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Abstract

In this chapter, we propose a probabilistic model for train delay propagation. There are
deduced formulas for the probability distributions of arrival headways and knock-on
delays depending on distributions of the primary delay duration and the departure
headways. We prove some key mathematical statements. The obtained formulas allow to
predict the frequency of train arrival delays and to determine the optimal traffic adjust-
ments. Several important special cases of initial probability distributions are considered.
Results of the theoretical analysis are verified by comparison with statistical data on the
train traffic at the Russian railways.

Keywords: train traffic, stochastic model, train delay propagation, probabilistic modeling,
operative management

1. Introduction

The trains’ movement is subject to a variety of random factors which leads to unplanned

delays. This causes the scattering of the arrival times, hence, the inconvenience to passengers

and consignees. Knowledge of the arrival times’ distribution properties leads to the possibility

of predicting the characteristics of the train traffic and making correct decisions on the trans-

portation process management. This makes it possible to improve the punctuality of train

traffic and save resources, in particular, electric power.

The properties of the arrival headways distributions allow us to estimate the probability of

delays emergence and theirs characteristics, which are important from a practical point of
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view. Probabilistic modeling of the delay propagation process along the train flow is the main

tool for solving this problem.

The models for the distribution of delays in a dense train flow are divided into two classes.

These are deterministic and stochastic models. Stochastic models take into account the

unpredictable nature of obstacles in the railway. Amathematical model, proposed in the present

chapter, make it possible to determine the probability distributions of the arrival headways of

two consecutive trains at the station. The distribution properties are analyzed for different

scattering of input random variables (the primary delay and the initial headways). Comparison

of theoretical distributions with real statistics of train traffic on the Russian railways is

performed.

2. Literature review

A substantial volume of literature is devoted to study of the train delays effect on the railway

functioning. Deterministic models for primary and knock-on delays description were pro-

posed in [1, 2]. These models based on the application of graph theory allow adjust the train

traffic schedule. However, such approach considering the different characteristics of train

traffic (e.g., travel and dwell times, headways, etc.) as deterministic values does not take into

account the uncertainties that arise in reality.

Stochastic modeling takes the influence of random factors (e.g., see [3–8]) into account.

Authors of [7] determine a probabilistic distribution of the arrival times. The problem of

finding a distribution of arrival train delays is examined in [8]. It should be noted that in these

papers, special cases of primary delay distribution are considered. It is supposed in [8] that the

random duration of the primary delay corresponds to some generalization of the exponential

law. The paper [7] employs discretization of the delay distribution.

Some of the researchers have analyzed statistical data on deviations of the train arrival times

from the planned ones. In particular, the papers [9–11] show that scattering of these deviations

correspond to the exponential distribution.

3. Description of models and analysis of the arrival headways distribution

3.1. The first model

Trains follow one path one after another in one direction from station A to station B with the

same average speed v0. Let the total number of trains is n. The distance from the train j to the

train (j � 1) is denoted by Xj þ s0, where j = 2, 3, …, n, s0 > 0 is the minimal safe distance

between trains, and X2, X3, …, Xn are the random variables (without any assumptions about

their distributions). All trains have the same destination station.
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Let us also introduce the notations: μj ¼ Xj=v0, t0 ¼ s0=v0. Suppose that train 1 departs from

station A at the time t ¼ 0. Then, the moment T mð Þ of departure train m can be found as (as

shown at Figure 1):

T mð Þ ¼
Xm

j¼2

μj þ m� 1ð Þt0, m ¼ 2, 3,…, n (1)

Assume that at some point in time, train 1 makes unplanned stop. The duration of this stop is

random value τ. The subsequent trains suffer knock-on delays, when the value τ is large

enough. Following train stops when the distance to the front train is reduced to s0. It is

assumed that as soon as the front train restore running, then the next one immediately follows

it. The following problem is considered: to find out the probability distribution of the random

arrival headway between the trains (k� 1) and k at the destination B (denote this headway as νk),

assume that only the first train makes an unplanned stop. In other words, we need to find the

(cumulative) distribution functionsWk tð Þ ¼ Ρ νk < tð Þ, k = 2, 3,…, n. Call this problem by the first

problem.

3.2. The second model

Suppose that train 1 was delayed at station A at the moment t ¼ 0 and waited for a random

time τ. If τ < μ2, then trains 2, 3, and so on, depart at the planned times: T 2ð Þ, T 3ð Þ, etc. If τ > μ2,

then train 2 will be delayed and will depart at the time τþ t0 > T 2ð Þ: Train 3 departs according

to the same rule depending on the delay time of train 2, and so on. In this formulation, νk is

actual departure headway between the trains with numbers (k � 1) and k. It is required to

determine the distribution functions Wk tð Þ of random variables νk, k = 2, 3,…, n.

Example 1. Let n = 5, μk ¼ 2, k ¼ 2, 5, t0 ¼ 1. The moments of planned departures of trains

satisfy the equalities T kð Þ ¼ 3 k� 1ð Þ, k ¼ 1, 5. Figure 2 shows the process of headways νk

forming, k ¼ 2, 5, depending on the six values of the interval τ. The dots represent real train

departure times that result from the primary delay τ.

The basic model assumptions are follows: (1) only train 1 is exposed to primary delay τ. (2)

T kð Þ � T k�1ð Þ > t0, k = 2, 3,…, n.

Denote by R kð Þ the real departure time of the train with number k, which depends on τ and t0.

Figure 1. Departure times of trains 1, 2, and 3 from station A.
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We suppose that the departure times of trains satisfy the following two rules. Let k be fixed,

2 ≤ k ≤ n. The first rule: if R k�1ð Þ
≤T kð Þ � t0, then R kð Þ ¼ T kð Þ. The second rule: if R k�1ð Þ

≥T kð Þ � t0,

then R kð Þ ¼ R k�1ð Þ þ t0. Obviously, R kð Þ
≥T kð Þ.

