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Abstract

The chapter is concerned with the application of distributed discrete-time linear Kalman
filtering with decentralized structure of sensors in fault residual generation. Two variants
of distributed Kalman filtering algorithms are introduced, giving the incidence of equiva-
lent functional realization structure of fault residual filters. The obtained solutions use
Kalman filter innovations in a nonstandard way to generate residuals with significantly
higher dynamic signal range. The obtained results, offering structures for fault detection
filter realization, are illustrated with a numerical example to note the effectiveness of the
approach.

Keywords: linear noisy systems, Kalman filtering, innovation sequences, fault residual
filters, distributed computing

1. Introduction

The castigatory principal aspect for designing a fault-tolerant control (FTC) structure is a

functionality of diagnostic operations that solve the fault detection and isolation (FDI) tasks.

These techniques most commonly use residuals generated by fault detection filters (FDF),

followed by the residual signal evaluation within decision functions. Guarantying adequate

sensitivity to faults, the accessory objective is to create residuals with minimal sensitivity to

noises. Kalman filtering is an optimal state estimation process applied to a dynamic system

that involves random noises, giving a linear, unbiased, and minimum error variance recursive

algorithm to optimally estimate the unknown state of a dynamic system from noisy data taken

from sensors [1, 2].
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Practically, a bank of Kalman filters is used to achieve sensor and actuator fault detection

applied to a steady-state system, while the statistical characteristics of the system are not

required to be known after a fault has occurred [3, 4]. In these methods, the faults are assumed

to be known, and the Kalman filters are designed for such kind of sensor or actuator faults.

Another approach based on Kalman filtering is the analysis of the innovation sequence, since

faults displace its zero mean and change its covariance matrix [5]. The associated problem is

quick detection of changes in these parameters from their nominal values. Evidently, research

in Kalman filter based-FDI is the subject of wide range of other publications (see, e.g., [6–9] and

the reference therein). Other applications can be found in [10].

The state estimation obtained by the Kalman filter prediction-correction equations at every

time instant can be solved almost optimally and substantially faster by applying a distributed

approach [11–14]. With this setup can be exploited the fact that the correction error can be

decaying exponentially with time instant sequence to reach the optimal values [15–18].

The chapter exploits a variant of distributed methods to apply the distributed correction stage

filtering equations on each sensor level as well as an approach based on quasi-parallel central

computation. Benefiting from the distributed Kalman filtering algorithm, two residually

equivalent signal structures are presented for the discrete-time linear noisy systems.

The outline of this chapter is as follows: Section 1 delineates the problem and draws the basic

starting points of solutions. Dealing with the discrete-time noisy systems description, the equa-

tions describing Kalman filters for uncorrelatedmeasurement and system noises are traced out in

Section 2, to delineate distributed approaches in Kalman filter design, suitable for supporting the

fault residual generation, presented in Section 3. Section 4 gives a numerical example, illustrating

the properties of the proposed method, and Section 5 presents some concluding remarks.

Throughout the chapter, the notations are narrowly standard in such a way that xT and XT

denote the transpose of vector x and matrix X, respectively, and diag �½ � denotes a block diago-

nal matrix—for a square matrix X > 0 means that X is a symmetric positive definite matrix.

The symbol In indicates the nth order unit matrix; IR denotes the set of real numbers; IRn and

IRn�r refer to the set of all n-dimensional real vectors and n� r real matrices, respectively; and

Zþ is the set of all positive integers.

2. Discrete-time linear Kalman filter

In this section, one version of the Kalman filtering concept is applied for the discrete-time linear

multi inputs and multi outputs (MIMO) plants with the system and output noises of the form

q iþ 1ð Þ ¼ Fq ið Þ þGu ið Þ þ v ið Þ, (1)

y ið Þ ¼ Cq ið Þ þ o ið Þ, (2)

where q ið Þ∈ IRn, u ið Þ∈ IRr, and y ið Þ∈ IRm are vectors of the system state, input and measure-

ment output variables, respectively; v ið Þ∈ IRn and o ið Þ∈ IRm are vectors of the system and
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measurement noise; and F ∈ IRn�n, G∈ IRn�r, and C∈ IRm�n are conditioned by 1 ≤m, r ≤n.

