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Abstract

Computing systems are becoming increasingly complex with nodes consisting of a com-
bination of multi-core central processing units (CPUs), many integrated core (MIC) and
graphics processing unit (GPU) accelerators. These computing units and their intercon-
nections are subject to different classes of hardware and software faults, which should be
detected to support mitigation measures. We present the chaotic-map method that uses
the exponential divergence and wide Fourier properties of the trajectories, combined with
memory allocations and assignments to diagnose component-level faults in these hybrid
computing systems. We propose lightweight codes that utilize highly parallel chaotic-map
computations tailored to isolate faults in arithmetic units, memory elements and intercon-
nects. The diagnosis module on a node utilizes pthreads to place chaotic-map threads on
CPU and MIC cores, and CUDA C and OpenCL kernels on GPU blocks. We present
experimental diagnosis results on five multi-core CPUs; one MIC; and, seven GPUs with
typical diagnosis run-times under a minute.

Keywords: fault diagnosis, hybrid systems, chaotic maps, multi-core CPU, GPU

1. Introduction

High performance computing systems utilize increasingly complex hybrid nodes that consist of

multi-core central processing units (CPU) combined with many integrated core (MIC) or

graphics processing unit (GPU) accelerators [1]. The next generation systems that target

Exascale computations are expected to be massive with computing elements totaling a million

[2, 3]. Furthermore, these computing systems are expected to be built, at least in part, using off-

the-shelf components such as CPUs, Accelerated Processing Units (APU) and GPUs, which

have an expected life-span in the range of 5–10 years. Consequently, the computations that run

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



for a few hours on such systems are likely to experience multiple faults, and it is essential

to account for them to achieve the resilience of these computations [4, 5]. Detection of such

faults contributes to resilient computations in a number of ways such as: supporting the

quarantine of faulty units from the scheduler pool; replacement of faulty processor boards

and accelerators; and, initiation of application migration and check point recovery. How-

ever, fast and efficient detection of such faults in hybrid computing systems is complicated

due to the continued increases in the number and complexity of processors, accelerators and

interconnects.

However, fast and efficient detection of such faults in hybrid computing systems is compli-

cated due to the continued increases in the number and complexity of processors, accelerators

and interconnects.

The impact of such faults could be quite significant on certain scientific computations, partic-

ularly if they fail to trigger checkpoint recovery or process migration, or result in too many

errors that require inordinate number of checkpointing operations. Furthermore, the variety of

faults is expected to expand in future as hybrid architectures evolve with increasing numbers

of cores, sockets and blocks, and with complex processors and interconnect designs. The

component faults in these systems can manifest in a variety of ways: faults in arithmetic and

logic units (ALU) and floating point units (FPU) lead to instruction execution errors; and

memory element errors and transport errors (over memory bus, inter-processor link, PCI bus

connection to GPU memory, or interconnect) lead to erroneous data. In production systems,

current support for detecting these faults is somewhat limited, primarily to hardware monitors

and codes with “known” outputs, and several other approaches are currently under develop-

ment [5–18]. In fact, some faults that develop during the computation may not be detected at

all, and the computation may indeed run to completion and produce unsuspected erroneous

output. One practical diagnosis technique is to run an application and compare its output with

a priori known correct values. For example, codes such as CUDA-enhanced HPL [19] with

known outputs have been used in practice to verify error-free executions. These codes, how-

ever, require significant execution times, since they solve dense linear systems with a primary

purpose of benchmarking the (error-free) system.

We propose lightweight codes to quickly and efficiently detect component faults in hybrid

computing nodes consisting of multi-core CPUs with MIC or GPU accelerators. These codes

are based on developing the chaotic-map method1 to diagnose hybrid systems, and are among

the smallest codes capable of detecting a large class of ALU, memory and interconnect errors,

typically requiring a few iterations of few instructions. The chaotic-map method is introduced

[15] as a fault diagnosis tool for computing systems, and applied to multi-core CPUs using

pthreads in [16]; but these codes are not transferable to GPUs due to their significantly

different architectures and software support. We first extend the chaotic-map implementation

to include logical and integer operations, and develop CUDA and OpenCL kernels to diagnose

1

Chaotic maps have origins in the analysis of non-linear systems with complex dynamics, such as weather systems.

Extensive theory and analysis methods of chaotic maps have been developed [20], and are often used for establishing

the existence of chaotic dynamics in a wide range of non-linear system models [21].

Fault Detection and Diagnosis4



GPUs, and integrate them with pthreads multi-core CPU diagnosis codes to diagnose large

systems with hybrid nodes. We have implemented and tested these diagnosis codes on sys-

tems shown in Table 1, namely on five multi-core CPUs; MIC accelerator; seven GPUs; and,

three multi-GPU systems.

Our main objective is to rapidly diagnose the faults in large-scale hybrid computing systems

with the architecture shown in Figure 1. In particular, we consider detecting component faults

entirely by software means, similar in spirit to the approaches of Erez et al. [6] and Sahoo et al.

[18]; in particular, we focus on codes that run in a fewminutes to diagnose non-transient faults.

A finer diagnosis to pinpoint individual faulty digital gates, as typical in the fault diagnosis

literature [22], requires solutions to the underlying NP-hard problems. The general problem of

detecting resilience of codes is computationally undecidable in Turing sense [17]. Also, spo-

radic faults that last for short durations (i.e., micro seconds) are not addressed here. Our

diagnosis codes are intended to provide “quick” diagnosis to complement other methods2

such as hardware monitors, HPL codes [19], application-specific detection methods [23–26],

and verification systems [27]. While our original motivation is to support facility operations,

our diagnosis codes can be made part of a broader, resilience ecosystem to complement and

Multi-Core CPU:

4-core Intel Xeon 2.67 GHz

16-core AMD Opteron 2.3 GHz

16-core Intel Xeon 2630

32-core Intel Xeon E5-2650 2.7GHz

48-core AMD Opteron 6176 SE 2.29GHz

Single-MIC:

Intel Xeon Phi Coprocessor 3120P/A

Single-GPU:

Quadro 600, Quadro K4200, Tesla T10, Tesla C1060

Tesla K20X, Tesla K20c, AMD Firepro W9000

Single-APU:

AMD A10-7850 K

Multiple-GPU:

8 Nvidia Tesla T10 GPUs

Nvidia Tesla K20c and AMD Firepro W9000

Intel HD Graphics 4000 and Nvidia GeForce GT 650 M

Table 1. Nodes used in implementation and testing of diagnosis codes.