In what follows, we use the notation I x∈Að Þ ¼
1, if x∈A,

0, if x∈R\A,

�

where A is an arbitrary set on

the real line R.

Suppose that the total number of trains is equal to n ≥ 2. Formally, we set νk ¼ 0 if k > n. Let us

proceed to the formulation of the obtained results. We note that the proofs of the majority of

the assertions are not given here due to the condition on the size. They take up a lot of space

and will be published in our other work.

Theorem 1. 1. If τ < μ2, then ν2 ¼ μ2 þ t0 � τ, νk ¼ μk þ t0, 3 ≤ k ≤ n.

2. Let k be a fixed integer, 2 ≤ k ≤n. If τ ≥
Pk

j¼2 μj, then ν2 ¼… ¼ νk ¼ t0.

3. If
Pk

j¼2 μj ≤ τ <
Pkþ1

j¼2 μj, then

νkþ1 ¼ I kþ 1 ≤ nð Þ
X

kþ1

j¼2

μj þ t0 � τ

2

4

3

5, (2)

Figure 2. The headways νk for some values τ.
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νm ¼ I m ≤ nð Þ μm þ t0
� �

, m ¼ kþ 2,…, n (3)

Theorem 2. Let n ≥ 2. For any k, 2 ≤ k ≤ n, the following formula holds

Wk tð Þ ¼ I t > t0ð Þ Ρ μk < t� t0; τ <

X

k�1

j¼2

μj

0

@

1

Aþ Ρ τþ t� t0 >
X

k

j¼2

μj; τ ≥
X

k�1

j¼2

μj

0

@

1

A

2

4

3

5, (4)

in particular,

W2 tð Þ ¼ I t > t0ð ÞΡ τþ t� t0 > μ2

� �

(5)

Let us introduce the notations, G xð Þ ¼ Ρ τ < xð Þ, G xð Þ ¼ Ρ τ > xð Þ. Note that G xð Þ þ G xð Þþ

Ρ τ ¼ xð Þ ¼ 1. We denote by g xð Þ the density function of τ in the case when it is absolutely

continuous.

Further, some corollaries of Theorem 2 are formulated.

Corollary 1. Let μj, 2 ≤ j ≤ n, be arbitrary positive numbers, then for 2 ≤ k ≤n

Wk tð Þ ¼ I t0 < t ≤μk þ t0
� �

G
X

k

j¼2

μj � tþ t0

0

@

1

Aþ I t > μk þ t0
� �

, (6)

in particular,

W2 tð Þ ¼ I t > t0ð ÞG μ2 � tþ t0
� �

: (7)

Example 2. Let the primary delay τ have exponential distribution, that is,

g tð Þ ¼ I t ≥ 0ð Þλe�λt, λ > 0 (8)

As initial parameters, we take the following quantities.

λ ¼ 0:4, t0 ¼ 3, μ2 ¼ 5, μ3 ¼ 6, μ4 ¼ 10 (9)

Graphs of the functions W2 tð Þ from Eq. (7), W3 tð Þ and W4 tð Þ from Eq. (6) with the parameters

(Eq. (9)) are depicted in Figure 3.

It should be noted that in this and the subsequent examples, we use the following measures for

the values: μk, T
kð Þ, t0, τ, τk, νk, T, b, Ενk (minutes, min); λ (1/min); Dνk (min2). The product αβ

(as mean of μk ), where α is a shape parameter, β is a scale parameter (in min).

Corollary 2. Let μj ¼ T, 2 ≤ j ≤n, be a positive constant, then for 2 ≤ k ≤n

Wk tð Þ ¼ I t0 < t ≤T þ t0ð ÞG k� 1ð ÞT � tþ t0ð Þ þ I t > T þ t0ð Þ, (10)
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in particular,

W2 tð Þ ¼ I t > t0ð ÞG T � tþ t0ð Þ: (11)

Example 3. Let τ has density (Eq. (8)). As initial parameters, we take the following quantities:

λ ¼ 0:4, t0 ¼ 4, T ¼ 8: (12)

Graphs of the functions W2 tð Þ from Eq. (11), W3 tð Þ and W4 tð Þ from Eq. (10) with the parame-

ters (Eq. (12)) are depicted in Figure 4.

Figures 3 and 4 show that in the case of constant μj, the primary delay τ practically does

not affect the fourth train and all subsequent ones. This is consistent with the equality

limk!∞ Wk tð Þ ¼ I t > t0 þ Tð Þ which, as it is not difficult to verify, follows from Eq. (10).

Remark 1. It is known that the distribution of sum of the independent random variables is

the convolution of their distributions. The convolution of distribution functions F1 and F2 is

determined by the formula F1∗F2ð Þ xð Þ ¼
Ð

∞

�∞
F1 x� yð ÞdF2 yð Þ, where the integral sign means

the improper Riemann-Stieltjes integral. We consider exceptionally piecewise-continuous

distribution functions, then the indicated integral exists with the exception of the case when

F1 and F2 have at least one common discontinuity point (e.g., [12]). The convolution opera-

tion is permutable. In the case, when F1 ¼ F2 ¼… ¼ Fm ¼ F, we shall use the following

notations: F∗2 ≔F∗F, F∗m ≔F∗F∗ m�1ð Þ, m ≥ 2. By definition, we assume that F∗1 ≔F. The

convolution f 1∗f 2
� �

xð Þ of densities f 1 and f 2 is defined as the improper Riemann integral
Ð

∞

�∞
f 1 x� yð Þf 2 yð Þdy.

