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1. Introduction     

In general nonlinear programming problems to find a solution which minimizes an 
objective function under given constraints, one whose objective function and constraint 
region are convex is called a convex programming problem. For such convex programming 
problems, there have been proposed many efficient solution method as the successive 
quadratic programming method and the general gradient method. Unfortunately, there 
have not been proposed any decisive solution method for nonconvex programming 
problems. As practical solution methods, meta-heuristic optimization methods as the 
simulated annealing method and the genetic algorithm have been proposed.  
In recent years, however, more speedy and more accurate optimization methods have been 
desired because the size of actual problems has been increasing.  
As a new optimization method, particle swarm optimization (PSO) was proposed (Kennedy 
& Eberhart, 1995). PSO is a search method simulating the social behavior that each 
individual in the population acts by using both the knowledge owned by it and that owned 
by the population, and they search better points by constituting the population. The authors 
proposed a revised PSO (rPSO) by incorporating the homomorphous mapping and the 
multiple stretching technique in order to deal with shortcomings of the original PSO as the 
concentration to local solution and the inapplicability of constrained problems (Matsui et al., 
2008).  
In recent years, with the diversification of social requirements, the demand for the programs 
with multiple objective functions, which may be conflicting with each other, rather than a 
single-objective function, has been increasing (e.g. maximizing the total profit and 
minimizing the amount of pollution in a production planning). Since there does not always 
exist a complete optimal solution which optimizes all objectives simultaneously for 
multiobjective programming problems, the Pareto optimal solution or non-inferior solution, 
is defined, where a solution is Pareto optimal if any improvement of one objective function 
can be achieved only at the expense of at least one of the other objective functions. For such 
multiobjective optimization problems, fuzzy programming approaches (e.g. (Zimmermann, 
1983), (Rommelfanger, 1996), considering the imprecise nature of the DM's judgments in 
multiobjective optimization problems, seem to be very applicable and promising. In the 
application of the fuzzy set theory into multiobjective linear programming problems started 
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(Zimmermann, 1978), it has been implicitly assumed that the fuzzy decision or the 
minimum-operator of (Bellman & Zadeh ,1970) is the proper representation of the DM's 
fuzzy preferences. Thereby, M. Sakawa et al. have proposed interactive fuzzy satisficing 
methods to derive satisficing solutions for the decision maker along with checking the local 
preference of the decision maker through interactions for various multiobjective 
programming problems (Sakawa et al, 2002). 
In this paper, focusing on multiobjective nonlinear programming problems, we attempt to 
derive satisficing solutions through the interactive fuzzy satisficing method. Since problems 
solved in the interactive fuzzy satificing method for multiobjective nonlinear programming 
problems are nonlinear programming problems, we adopt rPSO (Matsui et al, 2008) as 
solution methods to them.  In particular, we consider measures to improve the performance 
of rPSO in applying it to solving the augmented minimax problem. 

2. Multiobjective nonlinear programming problems 

In this paper, we consider multiobjective nonlinear programming problem as follows: 

minimize fl(x), l=1, 2, …, k  

subject to gi(x) ≤0, i=1, 2, …, m (1) 

 lj ≤ xj ≤ uj, j=1, 2, …, n  

 x = (x1, x2, …, xn)T ∈ Rn  

where fl(⋅), gi(⋅) are linear or nonlinear functions, lj and uj are the lower limit and the upper 
limit of each decision variable xj. In addition, we denote the feasible region of (1) by X.  

3. An interactive fuzzy satisficing method 

In order to consider the imprecise nature of the decision maker's judgments for each 
objective function in (1), if we introduce the fuzzy goals such as ``fl(x) should be 
substantially less than or equal to a certain value'', (1) can be rewritten as: 

maximize 

x∈X 
(μ1(f1(x)), …, μk(fk(x))) (2) 

where μl(⋅) is the membership function to quantify the fuzzy goal for the l th objective 
function in (1). 
Since (2) is regarded as a fuzzy multiobjective decision making problem, there rarely exists a 
complete optimal solution that simultaneously optimizes all objective functions. As a 
reasonable solution concept for the fuzzy multiobjective decision making problem, M. 
Sakawa defined M-Pareto optimality on the basis of membership function values by directly 
extending the Pareto optimality in the ordinary multiobjective programming problem 
(Sakawa, 1993). In the interactive fuzzy satisficing method, in order to generate a candidate  
for the satisficing solution which is also M-Pareto optimal, the decision maker is asked to 
specify the aspiration levels of achievement for all membership functions, called the 
reference membership levels (Sakawa, 1993). For the decision maker's reference membership 

levels 

_

lµ , l=1, …, k, the corresponding M-Pareto optimal solution, which is nearest to the 
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requirements in the minimax sense or better than it if the reference membership levels are 
attainable, is obtained by solving the following augmented minimax problem (3). 

