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Abstract

Organic compounds and materials with photoconductive properties have been studied
for many years because of their importance in many technological applications such as
dye-sensitized solar cells, photodiodes, photoresistors, electronics, biomolecular sensing,
etc. For multiple purposes, such molecules require intense protection from various factors
which can decrease their durability and cause fatigue. Interlocked molecules and macro-
molecules involving photoconductive organic components and various types of
macrocycles, such as cyclodextrins, cyclophanes, or macrocyclic ethers, are promising
candidates for new photoconductivity-related applications. In this chapter, a review in
this emerging research area in materials science and technology is provided. Focus is
placed on photoconductive (poly)rotaxanes and (poly)catenanes. Various types of such
materials and compounds are reviewed, and recent examples are provided. The relation
between their structure and photoconductive behavior is discussed.

Keywords: photoconductivity, interlocked molecules, rotaxanes, catenanes, photocurrent
responses, photosensitivity

1. Introduction

In recent years, a new class of supramolecular assemblies has gained the attention of the

scientific community [1]. Supramolecular chemistry is a rapidly increasing research field which

focuses on the study of complex systems that consist of more than one molecule, where order

originates from the weak, non-covalent binding interactions between different chemical building

blocks [2, 3]. The kinetic and thermodynamic control of covalent bonds has become a challenge

for the synthetic community in order to create discrete molecules performing specific functions.

This has accelerated chemists to attain precise control over kinetic and thermodynamic courses
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utilizing weaker inter- and intramolecular interactions, such as hydrogen bonds, van der Waals

forces, dipole-dipole interactions, etc. Controlling these weak interactions allows for targeted

architectures of new class of molecules containing distinctive kinds of chemical bonds also

known as “mechanical bonds.” Assemblies derived by the aforementioned forces consist of a

distinct number of molecular components that explore mechanical-like movements (output) in

response to pre-definite stimulation (input) [4]. The expression is often more generally applied to

molecules that modestly mimic functions that occur at the macroscopic level. After organization

and assembly, they are capable of linking molecular motions and reactions to complex macro-

scopic functions including actuation and signal modulation enabling “molecular machines.” The

combination and coordination of organic, inorganic, and supramolecular chemistry made it

possible to build various mechanically interlocked molecular architectures (MIMAs). The field

of interlocked molecules is immense, and up to date, research in this field receives high interest

and attention. In 2016, Jean-Pierre Sauvage, Sir J. Fraser Stoddart, and Bernard L. Feringa were

awarded the Nobel Prize in Chemistry for the “design and synthesis of molecular machines.”

The term has become state of the art in nanotechnology where a number of favorably complex

molecular architectures have been investigated intended to construct MIMAs, estimated to fuel

the cutting-edge miniaturization of multifunctional devices (electrical, optical, and chemical) in

the near future. The profound investigation of these architectures is endeavored to proceed

rapidly due to their valuable properties and potential future applications in biomechanics,

molecular electronics, catalysis, drug delivery, electronic materials, and sensing including in

general the targeted design of smart novel materials. Photoconductive multifunctional materials

involving interlockedmolecules andmacromolecules are of high importance as theymight result

in novel hi-tech applications spanning from solar cells and molecular photodiodes to sensing

biological applications. In this chapter, we provide a review to published photoconductive

interlocked molecules and macromolecules, and we indicate the potentials of various classes of

interlocked organic photoconductive dyes.

2. Rotaxanes and catenanes

Molecular machines can be divided into two main categories: synthetic and biological. Large,

synthetic molecular machines refer to molecules that are artificially designed and synthesized,

whereas biological molecular machines are going deep back in history and can be found under

various forms in the nature (transport proteins such as kinesin, myosin, and dynein) [5].

Following a self-assembly process, the formation of large molecular and macromolecular

structures can be achieved. These assemblies are mainly interlocked, and no covalent bond is

responsible for their stability. Stabilizing interaction may be (i) donor/acceptor forces, (ii)

metal/ligand coordination, (iii) hydrogen bonding interactions, (iv) π–π stacking, (v)

solvophobic repulsion, and/or (vi) electrostatic forces. Non-covalent interactions enable new

properties and smart functional materials by the emerging synergy between molecular recog-

nition and advanced chemistry. The introduction of a mechanical bond enters within the well-

recognized chemistry of the subcomponents of supramolecular architectures such as catenanes

and rotaxanes. Catenanes and rotaxanes are among the simplest examples of mechanically

interlocked molecules with nanometer-scale structures [6]. Many of these molecular assemblies
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constitute nanomaterials that have been intensively investigated because of their ability to act

as molecular machines and/or switches by giving controllable and reversible transformations.