Kalman filter is used only for diagnostic purposes. Zero-mean Gaussian white noise processes

are considered such that

E
v ið Þ

o ið Þ

� �� �

¼
0

0

� �

, (3)

E
v ið Þ

o ið Þ

� �

vT kð Þ oT kð Þ
� �

� �

¼
Q S

ST R

� �

δik, (4)

where E �f g is the a statistical averaging operator,

δik ¼
1 if i ¼ k,

0 if i 6¼ k,

�

(5)

is the Kronecker delta-function and the covariance matrices Q∈ IRn�n and R∈ IRm�m are sym-

metric positive definite matrices.

It is assumed that the deterministic system initial state q 0ð Þ ¼ q0 is independent of v ið Þ and o ið Þ

in the sense that

E q0v
T ið Þ

� 	

¼ 0, E q0o
T ið Þ

� 	

¼ 0 for all i (6)

and that the system and measurement noises are uncorrelated, i.e., S ¼ 0.

Determining the optimal system state vector estimate, qe iji� 1ð Þ denotes the predicted estima-

tion of the system state vector q ið Þ at the time instant i in the dependency on all noisy output

measurement vector sequence y jð Þ; j ¼ 0; 1;…; i� 1f g up to time instant i� 1; qe ijið Þ is the

corrected estimation of the system state vector q ið Þ at the time instant i in the dependency

on all noisy output measurement sequence y jð Þ; j ¼ 0; 1;…; if g up to time instant i; and

e iji� 1ð Þ ¼ q ið Þ � qe iji� 1ð Þ and e ijið Þ ¼ q ið Þ � qe ijið Þ are prediction and correction errors.

Definition 1. [19] If the Kalman filter, associated with the plant (1), (2) with uncorrelated system and

measurement noises, is defined by the set of equations

qe iji� 1ð Þ ¼ Fqe i� 1ji� 1ð Þ þGu i� 1ð Þ, (7)

qe ijið Þ ¼ qe iji� 1ð Þ þ J ið Þ y ið Þ � ye iji� 1ð Þ

 �

, (8)

ye iji� 1ð Þ ¼ Cqe iji� 1ð Þ, (9)

ye ijið Þ ¼ Cqe ijið Þ, (10)

then with qe 0j0ð Þ ¼ q0, P 0j0ð Þ ¼ Q ∘ , where Q ∘
∈ IRn�n is a positive definite matrix, yielding

J ið Þ ¼ P iji� 1ð ÞCT Rþ CP iji� 1ð ÞCT

 ��1

, (11)
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P iji� 1ð Þ ¼ FP i� 1ji� 1ð ÞFT þQ, (12)

P ijið Þ ¼ I � J ið ÞCð ÞP iji� 1ð Þ, (13)

where

P iji� 1ð Þ ¼ E e iji� 1ð ÞeT iji� 1ð Þ
� 	

, (14)

P ijið Þ ¼ E e ijið ÞeT ijið Þ
� 	

, (15)

are the covariance matrices of prediction and correction errors and J ið Þ∈ IRn�m is the Kalman filter gain

matrix, all at time instant i.

The discrete-time Kalman filter equations can be algebraically manipulated into a variety of

forms [6, 16, 20]. From the point of view of distributed filtration, it is necessary to achieve such

form of the equation for calculating the Kalman gain J ið Þ that yields the matrix C from the

matrix inversion operation (see (11)). If the system and measurement noises are uncorrelated,

then for the Kalman filter gain, one can propose the following:

Lemma 1. If the system and measurement noises are uncorrelated, then the Kalman filter gain and the

correction error covariance matrix can be computed using (12) and

J ið Þ ¼ P ijið ÞCTR�1, (16)

P�1 ijið Þ ¼ P�1 iji� 1ð Þ þ CTR�1C: (17)

Proof. Substituting (11) into (13), one can obtain that

P ijið Þ ¼ P iji� 1ð Þ � P iji� 1ð ÞCT Rþ CP iji� 1ð ÞCT

 ��1

CP iji� 1ð Þ: (18)

Exploiting the Sherman-Morrison-Woodbury formula of the form [21].

