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Abstract

Melatonin (MLT) was isolated as a hormone by Lerner in 1958, and since then, intense
studies have been under way with respect to its action and possibilities of application in
various fields of medicine. Despite the existence of multiple antiepileptic medications and
progress that has taken place in neurosurgical treatment of epilepsy, drug-resistant epi-
lepsy continues to be a phenomenon that occurs in 30–35% children treated for epileptic
seizures. Reports presented in the study have shown that children with epilepsy suffer
from sleep disorders. Sleep deprivation may cause seizures, and on the other hand, an
increased frequency of seizures may lead to sleep disturbances.

Keywords: melatonin, children, epilepsy, autism, hypoxic-ischemic brain injury

1. Melatonin

The sleep/wake cycle, body temperature, and melatonin (MLT) rhythms have a stable internal

phase relationship with maximum sleepiness coinciding with the melatonin excretion peak

and the core body temperature nadir in humans and other diurnal species [1]. Several genes

known as clock genes play a role of regulators of circadian rhythms generated by suprachias-

matic nucleus among them are PER, NPAS2, BMAL1, and CLOCK [2]. Also, Period genes (Per1,

Per2, Per3) and Cryptochrome gene (Cry 1, Cry 2) are involved in auto-regulatory translation-

transcription feedback loops [3].

Melatonin, as a hormone, is secreted by the pineal gland, and its production is regulated by

light and retino-hypothalamic tract. Melatonin secretion depends on the age—the highest

values of its concentration are detected between 1 and 7 years of age. In healthy subjects, the
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serum melatonin concentration peak occurs between 2 am and 4 am, and then it gradually

declines; however, melatonin release may be shifted with time zone due to its day and night

light dependence [3–5]. During the day, melatonin is not produced in measurable quantities.

Measurement of the whole 24-h rhythm of melatonin is considered to be the most robust sleep

phase marker of various circadian rhythm sleep disorders [1–6]. Because melatonin secretion is

suppressed by light, the melatonin levels should be measured in dim light conditions. Serial

sampling of melatonin measured in the blood or saliva can be used to assess circadian timing

by determining the dim light melatonin onset (DLMO), the parameter indicating the time

point in which melatonin levels begin to rise in the evening above baseline [2]. Another useful

circadian phase marker is dim light melatonin offset (DLMOff), the point in time when

melatonin levels diminish in the morning. The melatonin secretion profile can also be analyzed

in a more complex way—by approximation of the empirical or analytical models. The models

of melatonin secretion can provide a set of parameters with biophysical and clinical signifi-

cance that directly characterize melatonin cycle. Moreover, mathematical modeling facilitates

statistical analysis of the patients’ hormone levels, offering a set of parameters that enable the

objectification of the secretion description.

Melatonin for many years remained the most mysterious and forgotten human hormone with not

exactly understood role and suggested pleiotropic actions. It is well known that melatonin is

released in a circadian pattern with a night peak. Endogenous melatonin production varies

among individuals. Endogenous melatonin production varies among individuals. Melatonin is

secreted mainly by pinealocytes from tryptophan through hydroxytryptophan and serotonin.

Then, two enzymes, arylalkylamine-N-acetyltransferase (AA-NAT) and acetylserotonin-O-meth-

yltransferase (ASMT), form melatonin from serotonin [1–6]. The organization of the sleep-wake

rhythm is set around 6 months of age, but melatonin rhythmmay be set earlier, from 3 months of

age. At the age of 3, a stabilization of these rhythms is visible. Between 4 and 7 years, nocturnal

melatonin secretion reaches the highest values [1–6].

Gender difference (a lower melatonin secretion in girls) and age-related decline have been

described [7]. According to the latest Task Force of American Academy of Sleep Medicine,

melatonin application is recommended in children with delayed sleep-wake phase disorders,

children with neurological disorders, and with an irregular sleep cycle [5, 6].

Melatonin should be administered at a time related to DLMO—the onset of melatonin endoge-

nous production [7–9]. Actually, prior to melatonin administration, DLMO should be measured

to let for optimal treatment. In saliva, DLMO is defined as a melatonin range of 3–5 pg/ml [9, 10].