The interlocked components can be forced through a combination of chemical, optical, or

electrochemical stimuli to change their orientation with respect to one another [7]. These

reversible transformations may exhibit high response rates to various highly controllable

physical or chemical external stimulations such as pH changes, electricity, light irradiation,

heating or cooling, etc. Rotaxanes and catenanes are promising systems for the construction of

artificial molecular machines. Catenanes were among the first supramolecular structures that

have been reported, in which two or even more cyclic molecules have been mechanically

interlocked together and did not disassembly by any external stimuli [4]. In 1964, the first

catenane was synthesized by Schill and Lüttringhaus [8]. Synthetic strategies were improved

in the late 1980s and beginning of 1990s, in large extent by Stoddart and coworkers [1].

According to the IUPAC nomenclature, [n]catenanes consist of n-interlocked rings. In their

simplest form ([2]catenanes), two rings are non-covalently bound forming a structure like the

one depicted in Figure 1 [11]. One of the most synthetically challenging examples of catenanes

has been reported in 1994 by the group of Stoddart which was composed of five interlocking

macrocycles representing a [5]catenane also known as olympiadane [12].

The disassembly of catenanes into its individual chemical components requires the breaking of

one or more covalent bonds within the mechanically linked molecule. One of their fascinating

functions is their ability to act as molecular machines where within these assemblies one or

more of the macrocyclic ring(s) change position with respect to one another [13]. High syn-

thetic challenges surround the synthesis of catenanes since a macrocyclization reaction is

required in order to achieve the interlocked architecture with attendant competition between

cyclization and oligomerization. In order to overcome this challenge, catenanes are typically

formed under highly diluted conditions which lead consequently to prolonged reaction times,

Figure 1. Symbolic representations of a [2]catenane (A) and a [2]rotaxane (B). (C) Various types of polycatenanes.

Reprinted with permission from Niu and Gibson [9]. (D) Topological alignment in a polyrotaxane. Reprinted with

permission from Yu et al. [10].
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since the association between the ring and a macrocycle precursor is weak which diminishes

yields. Immense amount of work has been published altering the synthetic protocols as well as

introducing a variety of macrocyclic molecules, e.g., crown ethers, cyclophanes, cyclodextrins

(CDs), cucurbituril, calixarene, etc. In contrast to catenanes, rotaxanes are composed of one or

more macrocycles and “dumbbell-shaped” molecule(s) threaded through them. Stoppering

bulky end groups also called “stoppers” prevent disassembly [14]. The word rotaxane is

derived from the Latin words “rota” meaning wheel and “axis” meaning axle. The formal

naming of rotaxanes according to IUPAC rules is [n]rotaxane, where n indicates the number of

chemically independent components in a rotaxane assembly. The simplest form is “[2]

rotaxane” which consists of one macrocycle and one dumbbell-shaped molecule. There are

several interactions that can initiate self-assembly, needed for the formation of these supramo-

lecular structures in a more efficient manner. These interactions may be hydrophobic, hydro-

gen bonding, or donor-acceptor interactions. The strength of these interactions varies, and this

introduces different stability of the formed complexes depending on the nature of interaction,

e.g., Van der Waals forces (2–4 kJ/mol), hydrophobic interactions (4–12 kJ/mol), and hydrogen

bonds (8–40 kJ/mol). When considering the strategies of chemical synthesis of rotaxanes, one

can distinguish three general approaches: Strategy I, threading of a macrocycle onto a rod

molecule and subsequent interaction of the complex formed with the blocking reagents; Strat-

egy II, cyclisation in the presence of compounds having a dumbbell-like structure; and Strat-

egy III, temperature-induced “slipping” of the macrocycle onto bulky terminal groups of the

dumbbell-shaped molecule. Accordingly, mechanically interlocked rotaxanes constitute some

of the most appropriate candidates to serve as molecular switches and machines in the rapidly

developing fields of nanoelectronics and nanoelectromechanical systems (NEMS). Numerous

organic cyclic host compounds such as donor-acceptor complexes [15], crown ether complexes

[16], and hydrogen bonded complexes involving cyclic amides [17] have been used for

rotaxane synthesis. Herein, we shall focus on various rotaxanes and catenanes exhibiting

photoconductive properties.