Aþ BDBT

 ��1

¼ A�1 � A�1B D�1 þ BTA�1B

 ��1

BTA�1, (19)

where square invertible matrices A, D, and a matrix B of appropriate dimensions are such that

Aþ BDBT

 �

is invertible, with

A ¼ P iji� 1ð Þ, B ¼ P iji� 1ð ÞCT , D ¼ � Rþ CP iji� 1ð ÞCT

 ��1

, (20)

yields, since the covariance matrices are positive definite,

P�1 ijið Þ ¼ P�1 iji� 1ð Þ � P�1 iji� 1ð ÞP iji� 1ð ÞCTE�1CP iji� 1ð ÞP�1 iji� 1ð Þ, (21)

where

E ¼ �R� CP iji� 1ð ÞCT þ CP iji� 1ð ÞP�1 iji� 1ð ÞP iji� 1ð ÞCT ¼ �R: (22)

Then, evidently,
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P�1 ijið Þ ¼ P�1 iji� 1ð Þ � CTE�1C (23)

and (31) implies (17).

Premultiplying the left side byP�1 ijið Þ and postmultiplying the right side byP�1 iji� 1ð Þ, (13) gives

P�1 iji� 1ð Þ ¼ P�1 ijið Þ � P�1 ijið ÞJ ið ÞC (24)

and comparing (17) and (24), it can be seen that

P�1 ijið ÞJ ið ÞC ¼ CTR�1C: (25)

Thus, (25) implies (16). This concludes the proof.

Note, since CTR�1C is at least a positive semi-definite matrix, it is evident from (17) that P ijið Þ

is never larger than P iji� 1ð Þ. Moreover, the result is an unbiased filter with the estimates of

minimum error variances. More details can be found in [12, 22].

Corollary 1. Considering that qe iji� 1ð Þ is known and qe ijið Þ is the best estimate of q ið Þ that minimizes

the cost criterion

T ið Þ ¼ q ið Þ � qe iji� 1ð Þ

 �T

P�1 iji� 1ð Þ q ið Þ � qe iji� 1ð Þ

 �

þ y ið Þ � Cq ið Þð ÞTR�1 y ið Þ � Cq ið Þð Þ:
(26)

Then, evaluating (26) it follows, with the optimal setting of a state vector estimate q ið Þ ¼ q ijið Þ, that the

minimum expected cost is given by

dT ið Þ

dq ið ÞT
¼ P�1 iji� 1ð Þ q ijið Þ � qe iji� 1ð Þ


 �

� CTR�1 y ið Þ � Cq ijið Þð Þ ¼ 0, (27)

which implies

P�1 iji� 1ð Þ þ CTR�1C

 �

qe ijið Þ ¼ P�1 iji� 1ð Þqe iji� 1ð Þ þ CTR�1y ið Þ

¼ P�1 iji� 1ð Þ þ CTR�1C

 �

qe iji� 1ð Þ

þ CTR�1 y ið Þ � Cqe iji� 1ð Þ

 �

:

(28)

Therefore, using the above relations, at the ith step Eq. (28) gives

qe ijið Þ ¼ qe iji� 1ð Þ þ P�1 iji� 1ð Þ þ CTR�1C

 ��1

CTR�1 y ið Þ � Cqe iji� 1ð Þ

 �

¼ qe iji� 1ð Þ þ P ijið Þ � CTR�1 y ið Þ � Cqe iji� 1ð Þ

 �

:

(29)

Pre-multiplying the left side by P ijið Þ and post-multiplying the right side by P iji� 1ð Þ then it follows

from (17)

P iji� 1ð Þ ¼ P ijið Þ þ P ijið ÞCTR�1CP iji� 1ð Þ, (30)
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which can be proved recursively as follows

P ijið Þ ¼ In � P ijið ÞCTR�1C

 �

P iji� 1ð Þ: (31)

Comparing (29) with the covariance matrix of the filtering error given by (13), it is evident that

J ið Þ ¼ P ijið ÞCTR�1 (32)

which is identical to (16).

On the other side, substituting (11) into (13), one can write

P ijið Þ ¼ P iji� 1ð Þ � P iji� 1ð ÞCT Rþ CP iji� 1ð ÞCT

 ��1

CP iji� 1ð Þ (33)

and using the Sherman-Morrison-Woodbury formula, Eq. (27), it follows

P�1 ijið Þ ¼ P�1 iji� 1ð Þ � CT �R� CP iji� 1ð ÞCT þ CP iji� 1ð ÞCT

 ��1

C (34)

and so, evidently, (34) gives (17).

