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Abstract

The literature survey has shown that not much work has been reported on the interaction
mechanism of ionic liquids (ILs) with sulfur in model oil system. In recently published
work, the interaction was predicted using COSMO-RS where the strength of hydrogen
bond of anion should be reduced in order to increase thiophene extraction capacity. On
the other hand, the same researchers also found that the smaller sized cations would lead
to higher selectivity, which could lower the capacity and vice versa. While others have
reported that the absorption capacity of sulfur compounds in ILs are strongly dependent
on the chemical structures, physical properties and compactness between the cation and
the anion of the ILs. However, these conclusions lead to a broad selection of ILs for
extractive desulphurization process.

Keywords: ionic liquids, sulfur compounds, extractive desulphurization, absorption
capacity

1. How do ILs interact with sulfur compounds?

Within recent years, ILs has gained increasing interest for application to different kinds of

processes, amongst those is as separation media for LLE processes. Basically the optimization

in LLE process or technique is mostly influenced by the interaction mechanism between the

solute and solvent. Therefore, for desulphurization process it is vital to identify the interaction

mechanism between sulfur compounds (solute) and ILs (solvent) since the interaction mecha-

nism will determine the extraction efficiency and recycling capability of the ILs. Since the

number of conceivable combinations between cations and anions are almost unlimited, and

sole experimental screening is impossible, the use of simulation tools becomes important. Since

ILs are a relatively new class of compounds, the use of common activity coefficient model for
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example group contribution method like UNIFAC is complicated, because it requires the input

of interaction parameters, which for ILs have not been fully determined thus far. In order to

describe the interaction mechanism and behavior of ILs, the dielectric continuum model

COSMO-RS has been introduced, and it is gaining more interest for ILs prediction for various

applications [1, 2].

1.1. Interaction mechanism in COSMO-RS

COSMO-RS is independent of specific interaction parameters; therefore it is a promising

approach for ILs. The name of COSMO-RS is derived from “Conductor-like-Screening-Model”

(COSMO) and its extension RS stands for “real solvents”. This approach belongs to the class of

quantum chemistry of continuum solvation models (CSMs). CSMs are an extension of the basic

quantum chemistry where a molecule in solution is described through a quantum chemical

calculation of the solute molecule with an approximate representation of the surrounding

solvent as a continuum. The solute is treated as if embedded in a dielectric medium via a

molecular surface or cavity that is constructed around the molecule [3].

COSMO-RS uses only structural information of the molecules for the priori prediction of

activity coefficients and other thermophysical data; thus the program is independent of spe-

cific interaction parameters. In COSMO-RS, a number of quantum chemical calculations are

combined with statistical thermodynamics in order to enable the prediction of thermodynamic

properties without any experimental data [4].

COSMO-RS is a combination of electrostatic theory of locally interacting molecular surface

descriptors, which are computed by quantum chemical method (QM) with exact statistical

thermodynamics methodology. In other words, it integrates concepts from quantum chemistry,

dielectric continuum models, electrostatic forces interactions and statistical thermodynamics. It

is based upon information evaluated by QM-COSMO calculations, which describe discrete

surface around a molecule embedded in a virtual conductor. It treats a liquid as an ensemble of

closely packed ideally screened molecules, where the molecular surface is in close contact with

one another. Assuming that each molecule is still enclosed by virtual conductor, the interaction

energies of the surface pairs are defined in terms of screening charge densities (SCDs), where σ

and σ’ of the respective surface segments. The SCDs measure electrostatic screening of the solute

molecule by its surrounding and the back-polarization of the solute molecule [2–5].

Meanwhile, the statistical thermodynamic provides a link between the microscopic surface

interaction energy and the macroscopic thermodynamic properties of a liquid. Since in

COSMO-RS all molecular interactions are viewed as consisting of local pair-wise interactions

of surface segments, the statistical averaging can be done in the ensemble of interacting surface

pieces. In order to describe the composition of the surface segment ensemble which depends

on σ, it is sufficient to consider histograms of the SCDs, the so-called σ-profiles. Such proba-

bility distribution gives the relative amount of surface with polarity σ for a molecule [5].

