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Abstract

This chapter presents a new approach to realize quick maximum power point tracking
(MPPT) for photovoltaics (PVs) beddedon roads. TheMPPTdevice for the roadphotovoltaics
needs to support quick response to the shadow flickers caused by moving objects. Our
proposed MPPT device is a microconverter connected to a short PV string. For real-world
usage, several sets of PV string connected to the proposedmicroconverterwill be connected in
parallel. Each converter uses an embedded learning algorithm inspired by the insect brain to
learn theMPPs of a single PV string. Therefore, theMPPTdevice tracksMPP via the perturba-
tion and observation method in normal circumstances and the learning machine learns the
relationships between the acquired MPP and the temperature and magnitude of the Sun
irradiation. Consequently, if themagnitude of the Sun beam incident on the PVpanel changes
quickly, the learning machine yields the predicted MPP to control a chopper circuit. The
simulation results suggested that the proposedMPPTmethod can realize quickMPPT.

Keywords: photovoltaics bedded on road, embedded learning algorithm, incremental
learning, insect brain, modal regression on a fixed memory budget, maximum power
point tracking (MPPT), shadow flicker, partial shading, micro converter

1. Introduction

In recent years, renewal energy technologies have attracted considerable attention as they

prevent degradation of the environment to a large extent. Photovoltaics (PVs) are one such

technology. However, the drawbacks of photovoltaic systems are that they are unstable while

generating electricity and that they require a wide area to catch a large amount of sunlight.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



One solution is to place photovoltaics on roads. As the total area covered by roadways in the

world is extremely high, it is worth using it as PV sites. Still, objects moving on the road cause

shadows. In particular, the shadow flickers on PV systems cause power conditioners

connected to the PVs to behave in an unstable manner. Such unstable behavior forms the

origin of degradation and greatly reduces the amount of electricity generated.

As shown in Section 2, PVs demonstrate highly nonlinear characteristics and its maximum

power point cannot be analytically derived. Therefore, maximum power point tracking (MPPT)

devices track MPP using various heuristics. As mentioned in previous survey papers [1, 2], the

most preliminary technique for realizing MPPT is the perturbation and observation (P&O)

method. P&O is a type of hill-climbing algorithm. The P&O method provides a perturbation to

the current and the voltage and checks whether the output power increases. If the power has

increased, the P&O method employs the same voltage change in the next step and vice versa.

Although the P&O method is easy to implement within small embedded systems, there is no

guarantee that the perturbed voltage is suitable for obtaining MPP. The incremental conductance

(IncCond) [3] and the ripple correlation (RCC) methods [4] overcome this problem by estimating

the gradient of the power curve. These two methods can be realized in analog circuits and can

demonstrate quick convergence behaviors. Fuzzy logic control methods are also usually used for

controlling the change in duty ratio for the chopper circuit. Fuzzy logic controllers can work

appropriately even if its inputs are ambiguous, and they show a quick convergence behavior to

the MPP. For example, a previous paper [5] demonstrated the use of fuzzy logic that yielded a

change in the duty ratio from the difference between the current photovoltaic output voltage and

the predicted MPP. Neural network-based MPPT methods are also proposed (e.g., [6]). The

model predicts MPP and its corresponding maximum current using a pretrained neural net-

work. The model cannot adjust its neural network for changing environments. In our previous

study, a hybrid system involving the P&O method and an embedded learning machine was

constructed [7]. The learning machine studies the MPP acquired by the P&Omethod when solar

irradiation is stable. When solar irradiation changes quickly, the learning machine predicts MPP.

However, these methods do not support MPPT under an inhomogeneous isolation condition,

where the voltage-power curve has several local peaks.

Recently, a particle swarm optimization (PSO)-based MPPT method was proposed [8]. This

method can estimate all local power peak points and select the best one. However, the resul-

tant solutions are highly depending on the initial particles.

On the contrary, a previous study [9] demonstrated that a swing technique can acquire the

voltage-power curve by scanning within a certain short interval. It shorts, the series-connected

PV string and an inductor simultaneously observe the voltage and power until the output

voltage reaches zero. Therefore, the device can detect MPP during the scan. However, it needs

special hardware to realize the swing.

To overcome this problem, we use a quick converter connected to a PV string. The main

challenge here is finding the MPP from the complex power-voltage curve.