3. Fault residual generation using distributed Kalman filtering

The obtained equations, Eqs. (16) and (17), allow the use of the open form of the Kalman filter

equations if

R ¼ E o ið ÞoT ið Þ
� 	

¼ diag R1 R2 ⋯ Rm½ �: (35)

Writing separately,

yT ið Þ ¼ y1 ið Þ y2 ið Þ ⋯ ym ið Þ
� �

, (36)

uT ið Þ ¼ u1 ið Þ u2 ið Þ ⋯ ur ið Þ½ �, (37)

CT ¼ c1 c2 … cm½ �, G ¼ g1 g2 … gr
� �

, (38)

then, (7)–(11), (16), and (27) imply

qe iji� 1ð Þ ¼ Fqe i� 1ji� 1ð Þ þ
X

w

h¼1

ghuh i� 1ð Þ, (39)

qe ijið Þ ¼ qe iji� 1ð Þ þ
X

m

h¼1

jh ið Þ yh ið Þ � cTh qe iji� 1ð Þ

 �

, (40)

yej iji� 1ð Þ ¼ cTh qe iji� 1ð Þ, (41)
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yej ijið Þ ¼ cTh qe ijið Þ, (42)

jh ið Þ ¼ P ijið ÞchR
�1
h , (43)

P�1 ijið Þ ¼ P�1 iji� 1ð Þ þ
X

m

h¼1

chR
�1
h cTh , (44)

P iji� 1ð Þ ¼ FP i� 1ji� 1ð ÞFT þQ: (45)

It is evident from the above given formulation that the relation of (40) gives the possibility to

compute corrections from the data obtained at all sensor nodes.

Theorem 1. Defining the residual vector as

rT ið Þ ¼ z1 ið Þ z2 ið Þ … zm ið Þ½ �, (46)

where

zh ið Þ ¼ yh ið Þ � cTh qec iji� 1ð Þ, (47)

then

qec iji� 1ð Þ ¼ Fqec i� 1ji� 1ð Þ þ
X

r

h¼1

ghuh i� 1ð Þ, (48)

qed iji� 1ð Þ ¼ Fqed i� 1ji� 1ð Þ, (49)

qec ijið Þ ¼ qec iji� 1ð Þ, (50)

qed ijið Þ ¼ qed iji� 1ð Þ þ P ijið Þ
X

m

h¼1

chR
�1
h zh ið Þ � cTh qed iji� 1ð Þ

 �

, (51)

while the filter gain matrices, as well as recurrences of the covariance matrices are given by (43)–(45).

Proof. Considering that there are components of the system state vector estimate that are

dependent on the control signal as well as ones that are not dependent on the control signals,

since the correction step does not depend on the control inputs, (40) can be rewritten as

qe ijið Þ ¼ qec iji� 1ð Þ þ qed iji� 1ð Þ þ
X

m

h¼1

jh ið Þ yh ið Þ � cTh qec iji� 1ð Þ þ qed iji� 1ð Þ

 �
 �

: (52)

Prescribing that

qe ijið Þ ¼ qed ijið Þ þ qec ijið Þ, (53)

Eqs. (52) and (53) can be separated as
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qec ijið Þ ¼ qec iji� 1ð Þ, (54)

qed ijið Þ ¼ qed iji� 1ð Þ þ
X

m

h¼1

jh ið Þ yh ið Þ � cTh qec iji� 1ð Þ þ qed iji� 1ð Þ

 �
 �

(55)

and using (47), (54) gives (50), and (55) implies (51).

Substituting (53) in (39) yields

qe iji� 1ð Þ ¼ F qed i� 1ji� 1ð Þ þ qec i� 1ji� 1ð Þ

 �

þ
X

w

h¼1

ghuh i� 1ð Þ (56)

and, evidently, (56) implies (48) and (49). This concludes the proof. □

Remark 1. If Eqs. (46)–(51) are analyzed from a computational point of view, it is clear that their

structures support autonomous parallel calculations only with a single interaction defined by Eq. (47).

However, the cost for this parallelism is additional computation at each step, but the directional

properties of the components of the residual vector are advantageous in the case of single sensor faults.

The directional sensor residual property derives indirectly from relationship (44). Since every compo-

nent zh ið Þ carries with it the measurement noise oh ið Þ if qed iji� 1ð Þ is used for LQG control, it will be

no noise at the state control law input.