Figure 3. Behavior of the functions Wk tð Þ, k = 2, 3, 4.

Probabilistic Modeling in System Engineering176



Corollary 3. Let μj, 2 ≤ j ≤n, be independent identically distributed random variables with a continu-

ous distribution function Ψ xð Þ. Let τ be independent of μj, 2 ≤ j ≤ n. Then

W2 tð Þ ¼ I t > t0ð Þ

ð

∞

�∞

G z� tþ t0ð ÞdΨ zð Þ, (13)

Wk tð Þ ¼ I t > t0ð Þ Ψ t� t0ð Þ þ

ð

∞

�∞

ð

∞

t�t0

G zþ u� tþ t0ð ÞdΨ zð Þ

� �

dΨ∗ k�2ð Þ uð Þ

� �

, 3 ≤ k ≤ n: (14)

Corollary 4. Let μj, 2 ≤ j ≤n, be independent identically distributed random variables with a density

function ψ xð Þ. Let τ be independent of all μj and has a density function g xð Þ. Then

W2 tð Þ ¼ I t > t0ð Þ

ð

∞

�∞

ð

∞

z�tþt0

g xð Þdx

� 	

ψ zð Þdz, (15)

Wk tð Þ ¼ I t > t0ð Þ

ðt�t0

�∞

ψ zð Þdzþ

ð

∞

�∞

ð

∞

t�t0

ð

∞

zþu�tþt0

g xð Þdx

� 	

ψ zð Þdz

� �

ψ∗ k�2ð Þ uð Þdu

� �

, (16)

3 ≤ k ≤ n:

Remark 2. The integration limit “�∞” can be replaced by 0 in Corollaries 3 and 4 if μj ≥ 0. On

the other hand, we may consider in these corollaries the case when μj takes values of different

signs. From a practical point of view, such an approach is acceptable if the probability that

these random quantities take negative values is small enough. This assumption allows to

consider, for example, models in which the random variables μj are normally distributed with

Figure 4. Behavior of the functions Wk tð Þ, k = 2, 3, 4.
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a variance small enough and to use the property that the class of normal distributions is closed

with respect to the convolution operation.

Example 4. Let τ has the density (Eq. (8)), and all μj have the same gamma density

ψ tð Þ ¼ I t > 0ð Þ
e�t=βtα�1

Γ αð Þβα
, (17)

where α > 0, β > 0, Γ αð Þ ¼
Ð

∞

0 xα�1e�xdx is gamma function. Put

λ ¼ 0:3, t0 ¼ 5, α ¼ 14, β ¼ 0:5: (18)

One can show that in the example under consideration it follows from Eqs. (15) and (16) that

Wk tð Þ ¼ I t > t0ð Þ 1�
Γ α; t� t0 þ bð Þ=β
� �

Γ αð Þ
þ aeλ t�t0þbð Þ 1

1þ λβ

� 	 k�1ð Þα
Γ α; 1þ λβ

� �

t� t0 þ bð Þ=β
� �

Γ αð Þ

" #

,

where Γ α; yð Þ ¼
Ð

∞

y xα�1e�x dx is incomplete gamma function. Graphs of the distribution func-

tions Wk tð Þ, 2 ≤ k ≤ 5, with the parameters (Eq. (18)) are depicted in Figure 5.

It is not difficult to verify that for Wk tð Þ from Example 4 the following formula holds:

lim
k!∞

Wk tð Þja¼1,b¼0

¼ lim
k!∞

I t > t0ð Þ 1�
Γ α; t� t0ð Þ=β
� �

Γ αð Þ
þ eλ t�t0ð Þ 1

1þ λβ

� 	 k�1ð Þα
Γ α; 1þ λβ

� �

t� t0ð Þ=β
� �

Γ αð Þ

 !" #

¼ W∞ tð Þ≔ I t > t0ð Þ 1�
Γ α; t� t0ð Þ=β
� �

Γ αð Þ

� �

:

Figure 5. Behavior of the functions Wk tð Þ, k = 2, 3, 4, 5.
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It can be seen from Figure 5, curves W4 tð Þ,W5 tð Þ and so on are practically merged. Hence, in

the case under consideration, one can draw the following conclusion: primary delay τ affects

to fifth and all successive trains approximately like on the fourth one.

Remark 3. We define the 0-fold convolution as a generalized function with the following

property: the equality
Ð

∞

�∞
v tð Þψ∗0 tð Þdt ¼ v 0ð Þ holds for any bounded continuous function v tð Þ.

Then, Eq. (16) for k ¼ 2 coincides with Eq. (15).

We do not give proofs for the statements of Section 3 because of limitations on the volume. We

will make this in another work.

4. Some results on the knock-on delays

Denote by N the random number of knock-on delays (within the framework of the model

under consideration).

Lemma 1. For each fixed integer m, 1 ≤m ≤ n� 1,

Ρ N ≥mð Þ ¼ Ρ τ >

X

mþ1

j¼2

μj

0

@

1

A: (19)

Proof. Easily seen: N ¼ 0f g ¼ t0 ≤ τþ t0 ≤T
2ð Þ

n o

, N ¼ mf g ¼ T mþ1ð Þ
< τþmt0 ≤T

mþ2ð Þ � t0

n o

,

m = 1, 2, …, n – 2, N ¼ n� 1f g ¼ τþ n� 1ð Þt0 > T nð Þ
n o

: This implies that

Ρ N ≥mð Þ ¼ Ρ τþmt0 > T mþ1ð Þ

 �

¼ Ρ τ >

X

mþ1

j¼2

μj

0

@

1

A: □

Here and below, the sign □ denotes the end of the proof.

The corollaries of this lemma are given below. Their proofs are simple and therefore we do not

present them.