The COSMO-RS prediction that starts with QM-COSMO calculation is performed on the

density functional theory (DFT) level, utilizing the BP functional with RI (resolution of iden-

tity) approximation and a triple-ζ valence polarized (TZVP) basis set. These QM-COSMO
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calculations are done in a Turbomole program package. The geometries of all molecules

involved in these calculations are first fully optimized and the calculations are only performed

once for each compound. The result of the COSMO calculation which is the charge distribution

on the molecular surface is stored in the so-called COSMO-files, which are collected in the

database. COSMO-RS calculations are then performed using COSMOtherm program, which

provides an efficient and flexible implementation of the COSMO-RS method. Thus in combi-

nation with a large database of solvents including ILs, COSMO-RS allows fast and efficient

large scale solvent screening [4–6].

In COSMO-RS, the bulk of a liquid phase is considered to be built of closely packed molecular

cavities, and each molecule is divided into discrete segments, where each segment is assigned

with a screening charge density, σi. Then, the interactions between the molecules are reduced to

the interactions of the molecular segments, or rather the interactions of the screening charge

densities. In order to describe the entire molecule and molecular properties the screening charge

density distribution of a molecule, the so called σ-profile as shown in Figure 1 is used [6].

Initially, the assumption has been made that a liquid consists of close packed molecules, as a

logical consequence, the properties of this liquid can also be described by means of the σ-

profiles. Next, based on the σ-profiles, the σ-potential, μ (σ) of a molecule is calculated. The σ-

potential is the central equation in COSMO-RS where all other equations for the calculation of

thermodynamic data are based on. Additionally, electrostatic interactions (Emisfit) and hydro-

gen bond interactions (EHB) between the molecular surfaces pieces are described in depen-

dence of σ. Therewith, the screening charge distribution profile holds all the information

which is necessary for COSMO-RS [5–7].

Figure 1. Screening charge distribution and σ-profile of BT.
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Activity coefficient at infinite dilution, ln (γi
inf) is an important parameter in order to study the

deviation from ideal behavior in a mixture of ILs + sulfur compound in hydrocarbon. Basically,

it provides information regarding non-ideality of the chosen species in a mixture. The value

describes the extreme case in which only solute-solvent interaction contributes to non-ideality

that has practical implications in chemical and industrial processes. In the case of

desulphurization, it provides information about interaction between solvent, where in this

case is ILs (solvent) and solute i.e. sulfur compounds. This is a useful tool for solvent selection

for extractive desulphurization process. The separation factor of species to be separated at

infinite dilution is sufficient for determining the suitability of an IL as solvent for selective

extraction. Experimentally, the activity coefficient at infinite dilution of some ILs in hydrocar-

bons, polar and non-polar solvents is measured using either gas–liquid chromatography or the

dilutor technique [5–8].

Several thermodynamic models are available such as NRTL and UNIFAC for predicting

activity coefficient at infinite dilution, but the accuracy of the measurement needs to be

improved in order to enhance the prediction. Besides that, new experimental data are required

to generate quantitative interaction parameter, which hinders the use of these models [8]. On

the other hand, COSMO-RS is a novel and efficient model for priori prediction of activity

coefficient at infinite dilution for a mixture of ILs from thermodynamic aspects as it relies on

optimized molecular structure as the only information; no experimental data is needed [9].