2. Sleep and epilepsy

A complex interaction between sleep and epilepsy is still a matter of debate. Sleep deprivation

may activate epileptiform activity. Epilepsy per se and antiepileptic treatment may cause sleep

deprivation or fragmentation causing the vicious circle.

Accumulating evidences suggest that melatonin modulates the electrical activity of neurons.

Based on experimental studies, melatonin probably may mediate the GABA-ergic, 5HT-ergic,
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and NO/L-arginine pathways and glutamate neurotransmission [11]. On the contrary, Steward

and Leung suggested that proconvulsive action of melatonin is connected with the suppres-

sion of the GABA A receptors in pyramidal cells [12, 13]. Antioxidant properties of melatonin

may also have a positive effect on children with epilepsy [14]. Our knowledge about possible

melatonin role in epilepsy has increased in recent years but still remains controversial. For

some time, melatonin has been recommended for children with epilepsy due to its ability to

promote sleep and to avoid sleep deprivation.

Sleep problems in children with developmental disabilities and epilepsy can be connected with

an improper deranged circadian melatonin secretion, an insufficient melatonin production, or

melatonin receptor insensitivity. Usually, falling asleep and maintain a sleep are the most

frequently encountered problems of pediatric populations. The prevalence rates of sleep prob-

lems in childhood are estimated between 30 and 40% [15–20].

At the cellular level, sleep deprivation impairs synaptic plasticity, increases hippocampal

oxidative stress, and facilitates neuronal loss, which can affect neurocognitive skills especially

attention, behavioral, and emotional aspects of development.

In adults with epilepsy, 55% have insomnia, 34% have sleep-onset insomnia, and 52% have

maintenance insomnia [15–20]. On nights with seizures, patients experience up to 50% reduc-

tion of REM sleep and an increased REM latency [15–20]. In specific childhood epilepsy

syndromes, like juvenile myoclonic epilepsy, the sufficient amount of sleep may completely

protect from seizures. In autosomal-dominant nocturnal frontal lobe epilepsy, the epileptic

seizures dominate at night, while in juvenile myoclonic epilepsy after awakening in the

morning.

The stage of sleep also matters. Seizures are rare in REM sleep, and indeed the rate of REM

seizures’ onset is low (0–5%) [21]. According to the studies conducted by Minecam et al. and

Herman et al., most related to sleep seizures appear in stage 2 NREM sleep (61–68%), and

lower rates are evident in stages 3 and 4 as 9–14% [19, 21, 22]. Some authors believe that the

area of REM discharges could be an indicator of epileptic zone [17–22]. Jan et al. postulated

that the occurrence of seizures may show a 24-rhythmicity and circadian occurrence pattern

(Table 1) [23].

Sleep deprivation is one of the most frequent precipitating factors of seizures and interictal

epileptiform discharges (IED). On the other hand, site epileptic seizures, epileptiform activity, or

antiepileptic drugs (AEDs) may disrupt sleep pattern. The analysis of the questionnaires filled by

the patients revealed that the most common sleep-related complaints are excessive daytime

sleepiness (EDS), insomnia, and poor sleep quality. The other important remark is that more

sleep abnormalities are concerned with focal than generalized epilepsies. Also, sudden unex-

pected death in epilepsy (SUDEP) is most frequent to appear between 6 am and noon [17–21].

Long-standing epilepsy can affect insula, anterior cingulated gyrus, ventromedial frontal cortex,

and through their influence on cardiac rhythm may provoke SUDEP [16–22].