3. Photoconductivity

Photoconductivity is the phenomenon in which electrical current is generated in materials

under light radiation. When a material such as a semiconductor absorbs photons of sufficient

energy, the electrons in the valence band can be excited, cross the bandgap, and lead to the

formation of electron-hole pairs resulting in increased conductivity (Figure 2). In principle,

photoconductivity is a common physical phenomenon of a material, and it is particularly

prominent in semiconductors due to their small bandgaps. Thus, photoconductivity generates

great interest for the investigation of the electronic structure, transportation properties of

materials, electron-hole pair dynamics, as well as practical applications such as photodetec-

tors, photoresistors, and charge-coupled devices. The classic photoconductive materials con-

sist of doped semiconductors, e.g., Si, Ge and Se [18–20], metal oxides, and sulfides as well as

conductive polymers. Apart from these classic materials, the photoconductivity is also

observed in an ultracold fermionic gas that is trapped in an optical lattice [21] as well as

various organic compounds [22].
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4. Photoconductivity measurements

The most prominent method to measure the photoelectrical properties is xerography (method

shown schematically in Figure 3) [22]. The target sample is mounted and grounded on a sample

holder, which can move forward or backward through a driving chain (Figure 3a). When the

sample is moved to position (2) where the corotron is just above, the sample can be charged

either positively or negatively. When the sample is moved to position (3), its surface potential can

be measured by using an electrometer. A typical scheme of a photodischarge curve produced

using this method is shown in Figure 3b. When the electronic shutter is closed, the sample is

under totally dark conditions, and dark conductivity can bemeasured.When the shutter is open,

the sample can be under exposure of either an intense erase light to measure the residual

potential or a monochromatic light with known intensity to measure the photosensitivity.

This technique is simple and allows for the determination of first-order xerographic properties.

Therefore, it has been widely used in the study and evaluation of photoconductive organic

material properties [22]. Another intensively utilized method to investigate the photoconduc-

tivity of the material is graphically shown in Figure 4. By illuminating the sample with light of

various wavelengths and plotting the current evolutions as a function of time, the generated

photocurrent can be measured as well as different photoeffects [23, 24], e.g., photodoping,

Figure 2. Excitation process leading to photoconductivity in a condensed matter system, in which incoming laser light

(hν) excites an electron to the valence band, leaving a positively charged hole behind.

Figure 3. A schematic of the apparatus (a) and photodischarge curves (b). Reprinted with permission from Law [22].
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photogating, etc. can be well studied. In addition, by tuning the back-gate voltage of the

device, more phenomena such as photoconductive gain effect can also be studied [25].

5. Photoconductive interlocked molecules

5.1. Photoconductive rotaxanes and polyrotaxanes

5.1.1. Why rotaxanes?

Rotaxanation, i.e., the inclusion of an axial molecule in the cavity of a macrocyclic molecule, is

an interesting approach for the design of novel photoconductive materials which can effi-

ciently introduce a number of beneficiary characteristics to these materials. There are different

reasons which could justify why designing rotaxane photoconductive structures can lead to

promising new materials. First of all, the moieties or functional groups which introduce

photoconductivity to a compound are often unstable and chemically labile. The cavities of

suitable macrocycles could offer protection to such entities, and this is vital for the durability

and proper function of a photoconductive compound or material. That is, for instance, the case

of azo dyes and squaraines, the rotaxanes of which will be examined in this chapter. Moreover,

in many cases of photoconductive materials, prevention of intermolecular interactions is

sought after. Encapsulation of photoconductive axial molecules in molecular rings often

reduces the intermolecular interactions such as π–π stacking without hampering the charge

transport. This is especially important in photoluminescent compounds where parallel align-

ment and interaction of π-conjugated molecules are obstacles. In addition to that, the non-

covalent interactions developed between the axial and macrocyclic components in a rotaxane

are overly important as they provide geometry stabilization and optimal orientation of these

components so that charge transfer and transport are efficient. Such interactions are essential

for the photoconductive behavior of a number of viologen-involving rotaxanes bearing

electron-donating counterparts; a few such systems are reviewed herein. Furthermore, the

Figure 4. A schematic of photoconductance experimental setup.
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encapsulation of long conductive/photoconductive macromolecules within macrocycles such

as CDs could result in the development of polyrotaxane molecular wires which, in a similar

fashion to their macroscopic wire analogues, possess a conducting internal and insulating

external part. The insulating part could prevent short-circuit problems in future molecular

circuits involving these wires. The role of the insulating macrocycles in the photoconductivity

of polyrotaxanes is also reviewed in this chapter. The last but substantially beneficiary feature

of the development of photoconductive rotaxanes and polyrotaxanes is multifunctionality. Up

to date a vast number of rotaxanes have been reported undergoing fully controlled shuttle

motions, exhibiting switchability, photo- and electro-chromic, and photoluminescent proper-

ties. Combining one or more of these promising properties with photoconductivity could

result in novel types of materials able to perform multiple functions upon demand.