In our previous study [7], we proposed a model that uses an incremental learning method based

on general regression neural network. The method is used to obtain the magnitude of solar

irradiation st, temperature Tt, and MPP derived by the P&O method. Although the system
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quickly detects MPPs of a single solar panel, which has a single cluster, it cannot detect the MPP

of solar panels with several clusters or solar panels connected in series.

In this chapter, we propose an MPPT converter that detects MPPs of solar panels with several

clusters using a modal regression method on a fixed memory budget. To realize quick MPPT,

the proposed method uses a learning machine on a fixed memory budget. The learning

machine on a fixed budget is a small learning machine that can continue online learning on a

fixed storage space. Therefore, it is suitable to be embedded to a small microcomputer. The

learning on a budget should be executed on a system with a small amount of storage space

with low computational power.

To this end, it is worth referencing the mechanisms of an insect’s brain. Although the precise

mechanism of an insect’s small brain that is a source of their intelligence is not known, it is true

that their sensory system is much smaller than that of humans. Therefore, the dimensions of

their sensory inputs are small. As mentioned in Section 3.2, the storage space for recording the

kernels is proportional to the number of input dimensions. From this insight, we should be

able to reduce the input dimensions to reduce the storage space for the learning machine.

The rest of the chapter is organized as follows. Section 2 describes the photovoltaic properties,

and Section 3 introduces an MPPT algorithm accelerated by a learning machine using a modal

regression on a budget. Section 4 shows computer simulation results of the new MPPT algo-

rithm, and Section 5 concludes this chapter.

2. Properties of photovoltaics

Photovoltaics are a type of current sources, whose current flow is determined by the strength of

solar irradiation. A normal solar panel comprises several photovoltaic cells. These cells are

usually connected in series, and the series-connected cells are then connected in parallel. Such

solar panels show highly nonlinear characteristics and is usually modeled by using the following

equation [10, 11]. Let us denote the output voltage and current from the photovoltaic as Vpv and

Ipv, respectively. According to the equivalent circuit shown in Figure 1, Ipv is represented by (1).

Ipv ¼ NpIsc
Ir
100

� �

�NpIo exp
qVpv

nkTNs

� �

� 1

� �

, (1)

where Vpv, the terminal voltage of the photovoltaic [V]; Ipv, output current from the photovol-

taic [A]; Ip, photocurrent [A]; Io, saturation current [A]; Isc, short-circuit current [A]; Ir, irradi-

ation [%]; n, ideality factor; q, charge of electron [C]; k, Boltzmann’s constant; T, junction

temperature [
�
C]; Np, number of cells in parallel; Ns, number of cells in series.

In Eq. (1), Ir is given by the ratio of actual strength of solar irradiation to the irradiation of

standard test condition [11]. Therefore, Ir ¼ 100G=Gref , where G and Gref are solar irradiation

(w=m2) and that of under the standard test condition: Gref ¼ 1000(w=m2), respectively. The

range of Ir is Ir ∈ 0; 100½ �. An example of the output voltage and current relationship is shown

in Figure 2. We can see that the solar panel is a type of current sources, but the current is
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reduced when the voltage is higher than a certain value. The solar panel does not pass current

if the panel is covered by a shadow. If series-connected solar panels have a partial shadow, the

output current from the solar panels are down to zero even if a part of solar panels do not have

a shadow. To prevent such a situation, a bypass diode is connected to each solar panel in

parallel. Using this circuit, the solar panels can generate a certain amount of electricity even if

they are partially shadowed. Such series-connected solar panels, however, show highly nonlin-

ear characteristics (see Figure 3).

To extract maximum power, the voltage of the photovoltaic should be maximized. However, if

the voltage is too high, the current decreases. Therefore, there is an optimal voltage value that

maximizes the power. Such voltage is called the MPP and the power conditioner or converter

connected to the PV tracks the MPP.

Figure 1. Equivalent circuit of a photovoltaic.

Figure 2. Single solar panel property. (Ir ¼ 80%,Np ¼ 4, Ns ¼ 12, Isc ¼ 1:8 A½ �, T ¼ 298:15, q ¼ 1:6� 10�19).
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Another noticeable property is that the current flow of photovoltaics stops when it has a

shadow. Thus, if a photovoltaic is connected to the other photovoltaics in series and it has a

shadow, no power is outputted from the series-connected solar panels.

This problem is solved by connecting a bypass diode in parallel with each photovoltaic.