The predicted activity coefficient values obtained through COSMO-RS using different or

modified parameterization have been done by Banerjee group to predict potential ILs for

separation of sulfur compounds (thiophene, BT and DBT), by means of selectivity, capacity

and performance index at infinite dilution. In the first study, they selectively screened out 264

suitable ILs (from 24 anions and 11 cations) and found that smaller sized cations have higher

selectivity, but lower capacity and vice versa [10]. They identified that for fluorinated anions,

the removal of sulfur compound (thiophene) increases with the increase of the van der Waals

volume. While a smaller cation with a sterically shielded large anion gave high extraction

efficiency. In a second study they screened out 168 suitable ILs based on the permutations of

28 anions and 6 cations, and found that the cation without aromatic ring combined with anions

having sterical shielding effect such as thiocyanate, acetate and chloride proved to be the most

favorable ILs [11]. However, their predictions were not consistent with the literatures. This

shows that COSMO-RS has a limitation to some extent. For example, COSMO-RS may not be

able to represent the π-π interaction effect which has resulted in inconsistent result between

prediction and experiment. Therefore, there is a need to introduce new predictive approach for

selecting appropriate ILs for desulphurization via interaction mechanism.

1.2. Interaction mechanism in extractive desulphurization

ILs consist of complex ions with multiple types of interaction, where each solute molecule will

possess somewhat different solute-solvent interactions due to the various acidic, basic, electron

donating and electron withdrawing properties. There are several possible contributing mech-

anism theories in extractive desulphurization as listed in Figure 2.
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• Aromatic ring current effect (i.e., π-π interaction and CH-π interaction) occurs between

aromatic-type-cation of ILs and aromatic sulfur compound.

• Electrostatic field effect (i.e., Columbic interaction) occurs when bonding between the

anion and cation of ILs becomes weaker because of their structures (most probably due

to the length of substituted alkyl side-chain on the cation), which makes it more easier for

insertion or interaction of aromatic sulfur compound in/with ILs.

• Hydrogen bonding effect occurs due to the H-bond donation of cation part of ILs to the

sulfur atom of aromatic sulfur.

• Anion effect.

• Dilution effect.

The CH-π interaction between the imidazolium cation and aromatic ring of sulfur compound

becomes one of the major mechanisms during sulfur extraction as indicated by chemical

quantum simulation [10, 11] and NMR observations [12]. By using quantum chemical calcula-

tion approach (namely ab initio calculations correlated with experimental results), it was

suggested that the positively charged atoms of the imidazolium cation can be the most

approachable to the negatively charged atoms of the sulfur compounds, producing a maximal

Columbic interaction [13, 14]. On the other hand, the formation of hydrogen bonding between

acidic hydrogen of the imidazolium cation and the sulfur compound is weak due to poor H-

bond acceptor by the sulfur compound, but becomes stronger with increasing alkyl side-chain

length. The anion and dilution effects (the dilution of ILs by sulfur compound insertion) are

not the dominant factors in determining the absorption capacity and selectivity of sulfur

compounds in model oil/imidazolium based-ILs systems [12, 15, 16].

Meanwhile, the specific π-π interaction due to aromatic current effects was first predicted

between imidazolium cation and sulfur compound (thiophene) using NMR analysis approach

[12]. The aromatic current effect is largely affected by the size of the cation itself and the length

of alkyl side-chain substituted on the cation. Since then, it was predicted by many researchers

that the stronger selective extraction of aromatic sulfur compounds resulted from the π-π

interaction between the imidazolium-based ILs and aromatic sulfur ring [17–21].

There was also a suggestion that π-π interaction between the unsaturated bonds of sulfur and

the imidazole ring leads to the formation of liquid clathrate. Liquid clathrate is a semi-ordered

liquid formed by associative interactions between ILs and aromatic sulfur compounds which

Figure 2. Possible contributing theories of interaction mechanism in extractive desulphurization by ILs.
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separate the cation-anion packing interactions to a sufficient degree resulting in the formation of

localized cage-structures; in this case ILs are trapping the aromatic sulfur compounds. With too

little interaction, the ILs are simply completely miscible or immiscible with the aromatic sulfur

compound, whereas, if the cation-anion interaction of ILs are too great, then crystallization of the

ILs occurs [22–25]. Since the aromatic sulfur compounds e.g. DBT, BT, 3-methylthiophene are

conjugated structure, the lone pairs on the sulfur atom or the π-electrons on the aromatic sulfur

compound ring preferentially insert into the molecular structure of the ILs. The steric effect

between the interacting compounds also influences the interaction mechanism involved [26, 27].

