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Abstract

For more than a decade, machine learning (ML) and deep learning (DL) techniques have
been a mainstay in the toolset for the analysis of large amounts of weakly correlated or
high-dimensional data. As new technologies for detecting and measuring biochemical
markers from bodily fluid samples (e.g., microfluidics and labs-on-a-chip) revolutionise
the industry of diagnostics and precision medicine, the heterogeneity and complexity of
the acquired data present a growing challenge to their interpretation and usage. In this
chapter, we attempt to review the state of ML and DL fields as applied to the analysis of
liquid biopsy data and summarise the available corpus of techniques and methodologies.

Keywords: machine learning, deep learning, data analysis, biomarker detection,
automated discovery, literature review

1. Introduction

Biological and medical sciences are becoming increasingly data-rich and information-

intensive. This tendency, along with the growing availability of such data, provides a better

understanding of important questions regarding functions of organisms, causes of diseases,

etc. However, both the inherently massive complexity of biological systems and the high

dimensionality and noisiness of data thus acquired can make it remarkably difficult to cor-

rectly infer such mechanisms. Machine learning (ML) and deep learning (DL) techniques are

quickly becoming highly useful tools for solving difficult problems in biology and medicine by

providing mathematical apparatus for analysing vast amounts of information that would

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



otherwise be difficult to process and interpret. Additionally, these fields themselves provide

new challenges for machine learning that can ultimately advance existing ML techniques and

give rise to new ones.

The mutual history of machine learning and biological and medical disciplines is both long

and complex. An early ML technique, the perceptron, was made in attempt to model the

behaviour of biological neurons [1] and was used early on to define the start sites of translation

initiation sequences in E. coli [2], and can be considered the starting point of the entire field of

machine learning. In the last few decades, the power, flexibility, and accessibility of ML and DL

techniques have grown considerably, and it can be expected that they will provide significant

assistance in the discovery and understanding of the mounting volume of biological and

medical data.

In this chapter, we first provide an overview of the commonly usedML and DL techniques and

strategies and outline their broad areas of applicability with regard to processing and analysis

of biological and medical data. Next, we attempt to summarise the available corpus of research

and development concerning the application of ML and DL techniques to the process of

analysis and interpretation of biomedical data, focusing on liquid biopsy analysis, outline

several of the main avenues of such research, and predict the potential improvements and

changes in this highly dynamic and quickly developing field. Expertise in ML is not a prereq-

uisite for this chapter, although we assume basic overall familiarity with the most well-known

ML and DL models, techniques, and methodologies.

2. Machine learning strategies

This overview is limited to classical software-based tools and techniques for brevity’s sake.

Several hardware-based approaches are mentioned in the Future Prospects section.

The ML ecosystem is both extensive and complex [3–5], with many possible ways to subdivide

or classify its members. One frequently used classification scheme outlines two broad groups

of ML algorithms: supervised learning, where the model is presented with both a set of

labelled example inputs and desired outputs (called the training dataset), with the goal to

learn a mapping from inputs to outputs, and unsupervised learning, where no labels are given

to the model, leaving it to learn the input-output mapping in unstructured data. A notable

specific case of supervised learning is reinforcement learning (RL), where training data consists

only of positive (“reward”) and negative (“punishment”) feedback, given according to the

model’s performance in the training environment.

Another informative approach to classifying ML algorithms is based on the desired type of

output of the given model, such as classification (division of the input data into two (binary

classification) or more (multi-label classification) predetermined groups), clustering (similar to

classification but with the groups not known beforehand), dimensionality reduction (simplifi-

cation of high-dimensional input data by mapping them into a lower-dimensional space),

search, etc. Of these, clustering is particularly notable due to its broad and general applicability
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and the wide range of models, methods, and algorithms [6–8] that can be employed to carry

out cluster analysis.

The notion of “cluster” is often not precisely defined and tends to serve as an umbrella term for

various types of data objects, typically groups of data points with small distances (appropri-

ately defined) between group members, higher-density areas of some parameter space, partic-

ular statistical distributions, etc. The desired clustering algorithm, therefore, depends on both

the given data set and the intended application of the returned results. Due to these complica-

tions, clustering, like many other data analysis methods, is typically not fully automated even

within the domain of machine learning but instead tends to partially rely on preprocessing and

initial parameter selection, based on the specifications of the task at hand.