Corollary 5. If μj ¼ T is a constant value, 2 ≤ j ≤n, then for every fixed integer m, 1 ≤m ≤n� 1, we

have the equality Ρ N ≥mð Þ ¼ G mTð Þ.

Corollary 6. If μj ¼ T is a constant value, 2 ≤ j ≤ n, and τ is exponentially distributed with parameter

λ, then for every fixed integer m, 1 ≤m ≤n� 1, the following equality holds,

Ρ N ≥mð Þ ¼ e�λmT
:

Corollary 7. If μ2, …, μn are independent identically distributed random variables with a density

function ψ, then for every fixed integer m, 1 ≤m ≤n� 1, we have the equality
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Ρ N ≥mð Þ ¼

ð

∞

�∞

G uð Þψ∗m uð Þdu:

In what follows, τ1 ¼ τ is the delay duration of the first train, τk, k = 2, …, n, is the knock-on

delay of the k-th train. The problem is to find the distribution functions Gk tð Þ ¼ Ρ τk < tð Þ, k = 2,

3,…, n. Note that the solution of this problem, which we call by the second problem, allows us

to find the distribution of the deviations of the real arrival times from the planned ones.

In what follows, we will use the notation a ∨ b instead of max a; bð Þ.

Theorem 3. The following formula holds:

τk ¼ τk�1 � μk

� �

∨ 0, 2 ≤ k ≤ n: (20)

Corollary 8. The following formula holds:

τk ¼ τ�
X

k

j¼2

μj

0

@

1

A ∨ 0, 2 ≤ k ≤ n: (21)

It should be noted that within the framework of our model the deviation of the real arrival time

from the planned one for k-th train coincides with τk, 1 ≤ k ≤n. Figure 6 illustrates this statement.

Figure 6. Deviation arrival times from the schedule: delays τ1 and τ2.
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The dotted lines (lines 1 and 2) represent the scheduled trajectories of trains 1 and 2, solid lines

(1 and 2) depict the real trajectories taking into account the delays. It can be seen that the

arrival time of the train 1 differs from the schedule at τ and the train 2 on the τ2.

Denote μk ¼
Pk

j¼2 μj, 2 ≤ k ≤ n. As it follows from the assumption that the random variables

μ2,…,μk have the same distribution function Ψ tð Þ. They are mutually independent. The ran-

dom variable μk has the distribution function Ψ
∗ k�1ð Þ tð Þ.

Corollary 9. The distribution function of τk has the following form:

Gk tð Þ ¼ I t > 0ð ÞΡ τ� μk < t
� �

, 2 ≤ k ≤n: (22)

The next Corollaries 10 and 11 follow from Corollary 9 in an obvious way.

Corollary 10. Let μj > 0, 2 ≤ j ≤ n be some constant values. Then

Gk tð Þ ¼ I t > 0ð ÞG tþ μk

� �

: (23)

Corollary 11. Let μj ¼ T > 0, 2 ≤ j ≤ n be a constant value. Then

Gk tð Þ ¼ I t > 0ð ÞG tþ k� 1ð ÞTð Þ: (24)

Corollary 12. Let μj, 2 ≤ j ≤n be independent identically distributed random variables with a continu-

ous distribution function Ψ tð Þ. Let τ be independent of μ2,…,μn. Then

Gk tð Þ ¼ I t > 0ð Þ

ð

∞

�∞

G tþ yð ÞdΨ∗ k�1ð Þ yð Þ: (25)

Corollary 13. Let μj, 2 ≤ j ≤n be independent identically distributed random variables with a density

function ψ tð Þ. Let τ be independent of μj, 2 ≤ j ≤n and has a density function g tð Þ. Then Gk tð Þ ¼

I t > 0ð Þ
Ð

∞

�∞

Ð tþy
�∞

g zð Þdz

 �

ψ∗ k�1ð Þ yð Þdy.

5. Proof of Theorem 3 and its corollaries

Lemma 2. The following formula is valid:

τ2 ¼ τ� μ2

� �

∨ 0: (26)

Proof. Let t > 0 be the time spent by the train on the path length (distance to the place, where

an unplanned stop of the train 1 occurred). We show the equality τ2 ¼ 0 holds under the

condition τ ≤μ2. The departure time of the train 1 after stopping is tþ τ. The time point

when train 2 reaches s can be written as μ2 þ t0 þ t. The knock-on delay of train 2 will not

occur, i.e., τ2 ¼ 0, in the case, when the indicated time points are separated by the value r ≥ t0,
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i.e., r ¼ μ2þ t0 þ t� tþ τð Þ ≥ t0, or, which is the same thing, τ ≤μ2. The considered case is

illustrated in Figure 7a.

The knock-on delay of the duration τ2 ¼ τ� μ2 will occur when τ > μ2. Indeed, since trains

after a random stop depart simultaneously, then the equality tþ τ ¼ μ2 þ t0 þ t� t0ð Þ þ τ2

holds, i.e., τ ¼ μ2 þ τ2. The case under consideration is illustrated in Figure 7b. Thus, the

validity of Eq. (26) is shown. □

Proof of Theorem 3. We shall use the method of mathematical induction. The equality (Eq. (20))

for k = 2 is established by Lemma 2. Let Eq. (20) be satisfied. We show that:

τkþ1 ¼ τk � μkþ1

� �

∨ 0, 2 ≤ kþ 1 ≤ n: (27)

It follows from the inductive hypothesis that τk ¼ 0 under the condition τk�1 ≤μk. But if the

delay of the k-th train is 0, then the next train does not undergo any delay, that is, τkþ1 ¼ 0. The

present case is illustrated in Figure 8.