Using this architecture, we can get some amount of power even if a part of the solar panels

are under a shadow. However, in such a case, the voltage-power curve of the photovoltaics

shows a nonlinear form. As the voltage-power curve has several peaks, the power condi-

tioner cannot obtain the correct MPP only using a hill-climbing technique. The most reliable

method to solve this problem is for the power conditioner/DC converter to acquire the

current voltage-power curve and detect the global maximum point.

3. MPPT algorithm accelerated by learning machines

One way to realize a quick MPPT without involving any special device is to use a photovol-

taic model to predict the MPP. Moreover, the apparent property of photovoltaic varies due to

the accumulated dust on the solar panel surfaces. This means that the photovoltaic model is

not stable, but is valid depending on the solar panel’s situation. To adjust to such changes in

the property, an on-site learning machine should learn the MPP acquired by the P&O

method to construct the PV model and apply prediction using the learning machine. In our

previous work [7], we demonstrated that an incremental learning method on a budget on a

microcomputer can manage the learning and prediction of MPPs. The learned results were

applied only when solar irradiation changes drastically and the learning machine know the

appropriate MPP that fits the current situation.

Figure 3. An example of series-connected solar panel property. The irradiations for the four panels are 10, 80, 65, and

95%.
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The previous system, however, cannot support the MPPT for series-connected PVs with

bypass diodes, as shown in Figure 4. This is because even if the strength of solar irradiation is

a certain stable value, there are several different solutions depending on the variety of the

shadow patterns on the solar panels. To overcome this difficulty, we propose a new MPPT

method in this chapter that is based on modal regression on a budget, which is a modal

regression with a fixed number of kernels. Modal regression has the ability to approximate

multivalued functions. Modal regression on a budget continues the learning with a fixed

number of kernels so that it is suitable to be embedded in a small microcomputer. Therefore,

it is able to record several different MPPs corresponding to the strength of solar irradiation.

The proposed MPPT has a modified P&O method that enables tracking of MPPs from the

voltage-power curve having several peaks using modal regression on a budget.

During the service, the proposed MPPT tracks the peaks by changing the initial search points.

If an MPP is observed, the kernel density estimator (KDE) in the modal regression records the

peak by adding a new kernel that records the current peak (see Figure 5). However, the

microcomputer has limited storage space. Thus, if the number of kernels in the KDE equals

the budget, one of the existing kernels will be replaced by the new kernel.

3.1. A perturbation and observation (P&O) method with changing initial point

Even if the system uses modal regression, it cannot be used before learning. Thus, it needs to

obtain the MPPs first. To find several peaks, a modified P&Omethod is presented. The modified

Figure 4. The photovoltaic circuit design bedded on road. Several solar panel strings with the MPPT converter are

connected in parallel.
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one searches the peak points roughly at first. For example, if the solar panel comprisesm number

of clusters, the number of peaks would be up to m. Therefore, the new P&O estimates following

C > mð Þ initial points. This operation concludes when irradiation is greatly changed.

vin ¼ n
Vmax

pv

C
,where n ¼ 1,⋯, C, (2)

where Vmax
pv denotes the open circuit voltage of the photovoltaic. To obtain this value, the circuit

should be opened for a while when the irradiation changes. The system finds the vin∗ that leads

to maximum MPP.

n∗ ¼ argmaxn Ppv vin
� �� 	

, (3)

where Ppv vin
� �

denotes the power from the solar panel for the voltage vin. In this method, m

number of clusters are needed to be preset.

3.2. Modal regression on a budget for reasoning from too less sensory inputs

In general, if the device has too few sensors, the system cannot properly detect the current

status. The partial shadow problem is one such problem. Therefore, if the device has

illuminance sensors for each solar cell, it can accurately detect the status and can form

complete relationships between the large number of sensory inputs and MPP. However,

such strategy is impractical for real applications. Moreover, we should reduce the number

of dimensions to construct an insect’s brain like compact learning machine. From a theo-

retical viewpoint, the system having too few sensory inputs should yield several possible

solutions. Therefore, the system has to check the suitability of all possible solutions and

choose the best solution. One way to solve this problem is to employ a quick search

Figure 5. Outline of the MPPT accelerated by the modal regression on a budget.