Deep learning is a subclass of machine learning problems, the distinction being based on the

training data representations instead of specific algorithms. Similar to ML in general, deep

learning can be both supervised and unsupervised [9]. Deep learning models tend to be

vaguely similar to information processing patterns in biological brains (and are therefore often

called artificial neural networks), in that they use multiple layers [10] of non-linear processing

units (frequently called “neurons”, even though their similarity to biological neurons is usually

limited) for pattern recognition and transformation, with each successive layer using as inputs

the output from a previous layer, forming a hierarchy of representations and levels of abstrac-

tion. The number of hidden layers of an artificial neural network broadly determines the

“computational power” of the network [11] (Figure 1).

Machine learning models have been applied to a wide variety of fields and problem classes,

including computer vision, natural language processing, machine translation, bioinformatics

and biochemistry [12], with results often similar or superior [13] to those produced by human

domain experts.

Figure 1. The structure of a typical feed-forward deep neural network, with a fully connected input layer I, an unspecified

number of hidden processing layers H, and an output layer O.
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3. Using machine learning techniques in blood tests

3.1. Classifying blood cells with deep convolutional neural networks

An important part of the data acquired by blood tests is the number of white blood cells

(WBCs) or leukocytes, usually differentiated into total and differential WBC count, where the

latter describes the absolute and relative numbers of WBC subtypes (neutrophils, lympho-

cytes, basophils, eosinophils, and monocytes) in the sample. The amount of WBCs in the

sample provides information on the state of the patient’s innate and adaptive immune system,

e.g., a significant changes in the WBC count relative to the patient’s baseline is evidence that

their body is being affected by an antigen, whereas variations in the specific WBC subtypes can

correlate with specific types of antigens or different pathways of immune and inflammatory

reaction. Therefore, detailed measurement and understanding of the WBC counts is an impor-

tant part of the quantitative picture of health and the organism’s general condition.

Traditional methods of estimating the WBC count generally fall into one of two categories—

manual and automated. The historical manual inspection of the blood sample involved

counting the number of cells in a blood sample under a microscope and extrapolating under

the assumption of uniform cell distribution across the entire bloodstream. Automated methods

involve specialised equipment such as Coulter counters [14] or laser flow cytometers [15]

which can provide accurate results and good performance [16] but are generally expensive

and require specialised training to operate.

In this light, the ML-based approach provides a potential improvement over the aforemen-

tioned techniques due to several reasons. First, it requires far less expensive equipment due to

being built around simple imaging solutions. Furthermore, unlike earlier methods, it is able to

provide almost instantaneous results after the initial training stage. Finally, its performance can

be expected to improve over time, in proportion to growing dataset sizes and, being mostly

software-based, it can be expanded and advanced continually and “over the air”, without

requiring extensive changes in the underlying infrastructure.

We illustrate this approach using an example problem provided by Athelas team [17], namely,

binary classification of a stained image of a WBC as either polymorphonuclear or mononu-

clear.1 The training dataset consisted of hand-labelled images of stained WBCs of all given

types in various proportions. Before the dataset could be used, several preprocessing steps

were taken, including removing images with multiple cells and using transformations such as

flips and rotations in order to increase the size and variability of the training dataset. By using

transformed versions of the images, the training dataset size was increased from approxi-

mately 350 to 104.

For the ML model, Athelas team used the LeNet-5 [18] convolutional neural network (CNN) [3,

4, 9] due to its simplicity and availability. The model was tested against a test dataset of 71

images (20% of the original training set and 0.7% of the training set after transformations), with

1

Eosinophils, basophils, and neutrophils are polymorphonuclear, while lymphocytes and monocytes are mononuclear.
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the high accuracy of 98.6%. While the presently used model performs less well (accuracy of

86%) when classifying WBCs into multiple individual type categories as opposed to binary

classification, given the high performance and simplicity of this purely software-based

approach, Athelas team plans to extend it to more complex problems, including datasets contai-

ning other cell types, which could enable faster improvement cycles, increased accessibility, and

better patient outcomes, compared to previously used methods of cell count analysis.