In principle, it is possible to define the residue generation by results of the local system state

correction at Kalman filtration at the time instant i.

Theorem 2. Defining the residual vector as

rT ið Þ ¼ z1 ið Þ z2 ið Þ … zm ið Þ½ �, (57)

where

zh ið Þ ¼ yh ið Þ � cTh qec iji� 1ð Þ, (58)

then

qedj iji� 1ð Þ ¼ Fqedj i� 1ji� 1ð Þ, (59)

qedj ijið Þ ¼ qedj iji� 1ð Þ þ jh ið Þ zh ið Þ � cTh qedj iji� 1ð Þ
� 


, (60)

jh ið Þ ¼ Ph ijið ÞchR
�1
h , (61)

P�1
h ijið Þ ¼ P�1 iji� 1ð Þ þ chR

�1
h cTh , (62)

while the predicted system state at the time instant i is computed centrally and the filtered full system

state is covered by the equations
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qed ijið Þ ¼
X

m

h¼1

P ijið ÞP�1
h ijið Þqedj ijið Þ

�
X

m

h¼1

P ijið ÞP�1 iji� 1ð ÞFqedj i� 1ð Þ∣i� 1ÞÞ

þ P ijið ÞP�1 iji� 1ð ÞFqed i� 1ji� 1ð Þ,

(63)

qec ijið Þ ¼ qec iji� 1ð Þ (64)

at the time instants i∈Zþ.

Proof.The correction step for theKalman filter inEq. (51) can beprescribed locally for the jth node as

qedj ijið Þ ¼ qedj iji� 1ð Þ þ jh ið Þ zh ið Þ � zdh iji� 1ð Þð Þ, (65)

where

zh ið Þ ¼ yh ið Þ � cTh qec iji� 1ð Þ, (66)

zdh iji� 1ð Þ ¼ cTh qedj iji� 1ð Þ, (67)

jh ið Þ ¼ Ph ijið ÞchR
�1
h , (68)

P�1
h ijið Þ ¼ P�1 iji� 1ð Þ þ chR

�1
h cTh : (69)

Substituting (66), rearranging and postmultiplying the left side by P�1
h ijið Þ, (65) implies

P�1
h ijið Þ qedj ijið Þ � qedj iji� 1ð Þ

� 


¼ chR
�1
h zh ið Þ � zdh iji� 1ð Þð Þ, (70)

chR
�1
h zh ið Þ ¼ chR

�1
h cTh qedj iji� 1ð Þ þ P�1

h ijið Þ qedj ijið Þ � qedj iji� 1ð Þ
� 


, (71)

respectively. Since (69) gives

chR
�1
h cTh ¼ P�1

h ijið Þ � P�1 iji� 1ð Þ, (72)

with a simple elimination after inserting (72), (71) gives

chR
�1
h zh ið Þ ¼ P�1

h ijið Þ qedj ijið Þ � qedj iji� 1ð Þ
� 


þ P�1
h ijið Þqedj iji� 1ð Þ � P�1 iji� 1ð Þqedj iji� 1ð Þ

¼ P�1
h ijið Þqedj ijið Þ � P�1 iji� 1ð Þqedj iji� 1ð Þ:

(73)

Combining (49) and (51) results in

qed ijið Þ ¼ Fqed i� 1ji� 1ð Þ þ P ijið Þ
X

m

h¼1

chR
�1
h zh ið Þ � cThFqed i� 1ji� 1ð Þ,



(74)
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which can be written as

qed ijið Þ ¼
X

m

h¼1

P ijið ÞchR
�1
h zh ið Þ þ In �

X

n

h¼1

P ijið ÞchR
�1
h cTh

 !

Fqed i� 1ji� 1ð Þ: (75)

Pre-multiplying the left side of (44) by P ijið Þ leads to

In �
X

w

h¼1

P ijið ÞchR
�1
h cTh ¼ P ijið ÞP�1 iji� 1ð Þ (76)

and considering (76), relation (75) takes the form

qed ijið Þ ¼
X

m

h¼1

P ijið ÞchR
�1
h zh ið Þ þ P ijið ÞP�1 iji� 1ð ÞFqed i� 1ji� 1ð Þ: (77)

Thus, the substitution of (73) into (77) gives

qed ijið Þ ¼
X

m

h¼1

P ijið ÞP�1
h ijið Þqedj ijið Þ �

X

m

h¼1

P ijið ÞP�1 iji� 1ð Þqedj iji� 1ð Þ

þ P ijið ÞP�1 iji� 1ð ÞFqed i� 1ji� 1ð Þ

(78)

and with the notation

qedj iji� 1ð Þ ¼ Fqedj i� 1ji� 1ð Þ, (79)

(78) implies (62). This concludes the proof.