Antiepileptic drugs (AEDs) may affect sleep parameters. For example, a frequently adminis-

trated valproic acid, due to its interaction with GABA transmission at suprachiasmatic nucleus,

may lower melatonin secretion [27]. However, Braam et al. [28, 29] compared the endogenous

melatonin levels in children administered with valproate and those who did not use it, and
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Takaesu et al. [30] observed a minimal impact of sodium valproate on the low serum levels that

do not have such supposition. Carbamazepine may increase slow-wave sleep, reduce REM,

and reduce awakenings and arousals [31]. Similarly, lamotrigine and valproic acid appear to

stabilize sleep (more REM and slow-wave sleep) [27–31]. Newer AEDs have little effect on

sleep architecture (levetiracetam) or little is known about these effects (lacosamide, eliscar-

bazepine, and retigabine) [31]. The direct effect of AEDs on sleep is difficult to measure because

of many confounding factors, with the leading one—polypharmacy. Antiepileptic treatment

with more than one drug increases the risk of obstructive sleep apnea (OSA). The prevalence of

OSA is significantly higher in the epilepsy group—35% versus healthy children—7.4%. In

refractory epilepsy, 44% children have the diagnosis of OSA, in other form of epilepsy around

31% [32, 33]. It is especially important for clinicians, who frequently under-recognize and

misinterpret sleep disorders in epilepsy patients.

3. Melatonin secretion in epilepsy

The dynamics of melatonin secretion in epileptic subjects is more complex compared to

healthy subjects. Though it appears that human seizure occurrence may have 24-h rhythmicity

(and such rhythmicity has also been shown in animals), but there is still no answer to the

question on the relationship between the occurrence of seizures and the human circadian

rhythm. Many studies on epilepsy have examined the processes that have circadian variation,

like hormones secretion, body temperature changes, activity, sleep, and wakefulness, and it is

obvious that circadian rhythm and epilepsy at least interact. Unfortunately, there are consider-

able gaps in the knowledge of such interaction, especially in humans [34].

Seizures’ occurrence pattern Sleep Wakefulness

Seizures’ types Tonic seizures, generalized tonic-clonic

seizures, frontal lobe seizures

Clonic, absence, atonic, myoclonic

seizures

Relation with sleep 78% of frontal lobe seizures

20% of temporal lobe seizures

Epilepsy with generalized

seizures

Generalized epilepsy

• West syndrome: hypsarrhythmia most

evident in early NREM sleep

• Lennox-Gastaut syndrome: paroxysmal

fast activity during sleep

Generalized epilepsy of unknown

etiology: JME, GTCE (on EEG spike—

waves discharges most prominent in

stage 2 sleep)

Epilepsy with focal seizures BECTS (interictal epileptiform discharges

activated by light NREM)

• Time peak of occurrence

6–9 am

for frontal lobe seizures, NFLE:

23.00–5.00

(6–12 h after DLMO)

EEG-stages 3 and 4 as effective facilitator of

epileptiform discharges

• Time peak of occurrence

3–6 pm

for temporal lobe seizures, TLE:

11.00–17.00

(6 h before DLMO)

Table 1. Seizures’ circadian occurrence pattern [23–26].
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In epilepsy, melatonin secretion may be disturbed: higher nocturnal melatonin concentrations,

a higher melatonin concentration after seizures, or loss/shift of the characteristic diurnal

rhythm of secretion are reported by some authors [35–40], while other authors found low

baseline levels [41, 42]. Melatonin concentration in patients with epilepsy is sometimes claimed

to be slightly increased or unchanged as compared to normal values [38, 43].

However, we observed a statistical dependence between melatonin release amplitude and the

number of seizures in different time intervals in the epilepsy of children. Moreover, the time

since last seizure has a significant effect on the secretion of melatonin. It should be noted that

antiepileptic treatment itself may affect melatonin secretion, which, in fact, was seen in our

studies [35, 42]. On the contrary, Dabak et al. showed lower post-seizure melatonin levels in

the patients with febrile and afebrile seizures [43]. On the other hand, a normal plasma

melatonin curve in epilepsy patients under dim-lit conditions [25] as well as in the study

involving epileptic children was found [4].

There is also no agreement between the animal models and the results obtained in the human

studies. In animal studies, the data suggest anticonvulsant properties of melatonin, whereas in

human studies, it is difficult to reach unambiguous conclusions.