A Quick Maximum Power Point Tracking Method Using an Embedded Learning Algorithm for Photovoltaics on Roads
http://dx.doi.org/10.5772/intechopen.79711

91



algorithm such as the PSO algorithm. However, PSO searches possible solutions for

arbitrary initial setting of particles and wasted some time for the search. An alternative

way to speed up the procedure is by implementing a learning machine to quickly obtain

some good solution candidates. However, to realize such tasks, the learning machine has

to have an ability to approximate multivalued functions. Such ability cannot be served by

normal regression methods.

Modal regression approximates a multivalued function to search the local peaks of a given

sample distribution. Modal regression comprises the KDE with a partial mean shift (PMS)

method. We have already presented a minimum modal regression, which minimizes the

number of kernels for the modal regression [12].

The model, however, does not support learning on a fixed budget. In this chapter, we

propose an improved version of our previous work, which enables learning on a fixed

budget.

3.2.1. Original modal regression method

Modal regression comprises KDE followed by the PMS. KDE is a variation of the Parzen window

[13]. Let ℵ be the set of learning samples and ℵ ¼ xp ∈R
Njp ¼ 1; 2;…N

� 	
. The estimator

approximates the probability density function using a number of kernels, namely the support

set St. The kernels used are Gaussian kernels and

p xð Þ∝
X

i∈ St

K
x� xik k

hx

� �
(4)

where

K
x� xik k

hx

� �
� exp �

x� xik k2

h2x

 !

(5)

Normally, the same number of kernels as that of the dataset is required. However, if the storage

capacity of a target device is small, the number of kernels must be restricted. There are several

ways to realize density estimation using a limited number of kernels. Traditionally, self-

organizing feature maps or learning vector quantization methods approximate the distribution

using a fixed number of templates.

As mentioned in a previous study [14], the KDE used in modal regression should approxi-

mate the number of peak points of the distribution, rather than the distribution itself. Let

bp xð Þ be

bp xð Þ �
X

i∈St

K
x� xik k

hx

� �
(6)

then bp xð Þ should satisfy the following condition.
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∇xbp xð Þ
x¼x∗

¼ ∇xp xð Þ
x¼x∗

¼ 0










∇
2
xbp xð Þ

x¼x∗
< 0; ∇

2
xp xð Þ

x¼x∗
< 0










:

8
><

>:
(7)

where x∗ denotes a local peak point of the distribution.

Modal regression searches the peaks of the distribution model represented by the KDE. The

PMS method realizes quick convergence to the nearest peak from the initial point. Let us

denote the initial point as x0, representing the starting point for searching the peaks. Thus,

modal regression repeats the modification of the current y as follows:

ynew  

P
i yoldK

yold�yij j
hy

� �
K x�xik k

hx

� �

P
jK

yold�yjj j
hy

� �
K

x�xjk k
hx

� � (8)

3.2.2. Modal regression on a fixed budget

To embed the modal regression, we have to pay attention to how to reduce the number of

kernels for the KDE. Especially, we have to fix the upper bound for the number of kernels. In

this case, the aim of the KDE is to approximate the peaks in the distribution rather than

approximating the distribution. From this viewpoint, we should prune redundant kernels that

do not contribute to approximating the peaks.

In our previous work [12], we demonstrated that the kernel, which is linearly dependent on the

other kernels, can be removed without changing existing peaks. To this end, before pruning,

the pruned kernel should be projected to the space spanned by the other remaining kernels.

However, preparing the gram matrix wastes huge memory space.

Moreover, in this practical application, we should pay attention to the concept drift phenom-

ena, wherein the labels change over time. This is caused by environmental changes such as the

accumulation of dust on the solar panels and the changes in properties of the solar panel

materials. The learning methods should support these issues.

To overcome these difficulties, we propose a simplified version of the modal regression method

on a fixed number of kernels.

To discuss the learning rule of the KDE, let us rewrite the kernel output value as the dot

product of the two vectors of k xi; :ð Þ and k x; :ð Þ as follows.

k xi; ∙ð Þ; k x; ∙ð Þh i � K
x� xik k

hx

� �
, (9)

where ∙; ∙h i denotes the dot product operator. This expression is based on the kernel method.