2

Due to the multi-disciplinary nature of the area of extreme-scale resilient computations, the literature on related works is

quite extensive, and we only refer to a very small set of works that are directly connected to the technical areas of this

report.
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support Algorithm-Based Fault Tolerance (ABFT) methods [7, 28]; software-based fault detec-

tion [5, 6]; and, likely invariants for detecting hardware faults [18].

Our overall approach is to compute chaotic-map trajectories concurrently on all CPU and MIC

cores, and GPU blocks. Two properties of chaotic map trajectories are critical for diagnosis

purposes: (a) their exponential divergence ensures that the trajectories subjected to faults will

rapidly diverge from the majority (fault-free) and are easily detected; and (b) their density and

aperiodicity ensures that they span across and cover a majority of bits involved in the constitu-

ent operations. Our codes utilize concurrent threads to compute chaotic map trajectories that

are augmented with: (a) arithmetic and logic operations to diagnose ALU operations, and

(b) content-preserving data movement operations to diagnose memory elements, busses and

interconnects.

This paper is organized as follows. We describe the basics of the fault detection method using

chaotic maps in Section 2. We present a brief description of the hybrid architecture and the

details of our diagnosis codes in Section 3. We describe the overall diagnosis method in Section

3.1, and provide the details of diagnosis of CPU andMIC cores in Section 3.2, and the details of

diagnosis of GPU blocks using CUDA and OpenCL kernels in Sections 3.4 and 3.4, respec-

tively. We present experimental results in Section 4.

2. Diagnosis using chaotic maps

A Poincare map M : ℜ
d
↦ℜ

d specifies a sequence, called the trajectory, of a real-vector state

Xi ∈ℜ
d that is updated at each iteration i such that Xiþ1 ¼ M Xið Þ [21]. The computation of

M Xið Þ may involve floating-point operations, such as multiplication and addition, and logical

Figure 1. CPU-GPU hybrid system architecture.
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operations such as comparison of numbers, and can vary significantly in the number and types of

operations. The trajectory X0, X1,…, Xt, such that Xi ¼ Mi X0ð Þ, generated by certain Poincare

maps can exhibit complex profiles, even whenM is computationally simple. In Figure 2, we show

trajectories of the logistic map MLa Xð Þ ¼ aX 1� Xð Þ, for X∈ 0; 1½ �, which requires two multiplica-

tions and one subtraction per iteration. In Figure 3, we show the trajectories of the tent map

MTb
Xð Þ ¼

bX ifX ≤ 1=2

b 1� Xð Þ ifX > 1=2

�

for X∈ 0; 1½ �, which requires a comparison operation, one multiplication and at most one

subtraction per iteration. The trajectories of these maps exhibit complex dynamics as shown

in Figures 2(a) and 3(a) for the logistic map for a ¼ 4 and the tent map for b ¼ 2, respectively.

The trajectories generated by the Poincare map M are characterized by the Lyapunov exponent

defined as LM ¼ ln dM
dX

�

�

�

�, which characterizes the separation of the trajectories that originate

from the nearby states. For example, the Lyapunov exponent of the tent map is LMTb
¼ lnb,

which is defined for all X∈ 0; 1½ � except at X ¼ 1=2.

A bounded trajectory X0, X1,… generated by the Poincare map M :ð Þ is chaotic if (i) it is not

asymptotically periodic, and (ii) Lyapunov exponent LM is greater than zero [21]. Two impor-

tant properties of the chaotic maps are exploited here for fault diagnosis: (a) the exponential

divergence ensures that trajectories whose states slightly differ from each other at any iteration

Figure 2. Trajectories of the logistic map. (a) trajectory with no errors, (b) trajectory under arithmetic error, (c) differences

in trajectories with and without error.
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rapidly diverge within a few steps, and (b) the high spatial density and broad Fourier spectrum of

states of a trajectory spreads them across the bit-space of the underlying computing operations

within a few iterations. The first property has been proposed in [15] as an effective computa-

tional mechanism to rapidly amplify errors caused by factors such as bit flip in memory

content or stuck-at fault in an ALU operation. We extend this approach to diagnose High

Figure 3. Trajectories of the tent map. (a) trajectory with no error, (b) trajectory with logic error, (c) difference in

trajectories with and without error.

Fault Detection and Diagnosis8



Performance Computing (HPC) systems with small fault rates: these maps are computed

concurrently so that errors are detected by comparing them to a small majority of them. In

addition, several chaotic maps have very small computational requirements, and a vast litera-

ture is available on the analytical [8, 20], statistical [29] and computational aspects of these

maps [13, 30]. It is possible in theory to utilize linear maps in a similar way, but they are not as

efficient in detecting “small” errors (such as in least significant digits) which have to be linearly

amplified through multiple iterations to trigger detection, and also they do not generate dense

states and hence are limited in their bit-level coverage.