minimize max 

x∈X l=1, …, k 
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where ρ is a sufficiently small positive number.  
We can now construct the interactive algorithm in order to derive the satisficing solution for 
the decision maker from the M-Pareto optimal solution set. The procedure of an interactive 
fuzzy satisficing method is summarized as follows. 
Step 1: 

Under a given constraint, minimal value and maximum one of each objective function 
are calculated by solving following problems. 

minimize 

x∈X 
fl(x), l=1, 2, …, k (4) 

maximize

x∈X 
fl(x), l=1, 2, …, k (5) 

Step 2: 
In consideration of individual minimal value and maximum one of each objective 
function, the decision maker subjectively specifies membership functions μl(fl(x)), l=1, 
…, k to quantify fuzzy goals for objective functions. Next, the decision maker sets initial 

reference membership function values 

_

lµ , l=1, …, k.  

Step 3: 
We solve the following augmented minimax problem corresponding to current 
reference membership function values (3).  

Step 4: 
If the decision maker is satisfied with the solution obtained in Step 3, the interactive 
procedure is finished. Otherwise, the decision maker updates reference membership 

function values 

_

lµ , l=1, 2, …, k based on current membership function values and 

objective function values, and return to Step 3. 

4. Particle swarm optimization 

Particle swarm optimization (Kennedy & Eberhart, 1995) is based on the social behavior that 
a population of individuals adapts to its environment by returning to promising regions that 
were previously discovered (Kennedy & Spears, 1998). This adaptation to the environment 
is a stochastic process that depends on both the memory of each individual, called particle, 
and the knowledge gained by the population, called swarm. In the numerical 
implementation of this simplified social model, each particle has four attributes: the position 
vector in the search space, the velocity vector and the best position in its track and the best 
position of the swarm. The process can be outlined as follows.  
Step 1: 

Generate the initial swarm involving N particles at random. 
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Step 2: 
Calculate the new velocity vector of each particle, based on its attributes. 

Step 3: 
Calculate the new position of each particle from the current positon and its new 
velocity vector. 

Step 4: 
If the termination condition is satisfied, stop. Otherwise, go to Step 2. 

To be more specific, the new velocity vector of the i-th particle at time t, 
1+t

iv  is calculated 

by the following scheme introduced by (Shi & Eberhart, 1998). 
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In (6), 
tR1  and 

tR2  are random numbers between 0 and 1, 
t

ip  is the best position of the i-th 

particle in its track and 
t

gp is the best position of the swarm. There are three problem 

dependent parameters, the inertia of the particle ωt, and two trust parameters c1, c2. Then, 

the new position of the i-th particle at time t, 
1+t

ix , is calculated from (7). 
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where 
t

ix  is the current position of the i-th particle at time t. The i-th particle calculates the 

next search direction vector 
1+t

iv  by (6) in consideration of the current search direction 

vector 
t

iv , the direction vector going from the current search position 
t

ix  to the best 

position in its track 
t

ip  and the direction vector going from the current search position 
t

ix  

to the best position of the swarm 
t

gp , moves from the current position 
t

ix  to the next search 

position 
1+t

ix  calculated by (7). The parameter ω t controls the amount of the move to search 

globally in early stage and to search localy by decreasing ω t gradually.  
The searching procedure of PSO is shown in Fig. 1.  