Fortunately, the Gaussian kernel is a type of reproducing kernel in which we can rewrite the

learning rule using the dot product of vectors. Using this representation, we can rewrite the
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learning rule in algebraic expressions, which can be very easily understood. Now, let us denote

a vector bPt as the learning result after the t-th sample presentation. Then, we obtain

bPt�1 �
X

i∈St�1
W ik xi; ∙ð Þ, (10)

where St�1 denotes the support set after the t� 1-th presentation of a given sample. The KDE

output to an input vector x is calculated by

bPt�1 xð Þ ¼ bPt�1; k x; ∙ð Þ
D E

: (11)

Eq. (10) enables us to represent the learning rule as

bPt ¼ bPt�1 þ ytk xt; ∙ð Þ; St ¼ St�1∪ tf g (12)

However, the proposed method restricts the number of kernels to a certain number as Stj j ≤B.

To overcome this problem, the proposed method replaces one of the kernels with a new kernel

whose centroid is the new input vector, or moves the nearest kernel centroid to close to the

current new input vector. Therefore, if the nearest kernel

nt ¼ argminj xt � xj
 2

n o
, (13)

satisfies the following condition

xt � xntk k2 < θactivity, (14)

its kernel center is modified to be the mean vector of the original kernel center and the new

sample as follows. The extension coefficient Wnt is increased by Δ.

xnt ¼

Wnt

Δ

� �
xnt þ xt

Wnt

Δ

� �
þ 1

, Wnt ¼ Wnt
þ Δ (15)

The extension coefficient includes information on how many samples did the kernel learn. The

extension coefficient is also reflected to aweighted PMSmethod in Eq. (20). However, if the kernel

center does not satisfy the Eq. (14), one of the kernels should be replaced with the new tentative

kernel. Therefore, if the new sample xt is too far from the nearest kernel center, one of the kernels

should be replaced with it to adjust to the new sample. In such a case, the least recently or

frequently used (LRFU) kernel is to be replaced with the new one. The LRFU evaluation method

proposed in [15] is an improved version of the LRU page-replacement algorithm for virtual

memory systems on operating systems. Using this evaluationmethod, themost ineffective kernel,

which seems to be unused for a long time interval, is replaced with the new kernel. To realize this

evaluation, a variable that represents the value of each kernel is introduced. Let Ci be the value of

the i-th kernel.When the i-th kernel centroid is the closest to current sample xt,Ci is enlarged, but is

decreased, otherwise. Therefore, for each round, the following equation is executed.
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Ci ¼
Ci þ 1, i ¼ nt

ηCi, i 6¼ nt
;

�

(16)

where η ¼ 1� E, E≪ 1. Then, the j∗ ¼ argminiCi kernel is to be replaced with the new kernel.

Therefore,

xj∗ ¼ xt , wj∗ ¼ Δ, Cj∗ ¼ 1, yj∗ ¼ yt (17)

hx determines the width of each kernel. The performance of the system is also sensitive to this

value, so we have to set this value carefully. In a previous study [16], the optimal value of hx for

a standard distribution was derived as

hx ¼
4

dþ 2

� � 1
dþ4

n�
1

dþ4, (18)

where d ¼ dim xtð Þ is the dimension of the input vector and n is the number of samples. In this

study, the number of samples is unknown. However, the number of kernels are bounded to the

budgetB so that n ¼ B.Equation (18), however, cannot beused forpractical applications. Therefore,

we should consider a scaling factor for (18). To this end, in this study,we rewrite (18) as follows.

hx ¼ v0∙
4

dþ 2

� � 1
dþ4

n�
1

dþ4, (19)

where v0 denotes the scaling factor and was set to 0.3 in this simulation described in Section 4.

Actually, in the simulation described in Section 4, each input dimension was normalized before

the execution of the modal regression. Concretely, each element of xt of modal regressor was

multiplied by a gain gi to make the range of the ith element of xt be gixti










 ≤ 1. The output from

the modal regressor (20) was divided by the corresponding gain y ¼ y=go. For simplicity,

however, following text omit the description of these gains.

The regression output is also delivered by the PMS method described in (8). In this model, the

PMS method should account for the extension parameter Wi. To this end, this method also uses

the weighted PMS method as is done in our previous work [12]. Note that (20) includes the

extension parameter Wi in both the numerator and the denominator.

ynew  

P

i yoldW iK
yold�yij j

hy

� �

K x�xik k
hx

� �

P

jW jK
yold�yjj j

hy

� �

K
x�xjk k
hx

� � (20)

The weighted PMS should be repeated by substituting derived ynew to yold until it converges

to a certain value. In the computer simulation described in Section 4, the weighted PMS was

repeated 10 times for every initial point. This process is executed for all initial values of yold to

obtain all local peaks. The simplest way to set the initial points is choosing uniform random

initial values for yold. However, the random initial values usually make some unexpected
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converged values for y. To more appropriately set up the initial value y0, the proposed

method chooses the initial value as the corresponding element of each kernel center. There-

fore, let us assume that a kernel center xi is similar to the current input. Then, the initial value

should be y0 ¼ xij, where j is the corresponding unknown dimension. The set of such kernel

centers is

Sactive � ijexp
X

j 6¼unknown

� xij � xtj
� �2

h2x

 !