Having in mind the heterogeneity of melatonin secretion and the mode of action in children

with epilepsy, Praninskiene et al. postulated that probably not only peripheral melatonin levels

but also measurements of melatonin receptors in the brain and melatonin level in central

components may be of value [44, 45].

4. Melatonin supplementation in epilepsy in randomized trials

Before the era of randomized trials with melatonin, we witnessed the add-on melatonin

supplementation in a few described trials by Peled et al. (improvement in seizures’ frequency

in five of six children on 3-mg melatonin add-on therapy) [46], Ross et al. (clinical improve-

ment in seizure control and sleep in 20 of 24 children treated with 2.5–7.5 mg of melatonin add-

on therapy) [47], and Molina-Carballo et al. (clinical improvement of one child with refractory

myoclonic epilepsy treated with melatonin add-on therapy of 200 mg daily) [48].

The first randomized, double-blind, placebo-controlled trial concerning melatonin in epilepsy

was conducted in 2004 by Copolla et al. [49]. A total of 25 participants (with mental retardation

and epilepsy) aged 3.6–26 years were randomized to oral synthetic fast release melatonin (an

initial dose of 3 mg, possible tiltration to 9 mg). In 2 of 11 seizure-free patients, epileptic

seizures appeared on melatonin supplementation [49]. Among seven patients with not ade-

quately controlled epilepsy, the results were not promising (N = 1 seizure-free, N = 2 partial

improvement, N = 2 unchanged, N = 2 increase of seizures) [49].

In the same year, Gupta et al. assessed the effect of melatonin add-on supplementation in

children with epilepsy aged 3–12 years on carbamazepine or valproic acid monotherapy using

the parental questionnaire (Sleep Behavior Questionnaire) [50–54]. In these studies, the chil-

dren were seizure-free for at least 6 months before the first visit; that is why the authors could

not report the influence of melatonin on seizures’ frequency [50, 51].
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In 2005, Hancock et al. in the next randomized, double-blind, crossover trial evaluated mela-

tonin supplementation (two dose regimen: 5 or 10 mg) in 8 patients aged 18 months to 31 years

with epilepsy and tuberous sclerosis complex [55, 56]. During the study period of 6 months, no

change in seizure frequency was noted at either dose [55, 56].

Goldberg-Stern et al. conducted another trial investigating response to melatonin (10 mg) in 10

patients with a refractory epilepsy aged 9–32 years (N = generalized epilepsy, N = focal epilepsy)

[57]. The mean seizure frequency was 7.75 per day on placebo and 4.6 on melatonin treatment

[57]. The limitation of this study was the absence of dim light melatonin-onset measurement.

The randomized double-blind placebo-controlled trial performed by Jain et al. showed that a 9-

mg sustained release melatonin formulation decreased sleep latency and wakefulness after sleep

onset (WASO) as compared to placebo [58]. This group consisted of 10 children aged 6–11 years

diagnosed with epilepsy (focal epilepsy N = 6, generalized epilepsy-childhood absence epilepsy

N = 3, undetermined N = 1) with intelligence quotient (IQ) > 70 [58]. Melatonin was given for

30 min before bedtime for 9 weeks. Apart from melatonin, children received different antiepi-

leptic drugs as monotherapy: zonisamide, lamotrigine, levetiracetam, oxcarbazepine, and carba-

mazepine. According to the authors of the study, no worsening in seizures frequency was

observed. Eight participants remained seizure-free, and another two experienced 50% reduction

in seizure frequency on melatonin treatment.

Elkhayat et al. in a group of 23 children with refractory epilepsy and in 14 children with

controlled seizures (aged 2–15 years) measured melatonin level and assessed the sleep param-

eters before and after melatonin supplementation (melatonin dose of 1.5–3 mg daily) [59]. The

most frequent antiepileptic drug was valproic acid (in intractable epilepsy in 78.2% of patients,

in controlled seizures group—85.7%) [59]. After 3 months of melatonin therapy, children with

intractable epilepsy experienced improvement in sleep continuity (bedtime resistance, sleep

duration, sleep latency, frequent nocturnal arousals, and excessive daytime sleepiness), sleep

apnea, nocturnal enuresis, sleep walking, forcible teeth grinding, and Epworth sleepiness

score. Melatonin diurnal secretion and the frequency of seizures in controlled seizures group

and refractory epilepsy did not differ significantly. Some children experience a decreased

severity of seizures.