The trajectories that slightly differ from each other in any iteration rapidly diverge from each

other in a few steps, as shown in Figure 2(a) and (b) for the logistic map, and Figure 3(a) and

(b) for the tent map. This property is utilized as a mechanism to rapidly amplify errors in

computations caused by factors such as bit flip in memory elements or stuck-at fault in an ALU

operation. Also, through the iterations, the states are spread across the interval 0; 1½ � so that the

bit-space of the underlying computations, for example, of the registers, is covered with a high

likelihood. The difference between two trajectories with the same starting state is shown in

Figure 2(c) for the logistic map, where the state is corrupted by 1/10000 magnitude in iteration

50. During iterations 0 through 50, the difference between the trajectories is 0, but the small

difference in state magnitude is amplified to above 0.25 within 8 iterations, which is typically

under 1 ms on the systems we tested. In Figure 3, we show the effect of error in the logical

operation, wherein the result of the comparison is flipped in iteration 50. The effect on the

trajectory is more dramatic as shown in Figure 3(b), and the difference in the trajectories

crosses 0.25 within two iterations. Such divergence in trajectories can be detected by a magni-

tude test, and the detection time is controlled by the Lyapunov exponent of the map. While

both logistic and tent maps provide exponential divergence, they cover the state space [0, 1]

differently as illustrated in Figure 4, as a result of different Lyapunov exponents. It is lower in

the middle and large at the ends of state space [0, 1] for the logistic map, but is uniform for the

tent map, which makes it preferable for its coverage to support diagnosis.

The computation of a chaotic map M :ð Þ is sensitive to errors in its constituent operations, and

the mechanisms used in storing and updating the states. The detectable faults include errors in

arithmetic and logical operations performed by ALU, and faults in registers and memory, but

Figure 4. State space coverage by chaotic trajectories. (a) coverage under logistic map, (b) coverage under tent map.
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are limited to the basic operations of M :ð Þ itself. We propose the chaotic-detection map MD :ð Þ3

that augments the detection space ofM :ð Þ so that its execution path is routed through different

computing operations, memory locations and interconnect links to capture errors due to them.

The chaotic-detection map is obtained by adding the following two types of operations to the

chaotic map iterations.

a. Augmenting computing operations: The chaotic map iterations are augmented with

sequences of logical and arithmetic operations, which are selected based on the instruction

sets of CPU cores and GPU blocks to complement the original chaotic map operations. The

same sequence of operations is used in all concurrently computed maps by using the same

process code for pthreads of all CPU cores and the same CUDA kernel on all GPU blocks.

The type of state variable is used to exercise different parts of the computing units; in

particular, it is scaled to a large integer and addition and multiplication are applied to

exercise integer operations. Also, special operations such as log are applied to Xi to

exercise special instructions that are implemented in hardware by Extended Math Unit

(EMU), when applicable. The type casting of variables is used to exercise single precision

and double precision processing units as well as Vector Processing Units (VPU), as

described in the next section.

b. Content-preserving data movement operations: The state variable Xi is moved among

the memory elements and/or across the interconnects in between applyingM :ð Þ iterations,

to capture errors in the memory elements and paths, and during the transmission across

the interconnects. In each operation, the contents of Xi are unchanged under failure-free

conditions. These movements can be realized by several means based on the supported

operations, ranging from simple assignment statements to employing additional variables

in the “shared” memory to utilizing explicit MPI, CUDA or other constructs. In particular

for multi-core processors, memory assignments using pthreads can be used for both

purposes, namely, to test memory unit errors as well as transport errors across the mem-

ory bus or hypertransport.

The rate of divergence of a chaotic map, and hence the detection times of failures depend on

the Lyapunov exponent LM, generally larger values leading to quicker divergence. The class of

faults detected by a chaotic-detection map depends on the chaotic map and the augmenting

and data movement operations as well as the computing units used for their computation. A

main consideration in developing the diagnosis codes is to efficiently compute the chaotic-

detection maps on computing units with identical parameters, sequences of augmenting oper-

ations, state-preserving movement operations and chaotic map updates, so that the end states

are identical under fault-free conditions. Their implementation critically depends on the soft-

ware primitives supported on the systems, and they in turn are closely tied to the underlying

system architecture, including the location of the computing elements, memory hierarchies

and interconnects. In the next section, we describe specific implementations to compute

chaotic-detection maps on multi-core CPUs, MICs, GPUs and hybrid systems.

3

The chaotic-detection map is a generalization of the chaotic-identity map proposed in [15], which was restricted to the

operations with inverses.

Fault Detection and Diagnosis10



3. Hybrid system diagnosis

We consider hybrid computing systems, wherein each node consists of muti-core, possibly

multi-sockets CPUs, and one or more GPU and XeonPhi MIC accelerators; in the limiting case,

we have a single node with a multi-core CPU and zero or more GPUs. Computations are

spawned to run on CPU cores using OpenMP, pthreads or similar constructs, and on GPU

blocks using CUDA or OpenCL threads. Within each node, however, the data movements are

carried out differently on CPUs and GPUs, since the former accesses different levels of on-

board memory, but the latter can only directly access memory physically located on the GPU.

The CPU-GPU data transfers are realized using CUDA or OpenCL in our case using memory

copy operations between CPU on-board memory and GPU device memory. Computations on

GPUs utilize thread bundles on GPU blocks using kernels written in CUDA C or OpenCL.

Kernels are launched from the CPU of a node onto the corresponding GPU blocks as a

collection of threads. In this section, we describe different components of the diagnosis codes

for hybrid systems based on the chaotic-detection maps. Since these can be used as stand-alone

codes for simpler systems, codes for a single-node with multi-core CPU with zero or more

GPU accelerators, or as a cluster with only CPUs, are presented in separate sections.

3.1. Node diagnosis module

The overall diagnosis strategy is to utilize the “reliable” nodes to launch a node diagnosis module

on each node as shown in Figure 5, under the working assumption that only a small number of

Figure 5. Diagnosis approach for hybrid computing systems.
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nodes contain faulty components and a majority of them are fault-free. The node diagnosis

module is written in C, and consists of a CUDA or OpenCL C kernel for GPUs, and pthreads

code for multi-core CPUs or MIC accelerators. On each node, the diagnosis module detects the

number of cores (more precisely, the processing units) using linux/proc system, and also

explicitly checks for the physical presence of GPUs using CUDA C or OpenCL system calls

(to avoid GPU emulations). It then allocates and initializes node-level global memory and

copies the contents onto on-board device memory of GPUs connected to the node. Next, from

the default CPU core, it launches concurrent threads to compute the chaotic-detection maps on

the computing units, namely CPU cores and GPU blocks, and gathers their outputs and

generates the diagnosis output.

