosensitizer and has progressed to Phase III clinical 
trial for the photodynamic treatment of prostate cancer (NCT01875393). Phase II clinical trials 
were evaluated the efficacy and safety of a single dose of the drug and light dosage combina-

tion of TOOKAD® Soluble in the focal treatment of patients with localized prostate cancer, 
6 months after treatment. Positive results obtained at 6-month negative biopsies were acquire. 
This complex has a dual role; that is, it provides the ideal photophysical properties to the 
porphyrin and is inert enough not to be displaced during therapy (Table 1) [152].
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Name Description Target cancer Approved/clinical 

trial

Refs.

Platinol Cisplatin Metastatic testicular, 

ovarian and bladder cancers

FDA approval [153]

Paraplatin Carboplatin Advanced ovarian cancer FDA approval [153]

Eloxatin Oxaliplatin Advanced colorectal cancer 

in combination with 5-FU 

and leucovorin

FDA approval [153]

Aqupla Nedaplatin Urological tumors Approved in Japan [153]

Lobaplatin 1,2-Diammino-l-

methylcyclobutane-

platinum(II)-lactate

Inoperable metastatic breast 

and small cell lung cancer

Approved in China [153]

Heptaplatin Cisplatin analogs Gastric cancer Approved in Korea [154]

Picoplatin 2-Methylpyridine analog of 

cisplatin

Colorectal cancer in 
combination with 5-FU and 

leucovorin

Phase II [11]

Satraplatin Bis-(acetate)-ammine 
dichloro-(cyclohexylamine) 

platinum(IV)

Colorectal cancer in 
combination with 5-FU 

and leucovorin/prostate 
cancer in combination with 

docetaxel

Phase II/III [153]

Lipoplatin Liposomal form of cisplatin Locally advanced gastric 

cancer/squamous cell 
carcinoma of head and neck

Phase II/III [155]

ProLindac Oxaliplatin with hydrophilic 

polymer

Ovarian cancer/head and 
neck cancer

Phase II/III [153]

NAMIA-A RuCl
4
 (DMSO) (Im) Metastatic tumor (lung, 

colorectal, melanoma, 

ovarian, and pancreatic) 

in combination with 

gemcitabine

Phase II [156]

KP1019 Trans-[Ru(In)
2
 Cl

4
] [InH] Advanced colorectal cancer Phase I [157]

NKP-1339 KP1019 sodium salt Colorectal carcinoma and 
neuroendocrine tumors

Phase I [74]

TLD1433 Ru(II)-polypyridyl 

compound

Nonmuscle invasive 
bladder cancer treatment 

with photodynamic therapy 

(PDT)

Phase I [75]

Aurothiomalate Gold compound Advanced nonsmall cell 

lung cancer

Phase I [158]

Auranofin TetraO-acetyl-b-D-
(glucopyranosyl)thio]

(triethylphosphine)

Chronic lymphocytic 
leukemia, lung cancer, and 

glioblastoma

Phase I/II [141]

CasII-gly Casiopeína Cervical cancer cell Phase I in Mexico [159]

KP46 Gallium tris-8-quinolinolate Solid tumors Phase I [132]
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2. Conclusion

Since the discovery of cisplatin, coordination complexes have been widely used in cancer 

therapy. Thirty years after its approval as a chemotherapeutic agent by the FDA, cisplatin 
remains to be one of the best-selling anticancer agents. Thousands of metal compounds have 
been described since then with only a few passing for clinical trials and even less getting 
approval. Both the high costs translating a promising drug to the clinic and the focus of 
pharma to go for new targeted therapies with minimum side effects instead of new cytotoxic 
agents can explain the current stall in the discovery of novel metal anticancer drugs. Despite 

the significant efforts in cancer treatment to increase efficacy without promoting side effects 
and/or resistance by cancer cells, cancer remains one of the major causes of death worldwide. 
To overcome this fatality, the identification of unique cellular and biochemical features of each 
tumor and the knowledge of the molecular mechanisms and biological targets of anticancer 

agents have, together, brought up the necessity for both synthesis and evaluation of new 

compounds with more promising antiproliferative potential with specific intracellular targets 
in cancer cells. The success of clinical treatment sparked interest in platinum compounds and 
other complexes (Ru, Cu, Au, and Co) containing metal ions to be used as anticancer agents. 
Well-established in vitro and in vivo studies, such as those shown in this chapter, are extremely 

important because the interest of a better quality of treatment is increasingly demanded. In 
addition to the development of more effective drugs, novel nanoscale drug delivery systems 
showing improved pharmacokinetic and pharmacodynamic properties, such as increased 

bioavailability, have emerged in the last decade as promising solutions for the required thera-

peutic efficacy. Combination of new metal complexes with known chemotherapeutic agents 
already in the market targeting different cellular pathways in a nanostructure may provide a 
new avenue and the future for cancer therapy.
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Name Description Target cancer Approved/clinical 

trial

Refs.

TOOKAD® 

Soluble

Palladium-porphyrin 

complex

palladium-porphyrin 

complex

Phase III [152]

Gallium 
tris-maltolate

(3-Hydroxy-2-methyl-4H-

pyran-4-onato) gallium

Hepatocellular carcinoma Phase I [160]

Table 1. Clinical approved/undergoing clinical trials and metal compounds for anticancer therapeutic application.
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