5.1.2. Azo dyes and rotaxanes thereof

Azo dyes constitute a widely known class of organic pigments with significant industrial

interest. These dyes exist in numerous products of everyday use, ranging from textile and

leather dyeing agents to food colorants and DVD�R/+R disc recording layer materials. All azo

compounds contain one or more units of the azo (–N]N–) chromophore connected to carbon

atoms in both sides. The vast majority of azo dyes bear an azo group coupled to aromatic

substituents such as benzene or naphthalene rings. To date a remarkable number of azo dyes

have been synthesized and characterized [26]. This large number comes as a consequence of

the ease of synthesis of azo compounds mainly relying on azo coupling, which involves an

electrophilic substitution reaction between an aryl diazonium cation and a coupling partner.

Typical coupling partners can be various aromatic compounds possessing electron-donating

groups such as –OH, –OR, or –NR2 functional groups [27]. Numerous rotaxanes comprising

the arylazo units have been also reported [26].

The properties of azo dyes are not merely related to their color/light absorption properties but

also to their vivid photochemistry, as they readily undergo reversible E/Z isomerizations (see

Figure 5) in most of the cases via excitation with near UV or even visible light [28]. The

reversibility as well as the low light energy demand for the accomplishment of this photo-

chemical process renders azo compounds and materials thereof even more attractive for a

number of optoelectronic applications [26–28]. Indeed, this photoreaction has been exploited

in plenty azo-bearing materials including rotaxanes. Murakami et al. described 20 years ago

the first light-driven molecular shuttle based on an azo rotaxane [29]. Deligkiozi et al. have

reported controllable shuttling motions of α-cyclodextrin in [2]rotaxanes bearing a fully conju-

gated arylazo-based linear part [30]. Tian and coworkers reported on an azo-involving light-

driven rotaxane molecular shuttle with dual fluorescence addresses comprising two different

fluorescent naphthalimides and α-CD [31]. Indeed to date numerous other examples of photo-

sensitive azo-involving rotaxanes have been reported [32]. Importantly, many azo compounds

are known to exhibit photoconductive behavior. In 1969, Rau was the first to report the

photoconductive behavior of azo dyes and specifically observed the photocurrents that form

thin layers of a simple azo compound: l-(phenylazo)-2-naphthol (Figure 5) [33]. Six years after

the pioneering work of Rau, Champ and Shattuck reported the use of chlorodiane blue, a bis-

azo compound (a derivative of 1-(phenylazo)-2-naphthol) as a photogenerating pigment in

xerographic devices [34]. These two early scientific reports initiated a huge endeavor for the
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development of novel azo pigments with photoconductive properties, an endeavor which

continues to date. Many research groups have come out with various photoconductive azo

compounds mostly with structures relative to the parent l-(phenylazo)-2-naphthol, over the

years [22]. The photoconductive behavior of this parent azo pigment is narrowly connected to

its structure and specifically to the hydroxyl azo/ketohydrazone tautomerism that this mole-

cule and its derivatives exhibit (Figure 5) [22].

Nonetheless, there are also recent reports of photoconductive azo dyes with structure different

from the “inspiring” structure of l-(phenylazo)-2-naphthol. Recently, Deligkiozi et al. observed

photocurrents from a [2]rotaxane of an azobenzene-based dye encapsulated in α-cyclodextrin

(α-CD) as shown in Figure 6 [35]. The photoconductivity of this interlocked azo dye measured

using a wet method [35] was proved to be significantly higher than its α-CD-free precursor.

The aforementioned [2]rotaxane was one of the first examples of rotaxanes involving an axial

linear part with full π-conjugation [30, 36]. This robust aromatic skeleton provides the α-CD-

free precursor some conductivity even in the dark which is reinforced when the dye is irradi-

ated with white light. Remarkably though, the corresponding [2]rotaxane with α-CD appears

to exhibit a significantly higher photoconductivity than the α-CD-free dye. Here, it is impor-

tant to note that supramolecular insulation provided by α-CD (an insulating compound) is

expected to result in a reduced conductivity of the [2]rotaxane when compared to its α-CD-free

analogue. Yet, Cacialli et al. have shown that CD-encapsulated conductive polyrotaxanes with

poly(para-phenylene) and poly(4,40-diphenylene vinylene) continue to exhibit high conductivity

despite the cyclodextrin insulating impact. It was concluded that cyclodextrin encapsula-

tion inhibits parallel arrangement of the molecules without causing elimination of charge

transport [37].