The chaotic-detection map computation carried out by threads on each CPU core and GPU

block consists of the following basic steps, which will be customized to CPU and GPU archi-

tectures (as described in the next sections):

i. Local memory is allocated and initialized based on the specifics of CPU or GPU;

ii. Initial state X0 of the chaotic-detection map, and additive and multiplicative factors,

denoted by A and M respectively, the numbers of pre and post iterations N1 and N2,

respectively, are accessed so that all threads use the same values;

iii. N1 iterations of the chaotic-detection map are computed using starting state X0 to obtain

XK. followed by a sequence of augmenting operations, for example, addition and sub-

traction of the additive factor A, and division and multiplication with factor M, namely,

XK ¼ XK þ A;

XK ¼ XK � A;

XK ¼ XK=M;

XK ¼ XK ∗ M,

to check addition, subtraction, multiplication and division operations.

iv. A fixed sequence of content-preserving data movement operations are performed on

variable XK that are specific to CPU or GPU; and

v. N2 iterations of the chaotic-detection map are computed with starting state XK to obtain

final state XE.

At the completion of threads, outputs XE‘s from all concurrent threads are transferred back to

the default CPU core and are used as starting states for N3 iterations of a follow-on chaotic

map. This follow-on chaotic map amplifies the errors captured by the outputs of chaotic-

detection maps from the CPU and GPU threads as well as those occur during data transfers,

for example, from GPU to CPU over the PCI bus.

The final outputs XF‘s of the follow-on chaotic map are compared to a pre-computed correct

state (or to the majority of a small subset of them). If XF‘s of all the threads match then no error

is declared. If not, diagnosis steps (iii)–(iv) are executed separately to identify portions during

Fault Detection and Diagnosis12



which errors occurred. The step (iii) identifies ALU errors in executing +, �, / and * operations,

and other operations of interest can be added. Steps (i), (ii) and (iv) are customized to match

the memory architectures of CPU and GPU as described in the following sections, wherein

assignment operations are used to diagnose memory elements and data paths. The memory

and interconnect diagnosis codes described here, however, are limited mainly to illustrate the

detection of faults in memory elements and data paths rather than complete sweeps of mem-

ory and interconnects.

All threads that compute chaotic-detection maps are provided identical parameters in step (ii).

These parameters are setup on global arrays GM :; :½ � of size SG on each node, which are

accessible to all CPU cores and are explicitly transferred to GPU memory. For initialization on

the node, malloc call is used for allocating the memory and memset is used to fill the memory

with the values. The data movements in step (iv) do not alter the contents if there are no errors

in storage or transfer operations, but are designed specifically to match the memory architec-

ture of CPU and GPU; in particular, primitives such as assignments can be used to diagnose

memory and transfer errors as will be described in next sections.

3.2. Multi-core CPU diagnosis

Multi-core CPU systems are composed of one or more sockets, each housing a number of

processor cores connected to memory modules, which are typically organized in a hierarchy.

An example of a single socket quad-core system is HP Z400 workstation shown in Figure 6

consisting of four 2.67 GHz Intel Xeon CPUs. The cache memory units are connected over the

memory bus such that L1 caches are local to processor cores, L2 caches are shared between

pairs and L3 caches are global. The memory caches are connected over a combination of

memory bus and hypertransport links. The L1 cache is local to cores whereas global memory

is accessible to certain cores via hypertransport links. Thus, certain memory transfers between

local and global memory take place over hypertransport links.

We now provide the details of node diagnosis module that is specific to multi-core CPUs. It

partitions the global memory into non-overlapping parts assigned to NC processor cores, and

launches dedicated threads one on each core as shown in Figure 7. Processor core i is assigned

the subarray GM i; :½ � of size SGi
. Then, a single thread is invoked on each core i using

pthread_setaffinity_np call, and this thread computes the chaotic-detection map with the

following expanded steps described in Section 3.1.

(i) Local memory is allocated and initialized within the thread as an array LS :½ � of specified size

SL using malloc and memset.

(iv-a) The variable XK is stored and retrieved from each element of the initialized local

memory:

for j ¼ 1,…, SL.

LS j½ � ¼ XK;

XK ¼ LS j½ �;

Fault Diagnosis of Hybrid Computing Systems Using Chaotic-Map Method
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These operations are carried out between core i and its local memory.

(iv-b) The variable XK is stored and retrieved from each element of the assigned partition of the

global memory such that the thread assigned to processor code i executes the following code.

for j ¼ 1,…, SGi
.

GM i; j½ � ¼ XK;

XK ¼ GM i; j½ �;

The basic idea of steps (iv-a) and (iv-b) is to utilize the variable assignments to diagnose both

memory elements as well as data paths. The step (iv-a) exercises the local memory operations

and detects errors in the memory elements, as well as during transport by the memory

controller. The step (iv-b) exercises the processor interconnect, as well as the elements in global

memory; the interconnect is memory bus for HP z400 workstation, and hypertransport for HP

Proliant server. While these steps do not cover all possible errors, they are likely to capture

several major errors in ALU, memory and interconnect so that processors with detected errors

can be excluded from computations or their boards may be replaced. This memory diagnosis

part can be further refined: (a) NUMA tools can be utilized to explicitly allocate memory in

different locations and layers so that the assignment operations require data to be transferred

across the memory connections, and (b) assignment primitives under higher level constructs

Figure 6. Architecture of 4-core HP Z400 workstation.
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such as openMP, SHMEM or PGAS can be used as diagnose memory paths at much higher

level using fairly simple codes.