There are some significant limitation of the abovementioned studies like the small sample size

and lack of the homogeneity of the sample: diversity of the epilepsy syndromes, different

etiology of seizures, different seizure types, and short period of observation. But treating

epilepsy with antiepileptic drugs may also improve sleep architecture and restore sleep cycle.

The very limited number of randomized studies did not allow to draw definite conclusions

about melatonin add-on therapy and influence of the treatment on epileptic seizures.

5. Melatonin in attention-deficit/hyperactivity disorder (ADHD)

About 25–50% of children with ADHD experience sleep problems [60]. The frequency of sleep

problems is almost two-fold higher in a case of stimulant treatment. Sleep disturbances are

included among diagnostic criteria for ADHD in the DSM third edition.
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Miano et al. distinguished five sleep phenotypes in ADHD [61, 62]:

1. phenotype related to hypoarousal state, primary form of ADHD;

2. phenotype related to delayed sleep phase syndrome;

3. phenotype related to sleep-disordered breathing (SDB) from snoring to obstructive sleep

apnea;

4. phenotype related to restless leg syndrome and/or periodic limb movements;

5. phenotype related to sleep epilepsy and/or EEG interictal epileptic discharges.

The most common complaint is sleep-onset insomnia, and rarely, sleep problems are related to

a delayed sleep phase syndrome. Also, SDB is highly associated with disturbed attention and

hyperactivity, and children with SDB are more sensitive to oxidative stress [61–63].

Based on trials conducted in this population, melatonin treatment in doses ranging between 3

and 6 mg/day may reduce sleep-onset delay and increased sleep duration time [61–63].

6. Melatonin in autism spectrum disorders (ASDs)

Autistic spectrum disorders are frequently connected with sleep disturbances (30–53% or up to

50–80%) [64, 65]. The most common medication used in sleep difficulties is melatonin, apart

from behavioral interventions.

In children with autistic spectrum disorders, melatonin levels are lower [65–67] or within

normal values [64, 68, 69]. Based on parental questionnaires and clinician completed forms of

1518 ASD children aged 4–10 years, Braam et al. informed about a much higher percentage of

sleep problems in ASD (71%) and a higher necessity of drug intake (>46% children on more

than one drug promoting sleep) [29]. In the latest double-blind study conducted by Gringras

et al., 125 ASD children (among them 3.2% children with the diagnosis of Smith-Magenis

syndrome (SMS)) received prolonged-release melatonin or placebo for 13 weeks [70]. Melato-

nin treatment prolonged the total sleep time (melatonin 57.5 min vs. placebo 9.14 min) and

decreased sleep latency (melatonin 39.6 min vs. placebo 12.5 min) [70]. Veatch et al. studied the

possible genetic background of sleep problems in ASD by evaluation of two melatonin path-

way genes: acetylserotonin O-methyltransferase (ASMT) and cytochrome P450 1A2 (CYP1A2)

[68]. The authors found a higher prevalence of variants responsible for a decreased expression

of ASMT and a lower CYP1A2 enzyme activity [68]. On the other hand, a lower CYP1A2

enzyme activity may be responsible for slow metabolism and the possibility of lack of efficacy

of exogenous melatonin with time. That is why some children may benefit from low melatonin

dose like 0.5 mg rather than higher (exceeding 5–6 mg) [64, 65, 71, 72].

Some authors speculate that melatonin as a hormone derived from serotonin may be of a

special interest in autism neurobiology [73]. Another interesting finding is that melatonin

levels may be negatively correlated with the severity of autistic features. This assumption was

made by the examination of sulfatoxymelatonin level in urine of 60 mothers of a child with

ASD features and in control group.
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A few RDBPC trials showed that melatonin may improve communication [74] and anxiety in

children with ASD [75]. Based on the knowledge from placebo-controlled studies, long-acting

melatonin preparations at bedtime improve the sleep latency and the total sleep time [67, 69,

70, 74, 76–80].