In the case of [2]rotaxane by Deligkiozi et al., photoconductivity was rationalized in terms of the

non-covalent interactions of the cavity of α-CD and the encapsulated part of the azobenzene unit

of this compound. These interactions result in stabilization of the geometry of the azobenzene part

of the molecule [35]. Presumably, this stabilizing geometry effect resembles the corresponding

effect observed in the case of the tautomeric l-(phenylazo)-2-naphthol derivatives (Figure 5).

Figure 5. Scheme depicting the reversible E/Z isomerization of azobenzene (upper panel). The hydroxyl azo/ketohydrazone

tautomerism of l-(phenylazo)-2-naphthol (lower panel).
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The supramolecular insulation provided by encapsulation of an azo dye in α-CD has been

earlier utilized by Haque et al. [38]. In their work they managed to thread π-conjugated tri-azo

dye molecules through α-CD and then immobilize the resulting [2]rotaxanes onto nanocrys-

talline TiO2 films (Figure 7). Transient absorption spectroscopy experiments supported that

charge recombination was considerably retarded in the case of the as formed TiO2 films when

compared to non encapsulated dyes. This finding is very stimulating as it indicates that

photocurrents are still generated by the conjugated encapsulated molecules, while the insulat-

ing α-CD part maintains a slow charge recombination. In the light of that, these photoconduc-

tive interlocked azo compounds are considered as promising for dye-sensitized solar cell

(DSSC) applications [39].

5.1.3. Viologen-involving rotaxanes

Viologens constitute a class of heterocyclic compounds with remarkable properties [40]. They

are 4,40-bipyridine derivatives having both their nitrogen atoms quaternized, i.e., they are

substituted by a chemical group which is often an aliphatic chain or an aryl group (see

Figure 8) [40]. Due to their intense electron withdrawing (EW) character, aromaticity, as well

as photo- and electro-active nature, they have been utilized as key components in a vast

number of new materials [40, 42]. Viologens are also well known for their intense

electrochromism which is attributed to the reversible one-electron reduction they readily

undergo electrochemically or by means of reducing agents. They readily form charge transfer

complexes (CTCs) with a variety of electron-donating species, e.g., ferrocyanides [43],

tetrathiafulvalene (TTF) derivatives [41], as well as phenols [44]. In these complexes charge is

reversibly transferred from the electron-donating part to the viologen upon absorption of

visible light. Because of that, CTCs are colorful compounds and very photosensitive. Today,

there is clear evidence that CTCs involving viologens exhibit photoconductive properties. This

is, for instance, the case in some recent reported viologen/TTF CTCs (see Figure 8). Huo et al.

observed marked photocurrent responses directly from such crystalline CTCs or from

Figure 6. The chemical structure of the tetracationic part of the [2]rotaxane by Deligkiozi et al. [35] (lower panel) and that

of the tetracationic linear α-CD-free precursor (upper panel).
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prepared film electrodes involving the CTCs depicted in Figure 8. A large number of rotaxanes

involving viologens have also been reported exhibiting donor-acceptor interactions in which

viologens play an important role as strong EW species [32, 45]. In these rotaxanes, viologen

units are encountered either as parts of the axial or as parts of the macrocyclic components. In

the latter class of rotaxanes, they are often used in cyclophane structures (see Figure 9). Such

rotaxanes are considered for high-tech applications due to the ease of control of their function

through electrical or light triggering. Feng et al. have achieved reproducible nanorecording on

rotaxane thin films comprising TTF-involving axial and viologen cyclophane components [47].

A few years ago, Sheeney-Haj-Ichia and Willner reported that pseudorotaxane monolayers

comprising viologen cyclophane units exhibit photocurrents eightfold higher than the ones

observed in the case of the control monolayers lacking the viologen component (Figure 9) [46].

These significantly amplified photocurrents observed in the pseudorotaxane assembly were attrib-

uted to vectorial electron transfer of photoexcited conduction-band electrons to the strong electron

accepting component. According to the authors [46], this fact leads to charge separation and

retardation of electron-hole recombination. This finding is also in line with the photoconductive

character of viologen CTCs and indicates that interlocked molecules and macromolecules

comprising viologen CTC entities are promising materials with potential photoconductive

properties.