3.3. Xeon phi diagnosis

Intel’s first generation MIC Architecture, code named Knights Corner has 57–61 cores per

coprocessor. The particular coprocessor we had access to was the Intel Xeon Phi 3120P/A

coprocessor with 57 cores, 1TF double precision performance, 6GB GDDR memory with

240 GB/s data transfer rates and a 1.1 GHz clock. Internally the 3120P consists of 57 cores with

each core having a VPU, a x87 math co-processor providing double precision transcendentals

(non-vectorized) and a scalar processing unit. The VPU on each core internally consisted of 8

double precision FPUs and 16 single precision (SP) FPUs and an extended math unit (EMU)

providing single precision vectorized transcendental functions. The VPUs are capable of 8 DP

or 16 SP operations per clock cycle. Associated with each VPU are four hardware thread

execution contexts each having access to 32,512 bit wide private registers (zmm0-zmm31)and

8 16 bit mask registers, 7 of which are writeable. Associated with each core are 32 KB L1 data

and instruction caches and a unified 512 KB instruction and data L2 cache. The instruction set

associated with the VPUs is the Intel Initial Many Core Instruction (IMCI) set. The 57 cores are

on a round robin bidirectional ring interconnect with 8 memory controllers. For further details

we refer to [14, 31–33].

The Xeon Phi node diagnosis module tests the single and double precision ALUs within each

VPU, the x87 math coprocessor for each core, the EMU for each core, the general purpose

Figure 7. Diagnosis of CPU cores.
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vector registers for each hardware thread, and the L1 and L2 caches. We did not attempt to

design explicit tests for the memory controllers, RAM, or the interconnects to the CPU within

this module though in theory this should also be possible. The code is written in C and IMCI

assembly. The icc compiler was used to automatically generate vectorized code for the VPUs.

The code can be executed either by offloading to the coprocessor or by natively executing on

the coprocessor. pthreads is used to spawn off one thread for each logical core detected. For the

Intel Xeon Phi 3120P/A coprocessor that we had access to this worked out to a total of 57 � 4

threads corresponding to the 4 hardware threads associated with the 57 cores. The core affinity

for each thread was explicitly set using the pthread_attr_setaffinity_np call. Each thread

executes a set of chaotic-map detection routines based on the description in Section 3.1 cus-

tomized to test the hardware components listed above. In particular, it was necessary to write

both single and double precision chaotic map routines that operated on 64 bit aligned arrays in

order to exercise the SP and DP ALUs. Testing of the �87 math co-processor was done through

the compiler switches -mmic -fp-model strict that disabled auto-vectorization and forced the

�87 coprocessor to be exercised. This was verified through examining the generated assembly

code. Diagnosis of the EMU was ensured by introducing transcendental function calls. From

examining the generated IMCI assembly it was clear that the generated code did not exercise

all 32 of 512-bit vector registers (zmm0–zmm31) and mask registers associated with each

thread. In order to test the registers, assembly routines were written to span all registers

associated with each thread that performed the chaotic map iterations.

3.4. GPU diagnosis using CUDA kernels

Nvidia general purpose GPUs (GPGPU) can be viewed as a set of streaming multiprocessors

(SMs) [34] as shown in Figure 8. Each SM internally consists of a number of simplified cores:

CUDA cores which consist of scalar SP floating point and arithmetic ALUs, DP cores, Special

Function Units (SFU) for transcendental functions, and Load/Store units. The number of cores

and the relative ratio of the different types has varied from generation to generation. Each SM

has a number of schedulers and instruction dispatch units associated with it, as well as a

register file shared by all cores in the SM, and local memory partitioned as shared memory

and L1 cache. SMs also have access to global device memory. The basic scheduling unit for

Nvidia GPGPUs is a warp which consists of 32 threads which operate in SIMT (single instruc-

tion multiple thread) fashion. At a higher level, threads are organized into thread blocks and

on each block all threads execute concurrently as shown in Figure 9. These computations have

only direct access to memory on the device DRAM with support from caches. Table 2 lists

hardware specifications for some of the Nvidia microarchitecture generations [9–12]. We note

that we have tested on a variety of Nvidia GPGPUs including Quadro 600, Tesla C1060,

Quadro K5000, and Tesla K20X (Table 2).

The diagnosis module for Nvidia GPUs performs separate chaotic-map detection iterations to

detect faults on the CUDA cores, the DP cores, and the SFU components. The global memory

GM :; :½ � is copied by the node diagnosis module onto the device memory GMG :; :½ � to make it

accessible to GPU threads. The thread computations are implemented by a CUDA kernel that

is loaded and executed on GPU(s). The same kernel code is executed on each block, which
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Figure 8. Architecture of a CUDA-capable GPU.

Figure 9. Diagnosis of GPU blocks.
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consists of a number of threads that compute the chaotic-detection maps. The chaotic-detector

maps computed by each GPU thread consist of the following expanded versions of the steps

described in Section 3.1.

(i) The GPU SM id, thread id, warp id, and warp lane numbers are obtained, and the global

device memory is allocated to thread T as an array GMG:T :½ � of specified size ST .

(iv-a) A set of variables XK corresponding to the FP and integer portions of the CUDA core, DP

core, and SFU are retrieved from each thread.

(iv-b) The variables XK are stored and retrieved from each element of the assigned partition of

the global memory such that the thread T executes the following code.

for j ¼ 1,…, ST.

GMG:T i; j½ � ¼ XK;

XK ¼ GMG:T i; j½ �;

(v) N2 iterations of the chaotic-detection map are computed with starting state XK to obtain

final state XE;

The GPU diagnosis code is written as a CUDA kernel which is launched from CPU onto GPU

blocks concurrently with pthreads on CPU cores. This diagnosis code can be significantly

simplified for simpler diagnosis tasks, for example, checking PCI bus transfer errors between

CPU and GPU, by simply writing and reading back the global memory arrays.

3.5. GPU diagnosis using OpenCL kernels

AMD GPGPUs and APUs have transitioned to the graphics core now (GCN) Architecture with

the GPGPUs and APUs containing multiple GCN compute units (CU). For example, the AMD

RadeonHD7970 (FireproW9000) architecture consists of 32GCNCU’s operatingwith a 975MHz

clock while the AMD A10-7850 K Kaveri APU architecture consists of 2 Steamroller CPU cores

(3.7–4 GHz) and 8 GCN CUs (720 MHz) with a unified address space of up to 32GB. Each CU

consists of 4 Vector Units (VU) and one Scalar Unit. Each VU in turn consists of 16 SIMD multi-

precision ALUs and a register file. In the case of the Firepro W9000 this is a total of 2048 ALUs

(32CUs � 4VUs � 16 ALUs) with a theoretical peak of up to 1 TF DP and 4 TF SP performance.