7. Melatonin in other neurodevelopmental disabilities (NDDs)

Reported prevalence of sleep disturbances in children with neurodevelopmental disabilities is

up to 86% [81]. An interesting double-masked randomized placebo-controlled phase III trial

was performed by Gringras et al. One hundred and forty-six children aged 3–15 years were

treated with melatonin (0.5–12 mg) or placebo for 12 weeks [82]. In melatonin-treated group,

the total sleep time increased by 23 min and sleep latency was reduced by around 38 min [82].

Melatonin may be affective in sleep problems in many genetic syndromes, especially in

Angelman syndrome (AS), Smith-Magenis syndrome (SMS), Rett syndrome (RS), San Filippo

syndrome, and tuberous sclerosis complex syndrome (TSCS) [83–90]. In these genetic condi-

tions, sleep problems are one of the phenotype features. Sleep apnea is a frequent finding in

children with Down syndrome and with Prader-Willi syndrome [83–91].

The results of Hancock et al. on the urinal 6-sulfatoxymelatonin excretion in seven TSCS

patients revealed, however, no evidence of abnormal excretion of melatonin in patients with

tuberous sclerosis complex and sleep disorder [55, 56, 83, 92]. All but one of the patients

showed a normal circadian rhythm of melatonin secretion. However, the authors were aware

that a small number of analyzed cases weakened their reasoning. Our investigations suggest

that not only disordered sleep but also the shift of melatonin secretion may be expected in

TSCS children with frequent seizures [88]. We also noticed that melatonin profiles are not

homogeneous in TSCS patients [88]. Unfortunately, both researchers supposition are based on

the results gathered from a small TSCS group.

Children with Angelman syndrome may present with sleep-onset insomnia as well as sleep

maintenance problems, and low endogenous melatonin levels are often claimed to be an

essential feature of melatonin secretion in their circadian rhythms [83–90]. Our studies with

mathematical modeling of melatonin secretion showed that the phase parameters of melatonin

cycle (DMLO parameters, phase or duration of melatonin amplitude) could be the key charac-

teristic of AS children [87].

The recommended melatonin dose in Angelman syndrome is very small like 0.3–0.5 mg,

because of the high prevalence of slow melatonin metabolizers [90]. In TSCS, a decreased sleep

total time and multiple awakenings are evident; the recommended dose of melatonin is 5–

10 mg. Melatonin may reduce the sleep problems (the frequent awakenings) in Rett syndrome

in the daily dose of 2.5–7.5 mg [83–85, 92]. Children with SMS have an early sleep onset (19.30–

20.30), repeated and prolonged walking at night, and an early sleep offset (04:00–05.00) [91].
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Because of inverted melatonin circadian profile, a complex but promising treatment was

found: a combination of acebutolol in the morning (10 mg/kg decrease melatonin level during

the day) and melatonin in the evening [91].

During the conference in Rome in 2014, Bruni et al. postulated recommendation for melatonin

treatment guidelines in children with neurodevelopmental disabilities and insomnia [15]:

1. no age limit (safe administration >6 months of age),

2. if used as a chronobiotic 3–4 hs before bedtime (if used as a sleep inductor 30 min before

sleep time) with starting dose 0.2–0.5 mg (tiltrated by 0.2–0.5 mg every week till maximum

dose of 3 (<40 kg) and 5 mg (>40 kg),

3. treatment duration should not be <1 month, therapy adjusted to the patient; if normal

sleep cycle is restored 1 week without melatonin treatment, once a year is recommended

(especially during summer).