In 2007 Saha et al. [48] reported on a redox-driven multicomponent rotaxane shuttle compris-

ing a linear component which involved TTF, a naphthyl ether, and a porphyrin. The macrocy-

clic component employed was the same bis-viologen cyclophane utilized by Sheeney-Haj-Ichia

andWillner [46]. C60 was utilized as a strong electron acceptor/bulk ending group. The authors

emphasized that such donor-chromophore-acceptor system could generate photocurrents.

This example constitutes one interesting case of a multifunctional material with potential

photoconductive properties being able to also function as a molecular shuttle.

Figure 7. Schematic representation of the α-CD-encapsulated tri-azo dye onto TiO2 nanocrystalline films utilized by

Haque et al. (see Ref. [38]).
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5.1.4. Squaraine rotaxanes

Squaraine compounds constitute a widely known class of organic photoconductive compounds

[22]. It was as early as 1966 when Sprenger and Ziegenbein reported the synthesis of intensely

colored compounds derived from squaric acid (see Structure I in Figure 10) [49]. It was observed

that the compound produced is characterized by a unique electronic structure resulting in

interesting properties. Many relative compounds were subsequently synthesized. These fascinat-

ing compounds bear an internal donor-acceptor-donor (D-A-D) structure which can be

represented through the resonance structures depicted in Figure 10 [22, 50]. Around 40 years

ago, Schmidt proposed the name squaraine for these compounds [22]. In 1974 Champ and

Shattuck were the first to report the photoconductive properties of squaraine dyes [51]. They

revealed that squaraines are able to generate electron-hole pairs in bilayer xerographic devices

through light irradiation [51]. Awhile before this report, squaraines had already been proposed

as sensitizers for ZnO photoconductors [52]. As mentioned squaraines are deeply colored com-

pounds, and their absorption and emission are situated in the deep-red and near-infrared (NIR)

Figure 8. (A) Scheme representing the reversible one-electron reduction of a viologen dication comprising two different

substituents (R and R0). (B) Scheme depicting the formation of photoconductive CTC complexes of a group of viologens

and a dianionic TTF derivative according to Huo et al. [41]. (C) The photocurrent responses observed from the CTCs of

middle panel, measured in crystals of the CTCs (left) and in thin-film electrodes (right). Plots of panel (C) reprinted with

permission from Huo et al. [41].
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region [50]. These features along with their photoconductivity render squaraines important

candidates for DSSC applications. In these technologies novel sensitizers absorbing in NIR

wavelength region are required in order to boost the photoconversion efficiency. Indeed Yum

et al. reported a photoconversion efficiency as high as 4.5% when using an unsymmetric

squaraine dye (structure III depicted in Figure 11B) [54]. This work essentially indicated that

squaraines are useful candidates for DSSC (details in Figure 11). Apart from marked photocon-

ductive compounds, squaraines are generally very photosensitive and fluorescent [50].

Figure 9. (A) Illustration of the setup used by Sheeney-Haj-Ichia and Willner without cyclophane. (B) The setup after

inclusion in a tetracationic cyclophane. (C) Plot depicting the photocurrent response observed for the system in panel A

(solid line) and that in panel B (dashed line) vs. the irradiation wavelength. Plot of panel (C) reprinted with permission

from Sheeney-Haj-Ichia and Willner [46].

Figure 10. (A) The resonance structures of squaraines (Ia–c). (B) A squaraine rotaxane involving an amide macrocycle.
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All these features are narrowly connected to their electronic structure, and they are essential

for a vast number of imaging applications [50]. A significant drawback of squaraines is their

instability against strong nucleophiles as well as their aggregation propensity which pulls

down their fluorescence and potentially photoconductivity. These problems can be solved by

the use of protecting threading macrocycles, i.e., through rotaxanation of the sensitive core.

This approach was first employed by Leigh and coworkers who managed to synthesize [2]

rotaxanes utilizing normal squaraine structures and suitable amide-macrocyclic compounds

(Figure 10B) [55, 56]. The as structured rotaxanes are characterized by significantly higher

chemical and photophysical stabilities than the non encapsulated squaraines. This revolution-

ary study inspired a lot of other research groups to design and synthesize a wide variety of

squaraine-based rotaxanes with potentials in a number of applications [50]. The corresponding

rotaxanes do not hamper the properties of squaraines, but instead the properties are retained

or even improved. Due to their high photoconductivity, promising performance in DSSC

applications as well as other biologically relevant applications of rotaxanes of squaraines, their

use is currently seriously considered.