Comparing the evaluation value of a particle after movement, )( 1+t

if x , with that of the 

best position in its track, )( t

ipf , if )( 1+t

if x  is better than )( t

ipf , then the best position 

in its track is updated as 
t

ip  := 
1+t

ix . Futhermore, if )( 1+t

ipf  is better than )( t

gpf  , then 

the best position in the swarm is updated as 
1+t

gp :=
1+t

ip . 
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Figure 1. Movement of a particle in PSO 

In the original PSO method, however, there are drawbacks that it is not directly applicable 
to constrained problems and it is liable to stopping around local optimal solutions. 
To deal with these drawbacks of the original PSO method, we incorporate the bisection 
method and a homomorphous mapping to carry out the search considering constraints. 
In addition, we proposed the multiple stretching technique and modified move schemes of 
particles to restrain the stopping around local optimal solutions (Matsui et al., 2008). 
Thus, we applied rPSO for interactive fuzzy multiobjective nonlinear programming 
problems and proposed multiobjective revised PSO (MOrPSO) method incorporating move 
scheme to the nondominated particle in order to search effectively for the augmented 
minimax problmes (Matsui et al., 2007). In the application of large-scale augmented 
minimax problem, MOrPSO method is superior than rPSO method on efficiency. On the 
other hand, MOrPSO method is inferior on accuracy. 

5. Improvement of MOrPSO 

We show the results of the applicaltion of the original rPSO (Matsui et al., 2008) and 
MOrPSO (Matsui et al., 2007) to the augmented minimax problem for multiobjective 
nonlinear programming problem with l = 2, n = 55 and m = 100 in Table 1. In these 
experiments we set the swarm size N = 70, the maximal search generation number Tmax = 

5000. In addition, we use the following membership functions: 

_

1µ  = 1.0, 

_

2µ  = 1.0. 

objective function value (minimize) 

method 

best average worst 

computational 
time (sec) 

rPSO 0.3464 0.4471 0.5632 144.45 

MOrPSO 0.3614 0.4095 0.4526 129.17 

Table 1. Results of the application to the augmented minimax problem 

From Table 1, MOrPSO method is superior than rPSO method  on efficiency in the average 
value, the worst one and computational time. However, the best value of MOrPSO method 
is worse than that of rPSO method, MOrPSO method is inferior on accuracy. We consider 
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the case that the search accuracy turns worse incorporating the direction to nondominated 
particle (approximate M-Pareto optimal solution) in MOrPSO method. 
In this paper, we improve the search accuracy incorporating external archives to record 
nondominated particles in the swarm. Here, as recorded nondominated particle increases in 
archives, computational time increases in order to judge whether a particle is 
nondominated. 
Therefore, there is many computational time that we record all the nondominated particles 
to archives. Thus we divide membership function space with hypercube shown in Fig. 2 and 
record a number of nondominated particle included in each hypercube. 

 

New Solution

New

Solution

delete

 

Figure 2. reduction of archives with grid (l=2) 

When a number of nondominated particle recorded in archives is greater than a fixed 
number, we delete one particle from hypercube with many numbers of nondominated 
particle and record new solution (particle). We consider that can reduce computational time 
and express approximate M-Pareto optimal front by a few particles incorporating reduction 
of archives. We show the results of the application of MOrPSO method incorporating 
reduction of archives (MOrPSO-1) to the above same problem in Table 2. 

 

objective function value (minimize) 
method 

best average worst 

computational 
time (sec) 

MOrPSO-1 0.4379 0.4708 0.5030 166.78 

Table 2. Results of the application to the augmented minimax problem 

From Table 2, it is clear that all of the best, average, worst value and computational time 
obtained by MOrPSO-1 are worse than those obtained by MOrPSO. We consider that a 
particle moves using nondominated particle which is not useful since all nondominated 
particles in archives are used in search. Thus, in the membership function space, we 
consider that information of a particle exsiting far from the reference membership value is 
hard to contribute to search and introduce threshold value for selection of nondominated 
particle as shown in Fig. 3. 
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local 

optimal 

solution

feasible  region

Pareto front

reference membership 

function value

nondominated particle in archives

Threshold 

value

nondominated particle 

not used in search

swarm

 

Figure 3. Limit of nondominated particle by threshold value (l=2) 

We show the results of the application of MOrPSO method incorporating limitation by 
threshold value (MOrPSO-2) to the above same problem in Table 3. 

objective function value (minimize) 
method 

best average worst 

computational 
time (sec) 