Remark 2. It is clear that each of Eqs. (59)–(62) is only bound to the jth node and therefore such

correction can be done locally for each sensor. Conversely, the system state prediction and the residual

vector must be computed globally by Eqs. (39), (53), (57), (58), (63), and (64), respectively.

Remark 3. Obviously, under the above conditions, the distributed realization of the Kalman filter

correction step is optimal in the sense of criterion (26), and therefore the structure of the fault residual

generator based on distributed Kalman filtration is optimal.

4. Illustrative examples

4.1. Example 1

To eliminate specific system dependencies, the Schur discrete-time linear strictly positive

system [23] is used for demonstration of the Kalman filtering technique in residual signals

construction. The considered system can be put in the system class (1)–(4), with the sampling

period ts ¼ 0:8s, with uncorrelated system and measurement Gaussian noise and the noise

covariance matrices

Fault Detection and Diagnosis110



R ¼ diag 0:003 0:04½ �, Q ¼ 0:002I4

while the system matrix parameters are

F ¼

0:7650 0:6267 0:6058 0:0510

0:1048 0:1083 0:0813 0:0098

0:1484 0:1419 0:1171 0:0150

0:1709 0:2286 0:1603 0:1998

2

6

6

6

6

6

4

3

7

7

7

7

7

5

,G ¼

0:0241 0:0139

0:0151 0:0013

0:0109 0:0056

0:0142 0:0032

2

6

6

6

6

6

4

3

7

7

7

7

7

5

,C ¼
0:0001 0 1 0

0:0000 0 0 1

" #

:

Since the discrete-time stochastic linear strictly positive system is stable, the system control law

in simulations is defined for the forced mode control as u ið Þ ¼ Wwo, where

W ¼
�117:3841 79:3124

280:8078 �187:1829

� �

, wo ¼
0:6

0:8

� �

and the initial conditions for the Kalman filter are

q
e
0j0ð Þ ¼ 0, P 0j0ð Þ ¼ I4:

Using the given initial conditions, Figures 1 and 2 display the residuals obtained by the

residual filter generated by the distributed Kalman filter defined in (46)–(51), reflecting single

actuator and sensor faults, starting at the time instant t ¼ 50 s. The time scale is discrete with

the sampling period T ¼ 0:8s.

Evidently, the residual trajectories indicate that the proposed residual filter generates direc-

tional signals in the event of single sensor faults, and has a significantly higher dynamic signal

range in the event of single faults of the actuators, as compared to the residual presented using

the standard Kalman filter.

Figure 1. Residual responses to single faults: (a) the first actuator and (b) the second actuator.

Fault Residuals Based on Distributed Discrete-Time Linear Kalman Filtering
http://dx.doi.org/10.5772/intechopen.80296

111



4.2. Example 2

To produce another example that demonstrates achievable performances of the presented

design method, the sign-indefinite Schur discrete-time linear system is used, where [24]

F ¼

1:1039 �0:2360 �0:0563 �0:0229

0:1063 0:7971 �0:0575 �0:0109

0:0100 �0:0211 0:9401 �0:0476

0:0599 �0:0843 �0:0111 0:9633

2

6

6

6

4

3

7

7

7

5

,G ¼

0:1957 0:2878

0:0976 0:1921

0:0969 0:0939

0:0012 0:0982

2

6

6

6

4

3

7

7

7

5

,C ¼
0 0 0 1

0 1 0 0

� �

,

ts ¼ 0:05s, and the Gaussian noise covariance matrices are R ¼ diag 0:003 0:04½ � and

Q ¼ 0:002I4. To force the desired system output values, it is prescribed

W ¼
�2:1250 0:9375

1:8750 �0:5625

� �

, wo ¼
0:6

0:8

� �

, q
e
0j0ð Þ ¼ 0, P 0j0ð Þ ¼ I4:

Figures 3 and 4 present the residual responses of the residual filter based on distributed

Kalman filtering, from which it is clear that the used principle, especially when compared to

the achievable responses with the alternative system presented in Example 1, is operational.