In the case, when τk�1 > μk, a knock-on delay of the k-th train occurs and equals to τk ¼

τk�1 � μk (according to the inductive hypothesis). Further, two cases are possible: either (1) a

delay τk entails a delay τkþ1, or (2) τkþ1 ¼ 0.

Case 1. If the k-th train is delayed, then (k + 1)-th one will be delayed only if τk > μkþ1, and its

delay duration is τkþ1 ¼ τk � μkþ1 (this fact follows from the equality of the moments of

departure of the k-th and (k + 1)-th trains after an unscheduled stop: T kð Þ þ t� k� 1ð Þt0 þ τk ¼

T kþ1ð Þ þ t� kt0 þ τkþ1). Case 1 is illustrated in Figure 9a.

Figure 7. Two traffic scenarios: (a) lack of the knock-on delay; (b) knock-on delay occurs.
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Case 2. If the k-th train is delayed, then (k + 1)-th one will not be delayed (τkþ1 ¼ 0) only if

τk ≤μkþ1. Case 2 is illustrated in Figure 9b. Note that if the knock-on delay of the k-th train

occurs, a conflict of the k-th train with (k + 1)-th is described similar to the interaction of trains 1

and 2 (see Lemma 2). All described cases lead to Eq. (20). □

Proof of Corollary 8. We indicate that Eq. (21) is similar to Eq. (20). According to the statement of

Theorem 3, we have:

τ2 ¼ τ� μ2

� �

∨ 0, τ3 ¼ τ2 � μ3

� �

∨ 0, τk ¼ τk�1 � μk

� �

∨ 0: (28)

Using the method of mathematical induction and taking into account that μk�1 þ μk ¼ μk, we

obtain Eq. (21) from Eq. (28). □

Figure 8. The case, when τk�1 ≤μk: knock-on delays of k-th and consecutive trains are not observed.

Figure 9. Two traffic scenarios: (a) the case, when τk�1 > μk, τk > μkþ1: all trains up to (k + 1)-th are detained; (b) the case,

when τk�1 > μk , τk ≤μkþ1: all trains from (k + 1)-th up to n-th are not delayed.
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Proof of Corollary 9. It follows from Corollary 8 that τk ¼ 0 if τ ≤μk (see, e.g., Figure 8), and

τk ¼ τ� μk if τ > μk (see, e.g., Figure 9a). Using the law of total probability, we obtain the

following chain of equalities:

Gk tð Þ ¼ Ρ τk < tð Þ ¼ I t > 0ð ÞΡ τk < tð Þ

¼ I t > 0ð Þ Ρ τk < tjτ ≤μk

� �

Ρ τ ≤μk

� �

þ Ρ τk < tjτ > μk

� �

Ρ τ > μk

� �� �

¼ I t > 0ð ÞΡ τ� μk ≤ 0
� �

þ I t > 0ð ÞΡ 0 < τ� μk < t
� �

¼ I t > 0ð ÞΡ τ� μk < t
� �

: □

Proof of Corollary 12. Apply the well-known assertion to Eq. (22): if Y1 and Y2 are independent

random variables, then for any function of two variables f �; �ð Þ and any c∈R, the following

equality holds: Ρ f Y1;Y2ð Þ < cð Þ ¼
Ð

∞

�∞
Ρ f y;Y2ð Þ < cð ÞdF1 yð Þ, where F1 is the distribution func-

tion of Y1. Consequently, Gk tð Þ ¼ I t > 0ð Þ
Ð

∞

�∞
Ρ τ� y < tð ÞdΨ∗ k�1ð Þ yð Þ. This implies Eq. (25). □

Proof of Corollary 13. The assertion follows from Eq. (25). □

Note that the function Gk tð Þ has a jump at zero which is equal to:

Gk 0þð Þ ¼
Ð

∞

�∞
Gþ yð ÞdΨ∗ k�1ð Þ yð Þ, where Gþ yð Þ ¼ limt!0þ G tþ yð Þ.

In the case, when τ and μj are absolutely continuous, it follows from Eq. (25) that

Gk tð Þ ¼ I t > 0ð Þ

ð

∞

�∞

ðtþy

�∞

g zð Þdz

� 	

ψ∗ k�1ð Þ yð Þdy, (29)

where g �ð Þ and ψ �ð Þ are the density functions of τ and μ1, respectively, ψ
∗j yð Þ is the j-fold

convolution of the density ψ �ð Þ. In this case, we also have

gk tð Þ≔ I t > 0ð ÞG0
k tð Þ ¼ I t > 0ð Þ

ð

∞

�∞

g tþ yð Þψ∗ k�1ð Þ yð Þdy: (30)

If we assume that τ ≥ 0, then we deduce from Eq. (29) that

Gk tð Þ ¼ I t > 0ð Þ

ð

∞

�t

ðtþy

0

g zð Þdz

� 	

ψ∗ k�1ð Þ yð Þdy, (31)

and we get from Eq. (30),

gk tð Þ ¼ I t > 0ð Þ

ð

∞

�t

g tþ yð Þψ∗ k�1ð Þ yð Þdy: (32)

6. Corollary of Theorem 2 when the distribution of primary delay is a

mixture of exponential and one-point distributions

Consider the cumulative distribution function of the following type:

G xð Þ � Ρ τ < xð Þ ¼ I x ≥ bð Þ 1� ae�λ x�bð Þ

 �

, (33)
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where 0 ≤ a ≤ 1, b ≥ 0, and λ > 0 are some parameters. Such distribution function is considered,

for example, in [8]. It is easy to see that G xð Þ ¼ 1� að ÞG0 x� bð Þ þ aG x� b;λð Þ, where G0 xð Þ is

the distribution function of the degenerate distribution concentrated at the point x ¼ 0,

G x;λð Þ ¼ I x ≥ 0ð Þ 1� e�λx
� 


.