> θinit

( )

, (21)

where θinit denotes the threshold for choosing the kernel. The above equation does not contain

the distance calculation for the unknown dimension. The initial values for y0are

y0 ¼ xk unknown where k∈ Sinit: (22)

3.2.3. An example of the modal regression outputs

The modal regression approximates multivalued functions. As an example, Figure 6 shows the

regression output for 800 sets of third-order synthetic data with 50 kernels. We can observe

that the proposed method partly approximates multivalued function.

3.3. Whole algorithm

Algorithms 1–4 are presented below. Note that St in these algorithms shows the averaged

solar irradiation for all clusters. Therefore, solar irradiation is assumed to be sensed by a single

illuminance sensor; thus, the obtained value is the average of the values of both clusters.

The algorithm is roughly divided into two parts: one is the normal P&O part, and the other

deals with searching for the reference voltage using the proposed modal regression. The

second part is executed when the solar irradiation is changed abruptly.

Figure 6. The response for the third-order data. The green curve is the response of the proposed model with 50 kernels.
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To this end, the sensed solar irradiation is statistically analyzed by χestimate St; t0ð Þ, that is chi-

square test for St from the previously changed time t0 till now. If it includes an obvious change,

Algorithm 2 is called to search for an appropriate initial V ref ’s for searching the optimal value

of V ref .Algorithm 2 is the algorithm for searching initial V ref . This algorithm conducts a search

using the proposed modal regressor followed by a search of the initial Vref using the proposed

modified P&O algorithm described by Eq. (2). The reason why it executes an additional search

is that there is a possibility that the modal regressor yields incomplete solution candidates.

Such a situation usually occurs when the modal regressor is in the early stage of learning.

3.4. Computational cost and required memory capacity

The computational cost for the MPPT with modal regression is mainly wasted by the modal

regressor. Hence, let us consider the computational cost for the modal regression. Now, we

assume that the number of kernels in the modal regressor is B and that the number of

dimensions is N: Note that N¼3 because input vector is xt¼ St;Tt;Vref

� �T
. To calculate the

kernel outputs for current input xt , it needs (N+1)B times multiplies and B times of division

and B times of calculation of exp ðÞ. If we assume that the calculation of exp ðÞ is C exp , the

Algorithm 1. Algorithm of the MPPT with modal regression. Note that Vref is referenced by the proportional-integral-

derivative (PID) control thread at each time interval. GetInitialVref() is described in Algorithm 2. learnModalRegressorðÞ is

described in Eqs. (12)–(19).
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computational cost is proportional to B Nþ2þC exp

� �

. Therefore, to derivate a kernel set Sactive

in (21), it needs O Bð Þ. The partial mean shift (20) needs B Nþ8þ2C exp

� �

þB Nþ7þ2C exp

� �

þ1¼B 2Nþ15þ4C exp

� �

þ1. Thus, if the partial mean shift is repeated for M times for each trial,

the total computational power of modal regression is proportional to MB 2Nþ15þ4C exp

� �

þ1.

The computational power required for the learning of the modal-regressor is the cost of

executing (13), (14), and (16). Thus, it needs BNþNþ 2Nþ1ð Þ multiplications. After all, the

computational complexity of the modal regression is O Bð Þ.

The required memory capacity also depends on the number of kernels. Each kernel records the

center of kernel xi, corresponding label yi, the extension parameter W i and the parameter Ci

for the LRFU estimation. As each float variable requires 4 bytes, one kernel requires 4 Nþ2ð Þ

bytes. Thus, the total amount of memory storage for all kernels is 4B Nþ2ð Þ bytes.

The boost converter step ups the voltage of the solar panel string and charges the battery. The

MPPT unit, which includes the proposed method, sends the predicted MPP: Vref to the feed-

back controller. The P-type MOSFET is assumed to be used for making an open circuit in a

short-time interval to get Vmax
pv (see Algorithm 2). As shown in Figure 4, several sets of this

circuit are connected in parallel to the same rechargeable battery.