5.1.5. Photoconductive polyrotaxanes

In recent years there is an increasing interest in the design and synthesis/fabrication of

molecular wires, i.e., conductive conjugated polymers of high conductivity. Even though

the research endeavors to develop molecular wires were initiated theoretically already in

the 1940s using quantum mechanics [57], there is today a tremendous interest in this type

of nanosized wires for a range of high-tech applications. In such systems prevention of

short circuits could be achieved through threading of a conductive polymer within the

Figure 11. (A) Current-voltage characteristics for a squaraine dye (type (II) with R = C8H17 and R0 = Et) and photocurrent

action spectrum (inset). (B) Chemical structure of squaraine III, (C) frontier orbitals, and (D) charge density of dye III.

Figures in Panels A, C, and D reprinted with permission from [53].
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cavities of insulating (protecting) macrocycles [58]. These polyrotaxane-structured wires

also called insulated molecular wires (IMWs), with nanometer dimensions, could be used

in nanosized circuits [53]. The role of the insulating components (usually α- and β-CDs) is

an important research subject as it clearly affects the conductivity and photoconductivity of

polyrotaxane wires. In 2009 Terao et al. [59] studied a permethylated α-CD (PM-α-CD)

polyrotaxane of a poly(phenylene ethynylene)-based polymer (Figure 12A) and reported

the formation of a prominently insulating organic semiconductor wire exhibiting remark-

ably high hole mobility along the core π-conjugated polymer. They also reported light-

induced currents observed upon excitation at λ = 355 nm (Figure 12A). Terao et al. some

years later [61] based on previous theoretical publications compared experimentally the

charge mobilities of linear and zig-zag polyrotaxanes involving conjugated polymers and

permethylated α-CD.

They reported increased charge mobilities for the zig-zag polymer and confirmed the light-

induced formation of charge carriers in the case of the linear polyrotaxane. However, they

observed that rapid free carrier-formation processes were overlapped in the zig-zag

polyrotaxanes. These stimulating findings indicate that IMWs do exhibit photoconductivity,

but clearly the geometry of the macromolecules affects their photoconductive behavior. Encap-

sulation of a conjugated polymer such as the aforementioned π-conjugated polymer in the

insulating cavities of PM-α-CD leads to increased lifetimes of charged radicals on the conju-

gated core via hindering charge recombination processes [62]. Moreover encapsulation results

in marked fluorescence enhancement in this kind of polyrotaxanes, particularly in the solid

state, suggesting that encapsulation is crucial for the achievement of efficient fluorescence

properties [62]. More recently, Kostromin et al. [60] studied the photovoltaic effect and charge

carrier mobility of some bithiophene conducting polymers, both “bear” and encapsulated in β-

CD units (see Figure 12B). They concluded that the β-CD introduced marked insulation of

Figure 12. (A) Structure of the IMWs studied by Tarao et al. [59] along with the transient absorption spectrum of IMW (I)

after pulse exposure and conductivity transients observed for (I) (blue) and (II) (red) upon 355 nm excitation.

Figures reprinted with permission from [59]. (B) Structure of the conjugated polymer and IMW investigated by Kostromin

et al. [60].
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thiophene fragments of the macromolecule, and this lead to hampering the transport of

carriers which in turn yielded in a limited photovoltaic effect [60].

5.2. Catenanes and polycatenanes

5.2.1. The structure of catenanes and its benefits

Catenanes constitute another important class of interlocked molecules. Just like rotaxanes they

are stabilized through mechanical bonds [9, 32]. Yet, they consist of two or more macrocycles

interlocked in a way that resembles the connectivity of rings in a chain (Latin: catena = chain).

There is a large variety of catenated structures reported to date with numerous applications.

There are various reasons why catenanes could become important candidates for new photo-

conductive materials. As also mentioned for rotaxanes, encapsulation of a sensitive photocon-

ductive moiety or functionality in a molecule could significantly increase the durability of the

material and protect the desired photoconductive properties. Thus, interlocking photoconduc-

tive (or more generally photosensitive) macrocycles could potentially lead to promising stable

catenated materials with optoelectronic applications. Moreover, geometry fixation and proper

orientation in catenanes can give rise to intermolecular interactions (e.g., π–π stacking, etc.)

facilitating efficient charge transfer in such materials. This is a key property which is discussed

in more detail in this chapter. Finally, polycatenanes involving photoconductive parts could be

perfect candidate multifunctional materials, as in such structures one can introduce photocon-

ductivity via embedding repeated photoconductive catenane units in macromolecules with

special properties, e.g., electrical or thermal conductivity, mechanical strength, etc.