3.2. Using deep neural networks for detection of ageing-related biomarkers

During the last decade, human ageing research has received an increasing amount of main-

stream interdisciplinary attention [19, 20], with an emerging tendency to approach various

aspects of the natural ageing process as potentially treatable conditions.

Insilico team developed a DL system designed to predict human chronological age from

biochemical data obtained from a basic blood test [21], narrowing an extensive set of potential

ageing-related biomarkers to a limited subset of the most salient ones. A dataset of > 6� 104

records was used, with each record consisting of a patient’s age, sex, and 46 blood biochemical

markers. The dataset was preprocessed, normalising all blood marker values to 0–1 range, and

then split into training and test datasets with ratio 90:10.

An ensemble of 21 feed-forward deep neural networks (DNNs) was created as the ML model,

with a range of values assigned to DNN parameters such as the number of hidden layers, the

number of processing units per layer, activation function, and optimization and regularisation

methods. The permutation feature importance method [22] was used to evaluate the relative

importance of the various biochemical markers with regard to ensemble accuracy. Batch

normalisation [23] was used to reduce the effects of overfitting and increase the stability of

convergence of the models.

The best results were obtained from a DNN with five hidden layers, using regularised mean

squared error (MSE) function as the loss function, parametric rectified linear unit (PReLU) [24]

activation function in each layer, and AdaGrad [25] optimiser of the loss function. The highest-

scoring DNN performed with 82% ε-prediction accuracy at ε ¼ 10 (i.e., considering the sample

as correctly recognised if the predicted age is �10 years of the true age), out-performing

several classes of competing ML models. Multiple models for combining individual DNNs

into an ensemble (stacking) were evaluated, with the best being the elastic net model [26]. The

most important blood markers were discovered to be albumin, glucose, alkaline phosphatase,

urea, and erythrocyte count.

Insilico team created an online service (http://www.aging.ai) to make the DNN ensemble

available to the general public, allowing patients to use their blood test data to evaluate the

age prediction system and serving as a proof of concept for estimating ageing-related variables

using readily available biochemical data. Additional data sources, including transcriptomic

and metabolomic markers from liquid and individual organ biopsies, as well as imaging data,

are being considered. Insilico team suggests that similar systems could also be developed for

model organisms in order to perform cross-species analysis of individual biological markers

and their importance in predicting both chronological and biological age.
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3.3. Machine learning-based approach to Alzheimer disease biomarker discovery

In their study, Smalheiser team has developed [27] a ML-based model for predicting Alzheimer

disease (AD) status of individual samples with high accuracy, using miRNAs and other small

RNAs extracted from circulating exosomes obtained from liquid biopsy (blood plasma)

samples.

A sample set of N ¼ 70 was used to construct the training dataset consisting of normalised

miRNA expression data across 465 loci. Cross-validation was used in feature selection to

evaluate the impact of values from specific loci as features. The samples were randomly

divided into 7 partitions of 5 positive and 5 negative samples each and cross-validation was

performed on these partitions, using 6 partitions for training and 1 for evaluation. The random

partitioning was repeated 10 times in order to acquire 70 estimate points of the performance

measures of interest, one for each sample in the set. These values were averaged and their

relative performance was assessed using area under the curve of the receiver operating curve

(ROC), Matthews correlation coefficient (MCC) [28], and F1 score.

Smalheiser team evaluated three different ML classifier algorithms—C4.5 decision trees [29]

(using the J48 implementation), support vector machines (SVMs) [30], and adaptive boosting

(AdaBoost) [31]. After selecting 50 most significant features, as per Mann-Whitney U test [32],

the C4.5 classifier produced the best results, based on which it was selected as the feature

selection method. The feature significance was measured by the number of times the given

miRNA locus was used as a node in the decision tree over the 70 runs. The 18 highest-scoring

features were selected to move on to the next step. AdaBoost algorithm was used for the final

feature selection from the set of 18 features, producing an optimised set of 7 features which

were then used with all 70 data samples to produce the final dataset.