Algorithm 2. Pseudo code for getting initial reference voltage. ActiveKernelsðÞ is derived by (21). getMPPInitVref ðÞ is

described in Algorithm 3. ModalRegressionðÞ is the five time repeats of the partial mean shift:(8).
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4. Computer simulation

The performance of the proposed MPPT was evaluated via a simulation. Particularly, the con-

vergence speed to MPP is a very important property that should be evaluated. The simulated

circuit comprises a short string of solar panels connected to a boost converter (see Figure 7).

TheMPPTunit sends the reference voltage V ref for the feedback controller, and the boost chopper

circuit adjusts the output voltage of the PV string to V ref . In this simulation, we assume that the

load is a rechargeable battery, whose voltage is kept to a certain constant voltage. Using this load,

each boost converter is not affected by the change in the other converter’s output power.

For simplicity, the simulator of the boost converter simply updates Vpvto be V ref and calculates

the corresponding Ipv by using the photovoltaic model. Therefore, the detailed transient

response of the boost converter was not realized in the simulator.

To realize the simulation, we constructed a simulator of photovoltaics and circuits as the Java

application. The solar irradiation, temperature, and the properties of the solar panels are also

represented in the thread of environment class (see Figure 8).

Algorithm 3. Flowchart for getMPPInitVref().
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Algorithm 4. Flowchart for getting Vmax

pv . Open and close switch denote enabling and disabling the FET in Figure 7.

Figure 7. The circuit for the simulation.
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For simplicity, the strength of solar irradiation and temperatures varies for a certain scenario,

but the effect of the specific heat of the solar panel material was not considered.

The solar panel is a homogeneous two cluster panel such that it has two peaks under partial

shadow conditions. The MPPTwith modal regression is also represented by the MPPT thread

class. The chopper circuit with the feedback controller is assumed to control the output voltage

from the solar panel to V ref , which is assigned by the MPPTunit, within 1 ms. Note that Vref is

yielded by the modified P&Omethod or the modal repressor. Similar to the simulation method

proposed in [10], the chopper circuit is simulated so as to change Ipv. As a result, the series-

connected solar panel simulator yields a new Vpv due to the change in Ipv. The new Vpv is then

sent to the boost converter simulator to calculate the next step.

We have compared the proposed method with the existing models under partial shadow

conditions. For this comparison, the following three models were prepared: MPPT with the

modal regression, the P&O method by changing initial points described in Section 3.1, and

MPPT with PSO. There are various PSO-based MPPT methods [8, 17]. In this simulation, we

prepared a model that is based on the model proposed in [17] because it has a similar

Figure 8. Sequence diagram of the simulator.

Δv: Change in voltage for P&O (Algorithm 1) 0.1

θinit in Eq. (21) 0.9

η in Eq. (16) 0.001

d in Eq. (19) 3

Time interval for changing Vref by P&O, modal regression and PSO (=τ in Algorithm 3) 1 [ms]

Time interval for changing solar irradiation 250 [ms]

Scaling factor v0 in (19) 0.3

Number clusters (¼ C in Algorithm 2). This value should be greater than the actual number of clusters. 3

Table 1. Parameters used in this simulation.
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architecture to ours. The PSO-based MPPT method used in this simulation executes the PSO

optimization when solar irradiation changes is occurred. The condition for detecting solar

irradiation changes was the same as the method described in Section 3.3. The detailed param-

eters used in this simulation are listed in Table 1.

We evaluated the electric power generation behavior of each model. If the generated power is

higher than the others, the model finds MPP faster than the others.

Figure 9 shows a snapshot of the behavior of our proposed MPPT. In this situation, the power-

voltage curve of the solar panel has two peak points. The activated kernel centers of the modal-

regression at this situation are shownas the twogreenpoints1. Theproposedmethod set chooseone

of them as the start point for the MPPT. After that, the modal regression output was used for the

Figure 10. An example of Vpv VS time.

Figure 9. An example of snapshot of the maximum power tracking of the proposed method. The green points are the

center points of the proposed modal regressor, namely the initial MPP candidates (see (21)).