The basic scheduling unit ofwork for a GCNCU consists of awavefront which is 64 threads. Each

Tesla Fermi Kepler Maxwell

SM 30 16 8 16

CUDA cores/SM 8 32 32 192

DP cores/SM 1 — 64 4

SFUs/SM 1 4 32 32

Load/Store/SM — 16 32 32

Table 2. Nvidia GPGPU micro-architecture specifications.
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SIMDVUwithin a CU has its own program counter and instruction buffer which can contain up

to 10 wavefront buffers. Four CUs currently share a 32 KB L1 instruction cache. At a given cycle

the 4 VUs of one CU can be operating on different wavefronts with a givenwavefront completing

in 4 clock cycles. In effect, a single CU could have up to 4 � 10 wavefronts in flight. Associated

with each GCN CU is a general purpose register file which consists of 4 independent slices, one

for each VU. Each slice consists of 256 vector registers (vGPRs) shared across 10 wavefronts with

each vGPR being 64 lanes of 32 bits allowing 64 SP or 32 DP values to be stored in each vector

register at each cycle. For further details we refer to [35].

The diagnosis module for AMD GPUs is written in OpenCL with separate kernels for chaotic

map fault detection of SP and DP FPUs, integer ALUS, extended math units, and register files.

Since the diagnosis modules are written in OpenCL they also run on multi-core CPUs and

GPUs from other vendors such as Nvidia. However, obtaining thread level information is

much harder with OpenCL and requires the use of vendor specific analysis tools. Hence, the

OpenCL chaotic map detection modules provide less quantitative information than the mod-

ules written with pthreads for Xeon Phi and CUDA for Nvidia GPGPUs. However, these

diagnostic codes provide a good tool for fault detection on hybrid systems due to the cross-

platform portabiity that OpenCL provides.

4. Experimental results

The diagnosis codes have been implemented in C using float and double datatypes based on the

logistic and tent maps, and have been developed and tested in stages on the systems listed in

Table 1. The test modes are represented as multi-core CPU (C), manycore processor (MC),

single GPU (G), multiple GPUs (MG) or hybrid node with CPU and GPU (CG). The tests were

carried out in C, MC, G, MG, and CG modes. In these systems, Xeon Phi’s and GPUs are

attached to CPUs over PCI bus, and are used as accelerators in all our systems, except in HP

Z200 workstation where the GPU is used only for display. The following are the details of

systems used in our code implementation and testing.

(C) Multi-Core CPU: Five different multi-core systems: 4-core Intel Xeon 2.67 GHz, 16-core

AMD Opteron 2.3 GHz, 16-core Intel Xeon, 32-core Intel Xeon 2.7GHz, and 48-core AMD

Opteron 2.29GHz.

(MC) MIC Processors: Intel Xeon Phi 3120P/A coprocessor.

(G) Single-GPU: Six cases: Quadro 600, Quadro K5000, Tesla T10, Tesla C1060, Tesla K20X,

and AMD Firepro 9000 GPUs connected to CPU over PCI bus.

(MG) Multiple-GPUs: Two cases: 4-socket 48-core HP server with eight 8 Tesla T10 GPUs

connected over four PCI busses and Apple MacBook Pro with an Intel HD Graphics 4000 GPU

and a Nvidia GT 650 M GPU.

(CG) Hybrid nodes: AMD A10-7850 K Kaveri APU with 2 Steamroller CPU cores (3.7–4 GHz)

and 8 GCN CUs (72 MHz)
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Together these systems represent quite different software environments and architectures, and

our diagnosis codes are compiled separately on them under Linux-like environments. But

otherwise these codes are portable using C, CUDA, and OpenCL compilers with the pthreads

libraries. The diagnosis test results are qualitatively quite similar across these systems. So, we

present high-level summaries of our results with some representative traces, and briefly

describe (somewhat) unexpected cases that may require additional considerations for devel-

oping application codes. For multi-core CPUs no errors were detected on these systems, and as

expected the chaotic map outputs XE‘s are identical for all cores. We simulated different faults

to verify the functionality of diagnosis codes. When GPU are utilized, some interesting preci-

sion and emulation artifacts were observed in G and MG modes (Section 4.3).

4.1. Multi-core CPU diagnosis

Four different CPUs have been tested in C mode. The outputs XE’s of all chaotic-detection

maps are identical in all these systems, and the results for the 4-core CPU are shown below

using the tent and logistic maps (N1 ¼ 20, N2 ¼ 0 iterations with X0 ¼ 0:2):

Tent map:

Core 0: output: 0.165669 : 3E29A528

Core 1: output: 0.165669 : 3E29A528

Core 2: output: 0.165669 : 3E29A528

Core 3: output: 0.165669 : 3E29A528

Core 0: output: 0.165669 : follow_on: 0.919737

Core 1: output: 0.165669 : follow_on: 0.919737

Core 2: output: 0.165669 : follow_on: 0.919737

Core 3: output: 0.165669 : follow_on: 0.919737

Logistic map:

Core 0: output: 0.787269 : 3F498A78

Core 1: output: 0.787269 : 3F498A78

Core 2: output: 0.787269 : 3F498A78

Core 3: output: 0.787269 : 3F498A78

Core 0: output: 0.787269 : follow_on: 0.062074

Core 1: output: 0.787269 : follow_on: 0.062074

Core 2: output: 0.787269 : follow_on: 0.062074

Core 3: output: 0.787269 : follow_on: 0.062074

Fault Detection and Diagnosis20



Outputs from all four threads from the individual cores are identical indicating no errors. The

output consists of two parts: first part shows the chaotic-detection map outputs XE’s from the

individual cores, and the second part shows the outputs of follow-on chaotic map XF’s.

In the first part, the state of chaotic-detection map XE is printed in C float format in the first

column, and in hexadecimal representation in the second column. For the follow-on chaotic

map, XE and XF are shown in the first and second columns, respectively. These outputs are the

same in all four multi-core CPUs and three systems tested.