8. Melatonin in hypoxic-ischemic brain injury

During the last decade, melatonin has started to be considered as an attractive option in order

to minimize the neurological sequelae from hypoxic-ischemic brain injury [93–95]. The brain

itself is particularly sensitive to free radicals damage due to its high utilization of oxygen, its

relatively poorly developed antioxidant defense, and its high amount of easily oxidizable fatty

acids. Melatonin may serve as a potential therapeutic free radical scavenger (hydroxyl radicals,

hydrogen peroxide, singlet oxygen) and broad-spectrum antioxidant (upregulation of antiox-

idant pathways: superoxide dismutase, glutathione, catalase, glutathione peroxidase, glutathi-

one reductase) [96–98]. Based on experimental studies, melatonin may increase the number of

neurons in the CA1, CA2–CA3 areas and dentate gyrus of the hippocampus and parietal

cortex, reduce the expression of the glial fibrillary acidic protein, and regulate the expression

of myelin basic protein and oligodendrocytes’ function (regulation of myelination process)

[96–98].

Aly et al. examined the effect of melatonin on clinical, biochemical, neurophysiological, and

radiological outcomes of neonates with hypoxic-ischemic encephalopathy (HIE) [99]. They

performed a prospective trial involving 45 newborns randomized in the hypothermia alone

and hypothermia and melatonin groups. All infants were studied with repeated EEG and

brain MRI. In all patients, superoxide dismutase (SOD) and nitric oxide (NO) were measured.

These examinations showed an increased melatonin and a decreased NO in the hypothermia-

melatonin group [99]. Because of postulated unpredicted bioavailability of oral melatonin,

Merchant et al. gave blood transfusion of 0.04–0.6 μg/kg melatonin to 18 preterm babies (less

than 31 weeks gestation, less than 7 days old) for 2 h [100]. As a result they found melatonin

concentration peak similar to adults. Another challenge might be the possibility to administer

melatonin antenatally, in order to prevent or reduce brain hypoxic insult in preterm babies
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[94]. Denihan et al. employed untargeted metabolomics to identify metabolomic biomarkers of

umbilical cord blood after hypoxic injury [101]. The analysis was performed using direct

injection FT-ICR mass spectrometry. Some metabolites allowed for differentiation between

children with perinatal asphyxia with recovery and children with perinatal asphyxia followed

by hypoxic-ischemic encephalopathy like melatonin leucine, kynurenine, and 3-hydroxydo-

decanoic acid. HIE itself was associated with abnormalities in tryptophan and pyrimidine

metabolism.

Children after hypoxia-ischemia brain injury often develop circadian rhythm disorders. Yang

et al. documented that in experimental studies, mRNA and protein expression of pineal

arylalkylamine N-acetyltransferase (AANAT) and melatonin are impaired after hypoxic dam-

age [102]. They postulated that miR-325-3p (micro RNA) may play a role of potential down-

regulator of AANAT-rate-limiting enzyme for melatonin synthesis [102].

9. Conclusions

Melatonin may be effective not only in primary sleep disorders but also in some above-

mentioned neurological disorders in children. In adults, postulated antioxidative potential

of melatonin may be of value in neurodegenerative diseases like Parkinson, Alzheimer, and

Huntington’s disease [98].

Because disturbed circadian rhythms and poor sleep quality are associated with increased

risks of cardiovascular, metabolic, and cognitive diseases, poor quality of life, and even with

mortality, exogenously administered melatonin is often claimed to be a remedy for all these

problems. However, many conflicting results obtained in various areas of research on the

functions and roles of melatonin require caution and the extension of basic research [103–

108]. First of all further standardized studies of the human circadian rhythm and of its

disturbances affecting melatonin rhythms by interfering with its production and secretion are

necessary, as well as the studies of the interaction between circadian rhythm and seizures in

animal models. Moreover, the melatonin role in epilepsy and the effects of antiepileptic drug

treatment (in relation to the circadian rhythm phases) should be explored. As concerning

exogenous melatonin application, larger study groups are required to identify proper thera-

peutic dosage regarding age, concrete disease, and to check the clinical efficacy of melatonin

add-on therapy.

Filling up the gaps in the knowledge about the interactions of circadian rhythm, human

epilepsy, and melatonin will improve our understanding of the undergoing processes and the

patients’ treatment quality.
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