Let us find out the form of the distribution functions (Eqs. (13) and (14)) in the case of Eq. (33),

when the function Ψ is continuous. In what follows, we mean that n ≥ 3.

Lemma 3. Let the function G be defined by Eq. (33), and Ψ be continuous. Then

W2 tð Þ ¼ I t > t0ð Þ Ψ t� t0 þ bð Þ þ aeλ t�t0þbð Þ

ð

∞

t�t0þb

e�λzdΨ zð Þ

� 	

, (34)

Wk tð Þ ¼ I t > t0ð Þ Ψ t� t0ð Þ þ aeλ t�t0þbð Þ

ð

∞

b

e�λudΨ∗ k�2ð Þ uð Þ

ð

∞

t�t0

e�λzdΨ zð Þ

��

þ

ðb

�∞

e�λu
ð

∞

t�t0�uþb

e�λzdΨ zð Þ

� 	

dΨ∗ k�2ð Þ uð Þ

�

þ

ðb

�∞

Ψ t� t0 � uþ bð Þ �Ψ t� t0ð Þð ÞdΨ∗ k�2ð Þ uð Þ

�

, k ≥ 3:

(35)

Proof. According to Eq. (33), one may conclude that function G xð Þ has a unique discontinuity

point x ¼ b. Hence, the integral
Ð

∞

�∞
G z� tþ t0ð ÞdΨ zð Þ exists for any continuous distribution

function Ψ. Note that if Ψ zð Þ had a discontinuity point z ¼ t1, then the function G z� tþ t0ð Þ

would also be discontinuous at the point z ¼ t1 for t ¼ t0 þ t1 � b, and then the considered

integral would not exist (see Remark 1). Since

G xð Þ ¼ I x < bð Þ þ I x ≥ bð Þae�λ x�bð Þ, (36)

then

ð

∞

�∞

G z� tþ t0ð ÞdΨ zð Þ ¼ Ψ t� t0 þ bð Þ þ aeλ t�t0þbð Þ

ð

∞

t�t0þb

e�λzdΨ zð Þ: (37)

In accordance with Eq. (13), the relation (Eq. (34)) is proved.

Let k ≥ 3. It follows from Eq. (14) that

Wk tð Þ ¼ I t > t0ð Þ Ψ t� t0ð Þ þ

ð

∞

�∞

V uð ÞdΨ∗ k�2ð Þ uð Þ

� �

, (38)

where V uð Þ ¼
Ð

∞

t�t0
G zþ u� tþ t0ð ÞdΨ zð Þ. Given Eq. (36), it is easy to see that

V uð Þ ¼ V1 uð Þ þ V2 uð Þ, (39)

V1 uð Þ ¼ ae�λ u�tþt0�bð Þ
Ð

∞

t�t0
I zþ u� tþ t0 ≥ bð Þe�λzdΨ zð Þ, V2 uð Þ ¼

Ð

∞

t�t0
I zþ u� tð þt0 < bÞdΨ zð Þ.
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By using equalities

u; zð Þ : u ≥ b; z > t� t0; z ≥ t� t0 � uþ bf g ¼ u; zð Þ : u ≥ b; z > t� t0f g,

u; zð Þ : u < b; z > t� t0; z ≥ t� t0 � uþ bf g ¼ u; zð Þ : u < b; z ≥ t� t0 � uþ bf g,

we receive
ð

∞

�∞

V1 uð ÞdΨ∗ k�2ð Þ uð Þ ¼ aeλ t�t0þbð Þ

ð

∞

b

ð

∞

t�t0

e�λ zþuð ÞdΨ zð Þ

� 	

dΨ∗ k�2ð Þ uð Þ

�

þ

ðb

�∞

ð

∞

t�t0�uþb

e�λ zþuð ÞdΨ zð Þ

� 	

dΨ∗ k�2ð Þ uð Þ

�

:

(40)

Since u; zð Þ : u ≥ b; z > t� t0; z < t� t0 � uþ bf g ¼ ∅,

u; zð Þ : u < b; z > t� t0; z < t� t0 � uþ bf g ¼ u; zð Þ : u < b; t� t0 < z < t� t0 � uþ bf g,

then
ð

∞

�∞

V2 uð ÞdΨ∗ k�2ð Þ uð Þ ¼

ðb

�∞

ðt�t0�uþb

t�t0

dΨ zð Þ

� 	

dΨ∗ k�2ð Þ uð Þ: (41)

It follows from Eqs. (39)–(41) that
ð

∞

�∞

V uð ÞdΨ∗ k�2ð Þ uð Þ ¼ aeλ t�t0þbð Þ

ð

∞

b

e�λudΨ∗ k�2ð Þ uð Þ

ð

∞

t�t0

e�λzdΨ zð Þ

�

þ

ðb

�∞

ð

∞

t�t0�uþb

e�λzdΨ zð Þ

� 	

e�λudΨ∗ k�2ð Þ uð Þ

�

þ
Ð b
�∞

Ψ t� t0 � uþ bð Þ �Ψ t� t0ð Þð ÞdΨ∗ k�2ð Þ uð Þ:

(42)

The equalities Eq. (38) and Eq. (42) entail Eq. (35). □

Below we give without a proof a corollary of Lemma 3 in the case when μj are not random

variables, and they are equal to the same constant.