MOrPSO-2 0.2993 0.3430 0.3777 165.71 

Table 3. Results of the application to the augmented minimax problem 

From Table 3, in the application of MOrPSO method incorporating limitation by threshold 
value (MOrPSO-2), we can get better solutions in the sense of best, average and worst than 
those obtained by rPSO and MOrPSO. 
In order to show the efficiency of the proposed PSO, we consider the multiobjective 
nonlinear programming problem with l = 2 and n = 100. In these experiments, we set the 
swarm size N = 100, the maximal search generation number Tmax = 5000. In addition, we use 

the following reference membership function values: 

_

1µ  = 1.0, 

_

2µ  = 1.0. 

objective function value (minimize) 
method 

best average worst 

computational 
time (sec) 

rPSO [6] 0.2547 0.2783 0.3251 26.91 

MOrPSO [7] 0.1950 0.2033 0.2208 32.58 

MOrPSO-2 0.2018 0.2320 0.2711 28.11 

Table 4. Results of the application to the augmented minimax problem 

From Table 4, it is clear that all of the best, average, worst value and computational time 
obtained by MOrPSO-2 are worse than those obtained by MOrPSO. We consider that it 
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occurs to make no use of the information of nondominiated particle in search since there is a 
few nondominiated particle information stored in archives of MOrPSO-2 and only the best 
value of each objective function and the best value limb of the augmented minimax problem 
are saved. Therefore, we propose MOrPSO with external archives (MOrPSO-EA) using 
nondominated particle in the swarm same as MOrPSO in order to store various 
nondominated particle as possible in normal search. And the results of the application are 
shown in Table 5. 

objective function value (minimize) 
method 

best average worst 

computational 
time (sec) 

MOrPSO 0.1950 0.2033 0.2208 32.58 

MOrPSO-EA 0.1746 0.1787 0.1842 29.01 

Table 5. Results of the application to the augmented minimax problem 

From Table 5, in the application of MOrPSO-EA, we can get better solutions in the sense of 
best, average and worst than those obtained by MOrPSO. 

6. Numerical examples 

In MOrPSO, it searches globaly in the early generation and localy decreasing 
t

ω . However, 

we consider that necessity to search globaly in the early generation is low after the second 
time since the information of nondominated particle to current generation is stored in 
archives in proposed MOrPSO. Therefore, we consider that the proposed MOrPSO can 
search localy in the early generation. 
In order to show the efficiency of the proposed MOrPSO, we consider the multiobjective 
nonlinear programming problem with l = 2 and n = 100 and m = 55. In these experiments, 
we set the maximal search generation number of MOrPSO and the proposed MOrPSO 
(MOrPSO-EA) in the 1st interactive Tmax = 5000 and in the 2nd and 3rd interactive Tmax = 
3000. We show the results of the application are shown in Table 6 and 7. 

interactive 1st 2nd 3rd 

_

1µ  1.0 1.0 0.85 

_

2µ  1.0 0.7 0.7 

μ1(x) 0.6157 0.8003 0.7575 

μ2(x) 0.6157 0.5003 0.6075 

minimax value 0.3844 0.1997 0.0925 

time (sec) 127.20 128.89 131.25 

Table 6. Interactive fuzzy programming through MOrPSO 
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interactive 1st 2nd 3rd 

_

1µ  1.0 1.0 0.85 

_

2µ  1.0 0.7 0.7 

μ1(x) 0.7183 0.8458 0.8042 

μ2(x) 0.7183 0.5458 0.6542 

minimax value 0.2817 0.1542 0.0458 

time (sec) 157.37 98.58 101.16 

Table 7. Interactive fuzzy programming through MOrPSO-EA (proposed) 

From Table 6 and 7, MOrPSO-EA is superior than MOrPSO on accuracy. In addition, we can 
decrease total computational time by reducing the maximal search generation number. 

6. Conclusion 

In this research, we focused on multiobjective nonlinear programming problems and 
proposed a new MOrPSO technique which is accuracy for in applying the interactive fuzzy 
satisficing method. In particular, considering the features of augmented minimax problems 
solved in the interactive fuzzy satisficing method, we incorporated use of external archives, 
reduction of archives and the limitation of threshold value. Finally, we showed the 
efficiency of the proposed MOrPSO by applying it to numerical examples. 
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