The best model used by Smalheiser team was able to correctly classify, on average, 29 out of 35

samples from the AD group and 31 out of 35 samples from the control group, yielding

accuracy in the range of 83–89%. Smalheiser team concluded that ML-based classifiers are able

to produce highly accurate predictions of AD occurrence, using a dataset of only 7 miRNAs

and that integrating exosome miRNA data with other data is likely to further increase perfor-

mance of these models.

3.4. Detection and classification of circulating tumour cells using machine learning

methods

The presence of circulating tumour cells (CTCs) in blood samples indicates the tumour

response to chemotherapeutic drugs and contributes to the mechanism for subsequent growth

of derived tumours (metastasisation) in distant tissues. Evaluation of CTCs can yield the

diagnosis or help to follow the tumour response to chemotherapeutic drugs.

Mao team designed a deep (six layers) CNN for image-based circulating tumour cell detection

with automatically learned network parameters [33]. They used a dataset of 45 phase contrast

microscopy [34, 35] images, of which 35 randomly selected images were used for training and

the remaining 10 for testing the network. The experiment was repeated 5 times in order to

minimise network bias.
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The CNN received normalised 40� 40 pixel images as input. They were passed to a layer of 6

convolutional filters with the size of 5� 5, followed by a max-pooling layer in order to extract

the local signal in every 2� 2 pixel region, defined by the max-pooling function,

zip,q ¼ max
0 ≤m, n ≤ 2

yi2�pþm,2�qþn

n o

, (1)

where p; qð Þ—pixel coordinates, y—input map, z—output map. This layer was followed by

another convolutional filter layer, consisting of 12 filters, and, subsequently, by another max-

pooling layer. The last layer was fully connected to the output layer by way of dot product

between the weight and input vectors, passed to the sigmoid function which maps the values

to the �1; 1½ � range. The filter parameters, network bias terms, and weight matrices were

automatically adjusted by backpropagation with learning rate set to 0:1.

Mao team compared their CNN-based classifier to a simpler, SVM-based method that

depended on hand-crafted feature sets. Using the F-score (harmonic mean of precision and

recall scores) as the comparison metric, they found that, after two rounds of five iterations, the

F-score of the CNN-based classifier was 0.97, by 18.6 points exceeding the F-score (0.784) of the

SVM-based classifier and hand-crafted feature set. They concluded that the CNN-based classi-

fier presents a promising development towards automated CTC detection in images taken

from blood samples, and that the technique could be adapted for use with microfluidics-

based liquid biopsy platforms for early diagnosis and monitoring.

4. Cancer detection and monitoring using neural network-based

methods

4.1. Using artificial neural networks for lung cancer detection and diagnosis

Goryński team describes [36] an artificial neural network (ANN)-based model class used for

early detection and diagnosis of lung cancer. In their study, a dataset consisting of a wide range

of biochemical parameters obtained from blood samples, as well as results from medical

interviews (48 values in total) from 193 patients of mixed age and sex was used to train a

family of 10 multilayer perceptron network (MLP) [3, 4] architectures, using a range of activa-

tion functions (linear, logistic, and tanh) for both hidden and output layers, as well as varying

number of processing units (“neurons”) in the hidden layer and different training algorithms

(gradient descent, Broyden-Fletcher-Goldfarb-Shanno (BFGS) [37], and scaled conjugate gra-

dient (SCG)) [38].

Goryński team found that two of the trained models, named MLP 48–9-22 (trained using BFGS

algorithm and using linear and tanh activation functions for hidden and output layers, respec-

tively) and MLP 48–15-2 (SCG algorithm, logistic and tanh activation functions) gave highly

2

The naming scheme represents the number of “neurons” in the input, hidden, and output layers of the MLP model,

respectively.
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accurate results in terms of inferring the presence or absence of lung cancer from the given set

of variables, with ROC value reaching 99.83%.

Goryński team concluded that these, relatively simple, ANN solutions, while not viable as a full

substitute of expert opinion, are nonetheless efficient in early diagnosis and risk prognosis of

lung cancer and therefore are promising as potential improvements over and additions to the

existing inventory of diagnostic and prognostic methods.