Corollary 14. Let μj ¼ T > 0, 2 ≤ j ≤n, be a constant. Let function G be defined by Eq. (33). Then, for

2 ≤ k ≤ n, the following formula holds:

Wk tð Þ ¼ I 0 ≤ b ≤ k� 2ð ÞTð Þ I 0 < t� t0 ≤Tð Þae�λ k�1ð ÞT�tþt0�bð Þ þ I t� t0 > Tð Þ
� 


þ I k� 2ð ÞT < b < k� 1ð ÞTð Þ I 0 < t� t0 ≤ k� 1ð ÞT � bð Þae�λ k�1ð ÞT�tþt0�bð Þ
�

þ I t� t0 > k� 1ð ÞT � bð Þ� þ I b ≥ k� 1ð ÞTð ÞI t > t0ð Þ:

(43)

Furthermore,

Ενk ¼ I 0 ≤ b ≤ k� 2ð ÞTð Þ t0 þ T �
a

λ
e�λ k�2ð ÞT�bð Þ 1� e�λT

� �

h i

þ I b ≥ k� 1ð ÞTð Þt0

þ I k� 2ð ÞT < b < k� 1ð ÞTð Þ t0 þ k� 1ð ÞT � bþ
a

λ
e�λ k�1ð ÞT�bð Þ � 1


 �h i

:

(44)
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Dνk ¼ I 0 ≤ b ≤ k� 2ð ÞTð Þ
a

λ
2
e�λ k�2ð ÞT�bð Þ 2 1� e�λT

� �

� ae�λ k�2ð ÞT�bð Þ 1� e�λT
� �2

� 2λTe�λT
h i

þ I k� 2ð ÞT < b < k� 1ð ÞTð Þ
a

λ
2
e�λ k�2ð ÞT�bð Þ 2 eλ k�2ð ÞT�bð Þ � e�λT


 �h

� ae�λ k�2ð ÞT�bð Þ eλ k�2ð ÞT�bð Þ � e�λT
� �2

� 2λ k� 1ð ÞT � bð Þe�λT
i

:

(45)

Example 5. Figure 10 depicts the graphs of the functionsWk tð Þ defined by Eq. (43) with k = 2, 3

for the following parameters:

a ¼ 1, b ¼ 0, λ ¼ 0:26, t0 ¼ 4, T ¼ 7: (46)

We calculated the values of Ενk and Dνk using the formulas (44) and (45) (see Table 1).

Remark 4. It can be easily seen that the larger k, Wk tð Þ from Eq. (43) is closer to

W tð Þ≔ I b ≥ 0ð ÞI t > t0 þ Tð Þ. This agrees with Figure 10 and the formulas (44) and (45) due to

whichwehaveΕνk ! t0 þ T, Dνk ! 0 as k ! ∞, and alsowith the results of calculations inTable 1.

Let the random variable τ be distributed with the density (Eq. (33)) with parameters a ¼ 1,

b ¼ 0. Now, we find the condition on the parameter T, under which the probability that at least

k ¼ 2 k ¼ 3 k ¼ 5 k ¼ 8 k ¼ 10

Ενk 7.77702 10.47779 10.98629 10.99994 10.99999

Dνk 5.68009 2.33067 0.068156 0.00029 7.63176 � 10�6

Table 1. The behavior Ενk and Dνk with growth of the parameter k.

Figure 10. Behavior of the functions W2 tð Þ and W3 tð Þ.
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m of knock-on delays will occur would not exceed a given probability p. Note that the

departure headway is equal to T þ t0.

According to Corollary 6, it is necessary to solve the inequality exp �λmTð Þ ≤ p. As a result, we

obtain the desired condition:

T ≥ 1= mλð Þð Þln 1=pð Þ (47)

(see also [13]). Denote by T m; p;λð Þ the minimal T satisfying the inequality (Eq. (47)).

Example 6. Let us fix λ ¼ 0:26. The behavior of T m; p;λð Þ as a function of the continuous param-

eter m with p ¼ 0:1 and p ¼ 0:05 is shown in Figure 11a. Obviously, T m; p;λð Þ is the decreasing

function with respect to the argument p. Exact calculations can be made using the formula:

T m; p;λð Þ ¼ 1= mλð Þð Þln 1=pð Þ: (48)

Let p ¼ 0:1. The behavior of T m; p;λð Þ as a function of the continuous parameter m with

λ ¼ 0:26 and λ ¼ 0:15 is shown in Figure 11b. In accordance with Eq. (48), T m; p;λð Þ is the

decreasing function with respect to the argument λ. In the case of exponential density g tð Þ, we

have Ετ ¼ 1=λ. Therefore, the decrease of λ leads to increase in the average of primary delay

and the departure headways (if we want to reduce the number of knock-on delays).

We also obtain the corollaries of Lemma 3 in the case when μj are distributed according to the

gamma-law with the density (Eq. (17)).

Corollary 15. If primary delay τ has an exponential distribution g tð Þ ¼ I t > 0ð Þλe�λt and μk, 2 ≤ k ≤n,

has the density (Eq. (17)), then the following formulas are true:

Gk tð Þ ¼ I t > 0ð Þ 1� e�λt λβþ 1
� �� k�1ð Þα


 �

, (49)

gk tð Þ ¼ I t > 0ð Þ λβþ 1
� �� k�1ð Þα

λe�λt: (50)

Remark 5. The function gk tð Þ ¼ I t > 0ð ÞG0
k tð Þ is not a density, in particular, because of

Ð

∞

�∞
gk tð Þdt ¼

Ð

∞

0 gk tð Þdt ¼ Gk ∞ð Þ � Gk 0þð Þ ¼ 1� hk 6¼ 1, where hk is the jump of the function

Gk tð Þ at the origin. At the same time, the function ~gk tð Þ≔ 1
1�hk

gk tð Þ is a density.

Figure 11. The behavior of the function T m; p;λð Þ: (a) λ ¼ 0:26, p ¼ 0:1, or p ¼ 0:05; (b) p ¼ 0:1, λ ¼ 0:26, or λ ¼ 0:15.
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Corollary 15 can be reformulated as follows.