5.2.2. Photoconductive catenanes

Even though numerous examples of catenanes and polycatenanes have been reported, there is

a limited number photoconductive catenanes and polycatenanes. However, there is strong

indication that such materials could also exhibit promising photoconductive behavior. The

main types of organic photoconductive molecules utilized in rotaxanes and polyrotaxanes

can be also utilized in catenanes and polycatenanes.

About 15 years ago, Simone [63] reported on the synthesis and characterization of some

polycatenane repeated units of cyclophane connected to thiophene rings (red-colored part

in Figure 13) interlocked with a bis-viologen tetracationic cyclophane (blue-colored species

in Figure 13). This approach involving the aforementioned two cyclophanes was initially

employed by Stoddart and coworkers [15] and is a very popular combination for numerous

rotaxanes and catenanes (see, for instance, the pseudorotaxane in Figure 9). The resulting

polycatenane of Simone and Swager is stabilized through π-stacking between the aromatic

bipyridinium and benzene-1,4-diether rings of the interlocked macrocycles. The catenane in

Figure 13 which is colored green exhibits a charge transfer visible band situated at

λ = 626 nm. This polycatenane as well as another variant was reported to be conductive

(linear part is a π-conjugated polymer) [64] but also to exhibit significant photocurrent

responses [63]. This example constitutes an important case enabling the design of novel

photoconductive polycatenanes.
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It is very important to stress that (poly)catenanes do not exhibit disadvantages when com-

pared to (poly)rotaxanes in terms of their photoconductive behavior/properties. The “strate-

gies” for photocurrent generation are essentially the same for both classes of interlocked

(macro)molecules. The downside in the case of (poly)catenanes can sometimes be the more

tedious synthetic methodology required, when compared to (poly)rotaxanes (see paragraph 2).

To some extent, this might explain the limited number of reported photoconductive (poly)

catenanes. Nevertheless, catenated structures are certainly capable of introducing stability and

shielding of the photoconductive parts. Additionally, catenated structures could potentially

maintain efficient photocurrent generation and slow charge recombination in photoconductive

materials. Thus, they should be considered as promising photoconductive interlocked mate-

rials/compounds, and they should clearly be given more attention.

6. Applications of rotaxanes and catenanes

Rotaxanes and catenanes are gaining more and more attention due to their applicability in

modern technologies. They have been proposed for numerous biological applications such as

smart drug-delivery systems corresponding to anticancer drugs [65, 66], imaging of biological

matter (e.g., mitochondria) [67], or as useful materials for the enhancement of MRI imaging

[68]. Especially, the squarain-involving interlocked molecules described are prominent exam-

ples of fluorescent bio-imaging agents and chemosensors [50]. Furthermore, both types of

interlocked molecules are prominent candidates for new smart future applications acting as

(multi)functional materials and undergoing fully controllable switching, shuttle motions, as

well as molecular motor functions [69–71]. Medium- and photo-responsive interlocked mole-

cules are also currently considered as new sensing materials with various possible applications

[30, 35, 36, 72]. Taking into account the potentials of the photoconductive interlocked molecules

described in this chapter, one could foresee a bright future for new optoelectronic materials,

molecular wires, photoconductors, photovoltaics, and many other novel applications. Especially,

Figure 13. (A) The polycatenane synthesized by Simone [63]. (B) Symbolic representation of the polycatenane in panel A.

(C) Cyclic voltammograms (solid lines) and conductivity profiles (dashed lines) for the polymer lacking the cyclophane

units (colored blue) (i) and polycatenane (ii). Panel C plots reprinted with permission from [64].
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(poly)catenanes and (poly)rotaxanes encompassing CTC units are of high importance as mate-
rials with significant photoconductivity and photosensitivity. It is high time this fascinating class
of interlocked (macro)molecules was given more attention.

7. Conclusion

This chapter has provided a review of the research field of interlocked molecules and macro-
molecules placing emphasis on rotaxanes, catenanes, and polymeric structures thereof. Vari-
ous categories of organic photoconductive rotaxanes and catenanes have been reviewed, and
the main structural and photoconductive characteristics have been provided. The (photo)
conductive properties of the molecules and macromolecules with and without encapsulation
are compared. A range of examples and potential applications has been also provided.
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