4.2. Mutation prediction and early lung cancer detection in liquid biopsy using

convolutional neural networks

The proliferation of cancer cells is driven by specific somatic mutations in the cancer genome

[39]. To fulfil the high expectations associated with liquid biopsy, such as comprehensive

characteristics of the whole tumour in contrast to limited sampling in the traditional tissue

biopsy, or dynamic assessment during treatment, the somatic mutations must be detected with

high sensitivity and accuracy; limited coverage depth is not sufficient. Kothen-Hill team has

demonstrated a CNN-based classifier system named “Kittyhawk” [40] that enables the detec-

tion of cancer-related mutations even in extremely low variant allele frequencies (VAFs), more

than 2 orders of magnitude lower than is possible with the currently available methods.

For training dataset, whole genome sequencing (WGS) data from 4 non-small cell lung cancer

(NSCLC) patients and 3 melanoma patients were used, with > 1:2� 107 reads in total. To

ensure adequate genetic context regardless of variants appearing at the end of the read,

additional bases were added to both ends of the read. Additional bases were also added to

ensure equal read length in cases where a read is shorter than 150 bp.

Kothen-Hill team chose an 8-layer CNN with a single fully connected output layer, similar to

the VGG3 architecture [41], with a perceptive field of size 3 used to convolve the features, based

on results of [42] who showed that the tri-nucleotide context contains distinct mutagenesis-

related signatures. After 2 successive convolutional layers, downsampling by max-pooling

with a receptive field of 2 and a stride of 2 was applied, forcing the model to retain only the

highest-importance features, as per [43]. The output of the last convolutional layer was directly

connected to a fully connected sigmoid output layer for final classification. A logistic regres-

sion layer was used to retain the features associated with the position of the read.

The model was trained using minibatch stochastic gradient decent (SGD) with batch size of

256, initial learning rate of 0.1, and momentum of 0.9, with batch normalisation [23] and a

rectified linear unit (RLU) [44] applied after each convolutional layer.

Kothen-Hill team presents the Kittyhawk architecture as a first of its specific kind, being able to

avoid the information loss associated with similar earlier architectures. To evaluate the perfor-

mance of the model, a test dataset consisting of > 2� 105 reads that were split off the training

set of reads from the 4 NSCLC patients was used. Kothen-Hill team found that the model

achieves F1 accuracy of 0.961 when using this test dataset, and 0.92 when using data from an

3

A CNN architecture developed by the Visual Geometry Group at University of Oxford.
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additional independent NSCLC case. When further tested against data from a melanoma case,

F1 accuracy of 0.71 was achieved, indicating that the model had learned specific mutation

patterns associated with NSCLC, as well as a more general pattern associated with both

NSCLC and melanoma.

Kothen-Hill team presents the Kittyhawk CNN model as the first ML architecture designed

specifically for detecting cancer-related mutations in a low allele frequency environment, such

as liquid biopsy and might serve as the foundation for novel early stage cancer detection

techniques that could be used for both screening and prognosis.

4.3. Machine learning and nanofluidics in pancreatic cancer diagnosis

Issadore team has developed a ML-based platform [45] for isolating exosomes from liquid

biopsy samples and, using the RNA inside these exosomes to diagnose pancreatic cancer in

human and murine cohorts.

Using the Exosome Track-Etched Magnetic Nanopore (ExoTENPO) nanofluidics chip developed

as part of the study, Issadore team successfully isolated exosomes from cell cultures, as well as

human and mouse liquid biopsy (blood plasma) samples. Exosomal mRNA was subsequently

extracted and used to develop a predictive panel for pancreatic cancer biomarkers.

Training datasets of 15 mouse and 10 patient profiles, respectively, were created. Linear

discriminant analysis (LDA) [46] was used to identify combinations of mRNA profile that

discriminated between healthy and tumour-bearing samples. The prediction algorithm was

generated by running LDA on the training set, which produced a vector that was used to

calculate a weighted sum such that it maximally separates the control group from the sample

group with tumours. Two independent blinded test sets, mouse (N ¼ 18) and patient (N ¼ 34),

respectively, were used to evaluate the performance of the LDA classifier. Fisher’s exact test

was used to quantify the predictive value of the classifier, yielding P < 0:001.