Since there are no errors detected on the CPU cores above, we simulated four types of errors:

a. We add a small quantity to XK during the arithmetic operations for thread 0 to simulate

ALU errors.

b. We simulate stuck-at memory errors by clamping XK to a fixed value 0.000001 during the

store and retrieve operation for thread 1.

c. We simulate data path errors by replacing XK by a randomly generated number for a

thread 2 during the store and retrieve operation.

d. We flip the outcome of the logical operation in one iteration in XK computation for

thread 3.

The faults (a)–(c) are applicable to both logistic and tent maps, and fault (d) is applicable only

to the tent map.

The output for 4-core processor with four faults simulated on different cores, namely type (a)

through (d) on cores 0 through 3, respectively, are shown below for the tent map:

Diagnosis summary:

Core 0: output: 0.000370 : 39C21000

Core 1: output: 0.000001 : 358637BD

Core 2: output: 0.010000 : 3C23D70A

Core 3: output: 0.000510 : 3A05A000

Core 0: output: 0.000370 : follow_on: 0.117106

Core 1: output: 0.000001 : follow_on: 0.960860

Core 2: output: 0.010000 : follow_on: 0.795249

Core 3: output: 0.000510 : follow_on: 0.045228

The outputs from these threads are different from those above indicating an error during the

execution of each of them. Additionally, the final outputs of each of these chaotic trajectories

are different from each other indicating different types of faults. The global memory GM :; ;½ � is

allocated prior to invoking the threads on the processors cores, and local memory LS :½ � is

allocated within the thread assigned to a particular core. Since memory movements are carried

out by all cores between their local memory and global memory, significant portion of the
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memory data paths are exercised by the diagnosis code so that major errors in memory bus

and interconnect can be detected. An exhaustive coverage of all memory data paths would

require extensions of this method such as explicit placement of processes and their memory

near the cores, which may be achieved using NUMA tools.

4.2. Xeon phi diagnosis

Below we show a partial output from running the chaotic tent map detection on the Xeon Phi.

For lack of space we have only shown the outputs for a few cores and for the SP and DP ALU

calculations. Similar fields are outputted for the EMU, the integer ALU the �87 math copro-

cessor, and the vector registers for each hardware thread. In addition to the partial summary

shown a detailed output is written to file.

Diagnosis summary:

Number of cores detected = 228

Core 003: SP-ALU : 3F7E86A2, DP-ALU : 3FD711AFCA21B76F

Core 000: SP-ALU : 3F7E86A2, DP-ALU : 3FD711AFCA21B76F

Core 001: SP-ALU : 3F7E86A2, DP-ALU : 3FD711AFCA21B76F

Core 002: SP-ALU : 3F7E86A2, DP-ALU : 3FD711AFCA21B76F

…

Core 226: SP-ALU : 3F7E86A2, DP-ALU : 3FD711AFCA21B76F

Core 227: SP-ALU : 3F7E86A2, DP-ALU : 3FD711AFCA21B76F

Outputs from the different threads are identical indicating no errors for the various compo-

nents tested.

4.3. GPU diagnosis

Four GPUs have been tested in G mode and one is tested in MG mode with pthreads. A single

thread is used on each block to compute the chaotic-detection map. The outputs of chaotic-

detection maps are identical in all these cases, analogous to the CPU case, when the chaotic-

map output is computed without adding the index value to XF; also, the results are the same as

the CPU case when faults were simulated. Recall that to keep track of outputs from individual

blocks, the index (block number) was added to XE, which was then subtracted on CPU to

compute XF. This specific combination of operations involving integers and fractions yielded

non-uniform precisions among different blocks of the same GPU. We now briefly describe the

details of such cases, and such effects have been observed on all GPUs in Table 1. The outputs

of diagnosis codes from GPU of Titan using the logistic map are shown below in a condensed

form so that only lines corresponding to blocks with different outputs are shown (when no

faults are simulated):
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Chaotic detection map:

block_x[0] = 0.682320 <-> 3F2EAC8E

…

block_x[2] = 2.682321 <-> 3F2EAC90

…

block_x[16] = 16.682320 <-> 3F2EAC80

block_x[17] = 17.682320 <-> 3F2EAC80

Follow-on chaotic map

block_x[0] = 0.682320 <-> 0.860477

…

block_x[2] = 2.682321 <-> 0.000000

…

block_x[16] = 16.682320 <-> 0.671719

block_x[17] = 17.682320 <-> 0.671719

Follow-on linear map

block_x[0] = 0.682320 <-> 0.000016

…

block_x[17]=17.682320 <-> 0.000016

The chaotic detection map outputs XE’s (fractional part in the first column) are not the identical

across the blocks, and the differences are significant enough to be noticed when printed under

C float format. The differences are more clearly seen in hexadecimal format; here the block

number has been subtracted from the first column number. The outputs of the follow-on

chaotic-map XF’s more clearly show significant deviations as these small precision differences

in XE’s are non-linearly amplified. As an additional step, we also computed the outputs of a

follow-on linear-map, M Xð Þ ¼ Xþ δ, which shows that these differences are inconsequential,

and it also shows that some linear maps do not provide the needed detection capability.

The outputs from Quadro 600 GPU are shown below using the tent map, wherein the results

are qualitatively similar to Titan K20X GPU but the details differ.

Chaotic detection map:

block_x[0] = 0.170387 <-> 3E2E79D8

…

block_x[2] = 2.170387 <-> 3E2E79E0
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…

block_x[8] = 8.170386 <-> 3E2E79C0

…

block_x[16] = 16.170387 <-> 3E2E7A00

Follow-on chaotic map:

block_x[0] = 0.170387 <-> 0.313038

…

block_x[2] = 2.170387 <-> 0.793185

…

block_x[8] = 8.170386 <-> 0.459723

…

block_x[16] = 16.170387 <-> 0.903821

Follow-on linear map:

block_x[0] = 0.170387 <-> 0.000041

…

block_x[16] = 16.170387 <-> 0.000041

The transition points of XE are different in this case compared to the logistic map case, and in

both cases they varied based on the number of blocks used by the CUDA kernel. But, these

outputs are the same across all four GPUs used in our tests. These artifacts are related to the

real number precision on GPU blocks. Similar precision effects also occur in CPU cores, and the

application codes account for them in some cases by using double precision computations.