Evidently, the residual filter behavior is also acceptable for the system parameters in this

example and the system noise environment. The step-like single faults start and continue from

the time instant t ¼ 25 s, the time scale is discrete with the sampling period T ¼ 0:05s.

4.3. Example 3

Following the above-mentioned procedures, Example 3 verifies their effectiveness for the

linear discrete-time system with the parameters

Figure 2. Residual responses to single faults: (a) the first sensor and (b) the second sensor.
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F ¼

0:1 0:2 0:3 0:4

0:7 0 0 0:1

0:2 0:8 0:2 0:3

0 0 0:5 0:2

2

6

6

6

4

3

7

7

7

5

, g ¼

0:1

0

0:3

0

2

6

6

6

4

3

7

7

7

5

, gf ¼

0

0

0:3

0

2

6

6

6

4

3

7

7

7

5

, cT ¼ 1 0 0 1½ �, cTf ¼ 0 0 0 1½ �,

where F is a left-stochastic matrix [25], ts ¼ 0:05s, and the Gaussian noise covariance matrices are

R ¼ 0:003 andQ ¼ 0:002I4. The behavior of the system is changed by the state-feedback control

u ið Þ ¼ �kTq ið Þ þWwo

where

kT ¼ 0:2982 1:0731 0:3711 0:6412½ �, W ¼ 1:1834, wo ¼ 0:6,

Figure 3. Residual responses to single faults: (a) the first actuator and (b) the second actuator.

Figure 4. Residual responses to single faults: (a) the first sensor and (b) the second sensor.
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which provides Schur matrix Fc as follows

Fc ¼ F � gkT ¼

0:0702 0:0927 0:2629 0:3359

0:7000 0 0 0:1000

0:1105 0:4781 0:0887 0:1076

0 0 0:5000 0:2000

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

Note, the steady states of Fc are absorbing states.

The single fault effects in residuals, when using the proposed algorithm of distributed Kalman

filtering (46)–(51) with setting F ¼ Fc, qe 0j0ð Þ ¼ 0 and P 0j0ð Þ ¼ I4 are shown in Figure 5. The

time scale is discrete with the time sample interval T = 0.1s.

From the figures, we find that the fault responses are satisfactory by using the proposed

method also for this system and noise environment.

Analyzing all examples, exactly the same responses are reached using the same parameters as

before and assuming the same fault patterns if the residuals are evaluated exploiting formulas

(57)–(64) or (46)–(51). It is given by the equivalent principles of distributed computing that are

bound by the equivalent relationships (44) and (62), respectively. As a result, in this particular

point of view, the proposed distributed algorithm has only one common matrix component,

P�1
iji� 1ð Þ, which has to be transmitted to every separated sensor before carrying out the state

correction filtering step at every time instant. Since the correction step at time instant i is done

in dependency on the measured value at the same time instant y ið Þ, it is clear that the shorter

the computation at the correction step, the smaller the time-delay introduced into the fault

detection system responses.

Figure 5. Residual responses to single faults: (a) the actuator and (b) the sensor.
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5. Concluding remarks

Realization forms for fault detection residual structures, based on distributed Kalman filtering

destined for noisy discrete-time linear systems, were derived in this chapter. The main idea

deals with introducing a distributed sensor measurement noise corrector step of a Kalman

filter, applied in such a way to be locally uncorrelated with other sensor measurements. Two

different algorithmic supports, a parallel decentralized Kalman filter and a locally distributed

Kalman filter, are constructed to generate fault residuals. Both solutions are discussed in detail

to demonstrate the condition of their equivalency. The problem accomplishes the manipulation

in the manner giving guaranty of asymptotic stability of a local fault residual detection filter.

Simulated example is included to illustrate the applicability of the proposed methods, encour-

aging the results that are obtained. Note, since the Kalman filter is based on the nominal

system parameters G and C, it cannot estimate system states and outputs starting for faulty

regimes with modified matrices Gf and Cf, respectively.

From the point of cloud-based distributed systems, to combine appropriately the network and

computational resources, a locally distributed Kalman filter seems to be naturally adaptable,

also with cross-correlated sensor noises. Of course, no theoretical justification for this affirma-

tion is presented in the chapter. This is seen as an area for future research by the authors.
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