Although in their study Issadore team focused primarily on the development and evaluation of

the ExoTENPO nanofluidics platform, they conclude that even very simple ML algorithms

such as LDA can produce good quality predictive models for classifying biochemical and

genetic markers and note that more advanced ML solutions could be used in future research

in order to further improve performance.

4.4. Machine learning-based RNA sequencing for multi-class cancer diagnostics

Wurdinger team demonstrated a ML-based approach to sequencing and analysis of mRNAs

obtained from tumour-educated platelets (TEPs) [47] as a tool for accurate tumour diagnosis,

both within a single class and across six different tumour classes.

The initial dataset consisted of blood platelet samples from healthy donors (N ¼ 55) and both

treated and untreated patients with six different tumour types (NSCLC, colorectal cancer,

glioblastoma, pancreatic cancer, hepatobiliary cancer, and breast cancer) in various stages of

advancement and metastasis (N ¼ 228). After the mRNA extraction, amplification, and

sequencing, a set of approximately 5000 different mRNAs was selected for further analysis.
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The accuracy of TEP-based multi-class cancer classification in the training dataset (N ¼ 175)

was estimated, using an SVM algorithm. To cross-validate the SVM for the entire sample set,

leave-one-out cross-validation (LOOCV) method was applied. The percentage of correct pre-

dictions was reported as the accuracy score. The algorithm was performed 175 times, in order

to classify and cross-validate the entire dataset. To determine specific input gene lists for the

algorithm, Wurdinger team performed ANOVA testing. They selected a set of 1072 mRNAs to

use with the training dataset, yielding final accuracy of 96% and ROC value of 0.986. From the

patient cohort, all 39 patients with localised tumours and 33 of the 39 patients with primary

tumours in the CNS were classified as cancer patients.

Wurdinger team concluded that using the SVM classifier with TEP-based data produces high-

accuracy, high-specificity models for liquid biopsy-based diagnostics for several common

cancer types. They expect that using more advanced ML algorithms capable of self-learning

could further improve the performance of these diagnostic models. They also suggest evaluat-

ing systemic factors such as inflammatory diseases and other non-cancerous diseases as poten-

tial factors that can influence the mRNA profile.

5. Using machine learning to accelerate DNA sequencing and biomarker

development

5.1. A supervised machine learning-based approach to DNA sequence analysis

DNA sequencing and sequence analysis is an important task in many scientific and medical

fields that is well-known for being both data-rich and computationally intensive. Memeti &

Pllana describe a ML-based solution for optimised DNA sequence analysis [48, 49]. Their

algorithm leverages the increased performance and parallelisation capabilities of heteroge-

neous (a host central processor (CPU) in combination with a 61-core Intel Xeon Phi co-

processor) multi-core computing platform.

Memeti & Pllana used the widely known Aho-Corasick (AC) algorithm [50] as the basis for

their work, since DNA analysis is a specific case of a string matching problem, where the input

text is the given DNA sequence and the alphabet consists of characters corresponding to the

four nucleotide bases. AC uses finite automata (FA), a simple type of formal machine in the

form of a prefix tree with additional links between internal nodes. These links allow for fast

failure transitions (also known as ε-transitions) between branches of the tree that share a

common prefix, thus avoiding backtracking. A known drawback of the AC algorithm is its

being non-deterministic. Memeti & Pllana solved the non-determinism issue by modifying the

AC finite automaton so that it computes the correct transition for each state, thus eliminating

failure transitions and guaranteeing that every character always has the same number of

operations associated with it.

A boosted decision tree regression-based predictor [51] was used to estimate the execution

time of DNA sequence analysis for both the host CPU and the Intel Xeon Phi co-processor. The

predictor’s output was used to partition the DNA sequence based on the S-factor,
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S ¼
Thost

Tdevice
, (2)

where Thost and Tdevice are execution times for the host CPU and the co-processor, respectively,

and using the partitioning scheme

Ihost ¼ I � Idevice (3)

Idevice ¼
I

Sþ 1
, (4)

where I is the original DNA sequence, Ihost is the part of I analysed by the host CPU, and Idevice
is the part of I analysed by the co-processor.