Corollary 15*. Let primary delay τ is exponentially distributed with a parameter λ, and μk, 2 ≤ k ≤n,

have the same gamma distribution with the density (Eq. (17)). Then, τk has the distribution function of

the form Eq. (33) with a ¼ λβþ 1
� �� k�1ð Þα

, b = 0, and, consequently,

Ρ τk ¼ 0ð Þ ¼ Gk 0þð Þ ¼ 1� λβþ 1
� �� k�1ð Þα

:

Remark 6. Let Ρ τ2 ¼ 0ð Þ ¼ p, 0 < p < 1: Then by Corollary 15*, Ρ τk ¼ 0ð Þ ¼ 1� 1� pð Þk�1,

3 ≤ k ≤ n. Hence, Ρ τk ¼ 0ð Þ ! 1 as k ! ∞.

Example 7. Let μ2,μ3,… be independent random variables having the same density function

(Eq. (17)). We perform three series of experiments and investigate a behavior of distribution of

the arrival time deviations τk with various combinations of parameters: α, β, k. The results are

presented in graphical form in Figures 12–15 The functions Gk tð Þ are calculated by formula

(49), and the functions gk tð Þ by formula (50). Note that product αβ is the mean of μk. Parameter

λ is equal to 0.25 and αβ ¼ 7 as it observes in reality.

Figure 12. Behavior of distribution G2 tð Þ when (a) α ¼ 0:5, 3, 8 and (b) β ¼ 0:1, 0:5, 1.

Figure 13. Behavior of distribution G3 tð Þ when (a) α ¼ 0:5, 3, 8 and (b) β ¼ 0:1, 0:5, 1.
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7. Comparison with statistics of real train traffic

Let us consider the following random variable: the deviation of the real moment of arrival at a

certain station from the scheduled one. Denote it by ξ. Statistical analysis of data on this

random variable, received from the Russian railways, has led to the conclusion that in many

cases, they obey the modified exponential law with the distribution function of the form

Eq. (33) with b ¼ 0: Using data on the suburban trains of the direction “Moscow-Tver” for the

period: January, 11–15, February, 1–6, 2016, we obtained a sample from the distribution of ξ of

the size n ¼ 50 with the sample mean 1.44 and sample variance 2.7. We tested the hypothesis

that ξ obeys distribution (Eq. (33)) with λ ¼ 0:35 and a ¼ 0:64. To this end, we applied the

Kolmogorov goodness-of-fit test with the significance level α ¼ 0:05 and obtained the fit

between the hypothesis and the sample data (see Figure 16).

Remark 7. It should be noted that in considered example the deviation ξ is nonnegative. But in

reality, it can frequently be both positive and negative. Positive values are due to arisen delay.

Negative values occur due to the fact that sometimes early arrivals take place.

Figure 14. Behavior of distribution G4 tð Þ when (a) α ¼ 0:5, 3, 8 and (b) β ¼ 0:1, 0:5, 1.

Figure 15. Behavior of distributions Gk tð Þ (a) and densities gk tð Þ (b), k ¼ 2, 3, 4 and α ¼ 3.
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Remark 8. Although the hypothetical distribution function from Figure 16 is constructed for

deviations without any details about the train number k, it is well correlated with the graph of

the function G2 tð Þ with α ¼ 0:5 from Figure 12.

This allows us to assume that the distribution of the deviation ξ is mainly determined by the

distribution of the delay τ2.

Remark 9. It was verified that if the length of the random variables μj have the same gamma

distribution, any variation of the parameters of this distribution (α and β) has a rather small

influence on behavior of output distribution (see Figures 12–15).

Remark 10. Since the primary delay has a great influence on formation of the output distribu-

tion of deviations from the schedule (τk), then a knowledge of the primary delay distribution in

each particular situation allows to predict the distribution of knock-on delays.

One important practical effect of the considered model is that it enables us to estimate the

standard deviation (SD) of the actual arrival delays at the destination station. As an example,

we calculated this parameter for the suburban railway line. The data analyzed were collected

at the Tver station in the period of January 2016 and February 2016.

Example 8. Due to statistical data, we can consider that τ has the exponential distribution with

the parameter λ ¼ 0:25 (i.e., τ has the distribution function (Eq. (33)) with λ ¼ 0:25, a ¼ 1,

b ¼ 0), and μ2 has gamma distribution with the density function (Eq. (17)), where α ¼ 0:6,

β ¼ 11:7. Using formulas (49) and (50) with k ¼ 2, we have:

SD2 ¼

ð

∞

�∞

t� a2ð Þ2dG2 tð Þ ¼

ð

∞

�∞

t2dG2 tð Þ � a22 ¼

ð

∞

0

t2 g2 tð Þdt� a22 ≈ 10:987:

Here a2 ¼
Ð

∞

�∞
tdG2 tð Þ ¼ 1

λ λβþ 1
� ��0:6

≈ 1:763,
Ð

∞

�∞
t2 dG2 tð Þ ¼ 2

λ2 λβþ 1
� ��0:6

≈ 14:088,

ð

∞

0

t2 g2 tð Þdt� a22 ¼
2

λ2
λβþ 1
� ��0:6

�
1

λ2
λβþ 1
� ��1:2

≈ 10:987:

Figure 16. The empirical distribution function and the calculated function of the form Eq. (33).
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Thus, theoretical SD ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10:987
p

≈ 3:315 min. This corresponds with the real statistics which

shows the SD amount is 3.32 min for the mentioned station.

8. Conclusions

The mathematical model of train traffic proposed in the chapter allows us to find conditions on

initial headways, which provide a smallness of frequency of a large number of delays. In other

words, the formulas for the distributions of arrival headways obtained in the chapter enable to

optimize the frequency of arriving train delays.
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