Except on K20X GPUs, only single precision is supported on GPUs used in our tests. But, even

when the same single precision (C float) operations are used, these precision effects are differ-

ent between CPU cores and GPU blocks. To compare to CPU tests, we added the core number

to XE and subtracted it on host core, and no differences were found in XE‘s using C float print;

the largest number of cores we tested is 48, and such precision effects may indeed manifest

when larger numbers are added. Consequently, if not adequately accounted for, these precision

differences could lead to potentially unpredictable results in certain non-linear computations,

particularly if automated tools are used to convert CPU codes to CPU-GPU hybrid systems.

4.4. Hybrid systems diagnosis

For the purposes of this subsection hybrid systems are considered as consisting of a mixture of

CPU and GPU cores. Results are presented for three such systems using OpenCL kernels to

perform the chaotic-map detection. The simplest system is the platform on a Macbook Pro

which OpenCL detects as a single OpenCL platform with three different compute devices:
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Intel(R) Core(TM) i7-3720QM CPU @ 2.60GHz, an Intel HD Graphics 4000 device, and an

NVIDIA GeForce GT 650 M. Below are representative partial outputs for the single and double

precision FPU tent map computations. Not show are computations for the integer ALU and

EMU. Diagnosis Summary:

Device 0, SP-ALU : 3F1B0A10, DP-ALU : 3FE9B1B7A9B71338

Device 1, SP-ALU : 3F1B0A10, DP-ALU : FF800000FF800000

Device 2, SP-ALU : 3F1B0A10, DP-ALU : 3FE9B1B7A9B71338

Note that the DP ALU results for device 1 (Intel HD Graphics 4000) differ from the other

devices as device 1 does not possess double precision capability.

The second hybrid system we consider is a node that OpenCL detects as consisting of two

platforms with one and two compute devices, respectively. Platform 0 is an NVIDIA platform

with a NVIDIA Tesla K20c device. Platform 1 is an AMD platform with device 0 an AMD

Tahiti device (Firepro 9000) and device 1 an Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz.

Below are representative partial outputs for the double precision FPU tent map computations.

Not shown are calculations for the SP ALU, integer ALU, and EMU. All systems return the

same result in the absence of errors. Diagnosis Summary:

Platform 0, device 0, DP-ALU : 3FE9B1B7A9B71338

Platform 1, device 0, DP-ALU : 3FE9B1B7A9B71338

Platform 1, device 1, DP-ALU : 3FE9B1B7A9B71338

The third system considered is a node with an AMD A10-7850 K APU. OpenCL identifies it as

one platform with two devices. Device 0 is identified as AMD Spectre which consists of 8 GCN

cores and Device 1 is identified as AMD A10-7850 K APU which consists of 4 CPU cores.

Below are representative partial outputs for the single and double precision FPU tent map

computations. Not show are computations for the integer ALU and EMU.

Diagnosis summary:

Device 0, SP-ALU : 3F1B0A10, DP-ALU : 3FE9B1B7A9B71338

Device 1, SP-ALU : 3F1B0A10, DP-ALU : 3FE9B1B7A9B71338

4.5. Operational artifacts

Our diagnosis codes were originally developed for low-level hardware faults, such as in ALU

and interconnects. During the tests, however, they detected certain artifacts, which could lead

to inconsistencies and/or errors in some computations if not adequately accounted for:

a. Tardy computations: In some systems, GPUs are emulated on the nodes, particularly if they

housed them previously, and the emulated codes run sequentially on CPUs and lead to

tardy computations. Our codes explicitly check for physical GPUs, and detected such

emulations on nodes. Also, in SN-MG tests, we explicitly scheduled kernels on devices

with numbers outside the eight GPUs, and the computations on them were completed
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sometimes with incorrect results. These tests call for suitable device checks by application

codes.

b. Data transfer errors: When CUDA kernels are launched and the results are gathered using

MPI, certain elements received zero values. The occurrence of these errors was random but

the zero elements always appeared in the blocks whose number matched the node.

These results provide information of interest to systems operations and application develop-

ment.

5. Conclusions

We described a method to quickly detect certain faults in hybrid computing systems consisting

of multi-core processors and accelerators by utilizing chaotic map computations. Our imple-

mentation is based on pthreads for multi-core CPUs and MICs, and CUDA C and OpenCL

kernels for GPUs. We presented experimental diagnosis results on five multi-core CPUs, one

MIC, seven GPUs and three hybrid systems. Since the original systems are not faulty, we

simulated certain faults in arithmetic operations, local and global memory elements, data

paths, and processor interconnects, which were detected. In addition, these codes identified

artifacts of non-uniform precisions of GPU blocks and tardy hybrid computations, which

could be of interest to non-linear computations.

Deeper investigations are needed to characterize the class of faults detected by a given set of

chaotic maps, augmentation and data movement operations. While the logistic and tent maps

used in our tests was able to detect the simulated faults, it would be interesting to study

different chaotic maps whose Lyapunov exponents closely match the specific faults to mini-

mize the detection times. More generally, it would be interesting to study the class of diagnosis

algorithms that are optimal for a given class of faults. In terms of implementations, it would be

interesting to explore finer control of memory allocations and data paths in movement opera-

tions using NUMA to further refine the diagnoses. In addition, assignment operations under

OpenACC, SHMEM and PGAS involve data movements across complex data paths, and it

would be interesting to explore the faults that can be detected by using them for content-

preserving data movement operations. The proposed chaotic maps can be embedded into

applications to track their execution paths so that faults can be detected during their execution.

More generally, the fault diagnosis codes could be an integral part of overall ecosystems

needed for resilient computations, and it would be of interest to co-develop them.
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