1

The activated kernel centroids without the power element were pointed as the green points. However, the height of the

green points have been set to a certain fixed value for easy seeing.
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initial point for starting the P&Oprocedure. As a result, the proposedmethod finds theMPP faster

than the P&Omethod. The quick search ability is suitable for generating electricity under changing

irradiation. InFigure10, thegreen, blue, andpurple curves showtheVpv of theproposedone,P&O-,

and PSO-based MPPTmethods, respectively. The Vpv of the PSO-based method changes drasti-

cally for approximately 100 ms immediately after the change in solar irradiation. Although the

proposed and P&O methods also change Vpv immediately after the change in solar irradiation,

the changing period is shorter than that of the PSO-based method. Moreover, Vpv of P&O-based

method sometimes needs a time interval to converge to be a steady state. On the contrary, the

proposedmethodmakes Vpv reach the steady state faster than the others.

The magnified Figure 11 shows that the power generation of our proposed method quickly

aliased immediately after the change in solar irradiation, whereas the extended P&O

method gradually converges to the power of the proposed method. The PSO-based MPPT

shows the less power generation than the other methods. In the case of PSO, the results are

greatly affected by the initial points of the particles. In this simulation, we have set the

initial points by uniform random voltages in 0;Vmax
PV

� �

, where VMAX
PV is the open-circuit

voltage of the solar panel string. The initial points should be distributed uniformly in the

interval. However, if the number of particles is small due to the restriction of the device, the

initial point distribution usually becomes to be an unbalanced distribution. As a result, the

quality of the solution is degraded. To check the performances under the various sizes of

kernels or particles, the averaged generated power for the proposed method with 5 and 10

kernels, and the PSO-based MPPT methods with 5 and 10 particles were compared. More-

over, the generated electricity power from the proposed method and the extended P&O

Figure 11. The magnified power curves. Note that the power curve has changed immediately after the change of irradiation.
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methods were compared with two different time intervals of changing solar irradiation.

Table 2 shows the results. We can see that the averaged generated power of the proposed

method of 5 and 10 kernels are almost the same. On the other hand, the PSO-based methods

reduced the power if the size of particles is reduced. The proposed method’s generated

power was also larger than the extended P&O method because the convergence speed is

higher than that of the P&O method. The difference in the generated power is caused by

their different convergence speed. Therefore, if there are fewer changes in solar irradiation,

the difference decreases because the convergence process does not occur. As evidence,

Table 2 shows that if the time interval of changing solar irradiation is 250 ms, the differ-

ences between the two averaged generated power was 1.6 W, whereas the difference was

2 W when the time interval is 200 ms.

5. Conclusion

In this chapter, we proposed a new MPPT method accelerated by modal regression on a

budget, which approximates multivalued functions. The modal regression on a budget is a

simplified version of our previously proposed method, namely limited modal regression [12].

The proposed MPPT method comprises an irradiation sensor, temperature sensor, and modal

regression on a budget. We assume that the irradiation sensor gets the averaged strength of

irradiation of all solar panels. In the case for MPPT of PV strings, the device has to obtain the

highest local peak point from the several peak points in the voltage-power curve. Therefore,

the MPPTdevice with the incomplete sensory input has to approximate a multivalued function

between the sensory inputs and the MPP.

Normally, modal regression estimates provide sample distribution and yield local peak points

that are related to the specified input.

Themodal regression on a budget can approximate such relationships between the sensory inputs

and the MPP’s. The proposed MPPT method is a combination of modal regression on a budget

and a modified (extended) P&O method. The modified P&O method obtains the MPPs even if

there are several local peak points. The obtained MPPs are recorded in the modal regressor.

Time interval for changing solar insolation Method Averaged electricity power

250 ms MPPTwith modal regression (5 kernels) 151.2 W

MPPTwith modal regression (10 kernels) 151.9 W

Extended P&O 150.3 W

MPPTwith PSO (5 particles) 127.1 W

MPPTwith PSO (10 particles) 128.2 W

200 ms MPPTwith modal regression (10 kernels) 151.4 W

Extended P&O 149.4 W

Table 2. Comparison of averaged electricity power generated during the first 200 [s]. The time interval for solar irradiation

change were 250 and 200 [ms].
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The proposed method was evaluated by computer simulation under partial shadow condi-

tions. The simulation results suggest that the MPPTwith modal regressor obtain an MPP faster

than other existing methods such as the MPPTwith PSO. This property is suitable for electric-

ity generation using the solar panels bedded on roads.
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