Memeti& Pllana used the “single instruction, multiple data” (SIMD) parallelism [52] of both the

host CPU and the Xeon Phi co-processor to achieve teraFLOP (1012 floating point operations

per second) performance. For experimental evaluation of their deterministic finite automata

(DFA) algorithm, Memeti & Pllana used reference genomes of human and 11 different animals

from the GenBank sequence database of the National Center for Biological Information, with

the average dataset size of 2043 MB. In total, data from approximately 4000 experiments was

used to train the performance predictor and to evaluate the DFA performance. The DFA

performance was evaluated using different thread affinity modes (compact, balanced, and scat-

ter) and numbers of threads for each of the DNA sequences. The balanced thread affinity mode

evenly distributes the threads among the computing cores, compact mode completely fills a

single core with threads before assigning the remaining threads to the next core, while the

scatter mode distributes threads among the cores in a round-robin sequence.

Memeti & Pllana discovered that the balanced thread affinity mode is overall fastest for all of

the tested DNA sequences, with second best being the scatter mode. The evaluation of DFA

with regard to varying thread counts showed that the algorithm scales well up to approxi-

mately 120 threads, whereas in the 180–240 thread range the performance improvement

becomes modest due to overhead from thread management operations. Performance-wise,

Memeti & Pllana found that the parallel version of DFA running on a heterogeneous platform

has a speed-up from 35:6� up to 206:6�, compared to a sequential (single-thread) version

running on the host CPU, with the exact speed-up degree depending on the given host CPU.

Memeti & Pllana. intend to use this work to study and develop highly parallel DNA analysis

solutions on more powerful hardware in the future.

6. Future prospects

While the ML models currently used in liquid biopsy analysis in particular and biological and

medical research in general (typically different classes of neural networks and linear classifiers)

appear to both produce accurate results and show generally high performance, they represent

only a narrow subset of machine learning and artificial intelligence solutions [5]. For instance,
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a potentially valuable research direction might be in the form of highly advanced probabilistic

graphical models [53] augmented with functionality such as one-shot learning [54] and prob-

abilistic program synthesis [55], which could potentially allow researchers to reduce the size of

the commonly massive training datasets required for creating ANN- or DL-based models.

Furthermore, with a single exception, all of the studies reviewed here have been focused on the

performance and accuracy of software ML models, which is currently the predominant class of

machine learning solutions. However, recent advances in general purpose computation using

both graphics processing units (GPUs) and specialised application-specific integrated circuits

(ASICs) tailor-made for machine learning [56] provide a strong case for the exploration and

exploitation of hardware or hybrid ML solutions, as evidenced by, e.g., the results from the

AlphaGo experiments and public performance [57].

7. Conclusions

Liquid biopsy-based approaches open many so far little explored and promising opportunities

for studying and measuring biological and biochemical markers with broad applications for

the monitoring, diagnosis, and prognosis of a large class of diseases and processes. Machine

learning, with its advanced pattern recognition capabilities, will likely play an increasingly

important role in these fields, as the amount and complexity of data produced by scientific and

medical sources already by far exceeds the capacity of unaided human experts and is rapidly

increasing with no foreseeable slowdown.

In addition, machine learning tools form a natural synergy with distributed, highly parallel, or

cloud-based computation solutions, thus easily yielding to collaboration among researchers

and medical professionals from distant locations and involving amounts of data storage and

processing power previously available only on dedicated high performance computing (HPC)

platforms and supercomputers. It is likely that in the near future the importance of

decentralised collaboration will continue to grow, increasing the demand for powerful and

easy to use toolset for analysis and processing of biological data.

Based on these trends, we expect that the next generation of liquid biopsy technologies will

include many types of machine learning as an integral part of their operation and that this

trend could have a significant positive impact on both diagnosis and treatment of patients.
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