2. Selection of ILs for extractive desulphurization

Preliminary selection and screening of suitable ILs by relying on physical, chemical and

thermodynamic properties have been intensively investigated and reported in literatures.

However, the reported predictive tools for selecting potential ILs are still not satisfactory, as

these tools still lack the capability to identify the correct combination of cations and anions

matchup for a particular application; this needs further investigations.

2.1. Predictive approach

Due to the enormous number of possible combinations of cations and anions to produce ILs, an

accurate prediction for a particular application is necessary. Predictive approach will reduce

cost and time as opposed to trial and error using experimental work. One of the predictive

approaches is COSMO-RS which is based on quantum chemistry approach. Recently this

approach is being applied especially in predicting physical, chemical and thermodynamic

properties plus interaction mechanism of potential ILs [25–28]. A recent study which employed

COSMO-RS was carried out by Banerjee group, in which different or modified parameteriza-

tion were used to predict potential ILs for diesel desulphurization, by means of selectivity and

capacity at infinite dilution. They selectively screened out 168 suitable ILs (from 28 anions and

6 cations) mostly for extracting thiophene, BTand DBT from simulated diesel composition [11–

29]. The attempted investigation via COSMO-RS showed that 4-ethyl-4-methylmorpholinium

gave the best performance for desulphurization in combination with anions such as thiocya-

nate (CNS), acetate (CH3COO), bis(trifluoromethylsulfonyl)imide (NTf2) and triflate (CF3SO3).

However, their predictions did not match well with the experimental results from the litera-

tures; for instance Holbrey et al. who reported that (CF3SO3) and (NTf2) anions showed poor

results in removing DBT from n-dodecane phase, while Wang et al. indicated that (CH3COO)

anion gave average performance in removing thiophene from n-heptane phase.

2.2. Experimental approach

The screening of appropriate combination of cation/anion for ILs was first attempted by

Bosmann and co-worker. They justified that from three types of cations ([emim], [bmim] and
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ILs Experimental description

[3-mebupy][N(CN)2]

[bmim][C(CN)3]

[4-mebupy][N(CN)2]

[4-mebupy][SCN]

[bmim][N(CN)2]

[bmim][SCN]

[emim][N(CN)2]

[omim][BF4]

[opy][BF4]

[beim][DBP]

[bmim][DBP]

[eeim][DEP]

[hpy][BF4]

[omim][DMP]

[emim][DEP]

[obim][DBP]

[beim][DEP]

[oeim][DEP]

[emim][DMP]

[hmim][DMP]

[hbim][DBP]

[bbim][DBP]

[heim][DEP]

[bmim][DMP]

[bpy][BF4]

[mmim][DMP]

[emim][DBP]

[bmim][BF4]

Hansmeier et al., Green chemistry

DBT (%)

86

86

85

84

77

70

57

70

66

63

62

62

59

57

57

55

54

54

54

51

50

47

47

41

44

33

32

16

GC-analysis

Extraction condition

Speed: 1200 rpm

Time: 15 min

Vol. Ratio: 1/1

[C4mim][BF4]

[C4mim][OcSO4]

[C4mim][CF3SO3]

[C4mim][PF6]

[C4mim][NTf2]

[C4mim][SCN]

[C4mim][CH3CO2]

[C4py][NTf2]

[C4py][BF4]

[C4
4mpy][NTf2]

[C4
4mpy][BF4]

[C4
4mpy][SCN]

[C4
4mpy][CF3SO3]

[C4
3mpy][NTf2]

[C4
3mpy][BF4]

[C4
3mpy][SCN]

[C4
3mpy][CF3SO3]

[C4
2,4dmpy][NTf2]

[C4
2,5dmpy][NTf2]

[C4mpyrr][NTf2]

Holbrey et al., Green Chemistry

DBT (%)

47

63

50

53

50

66

61

55

43

76

70

79

72

77

70

83

69

83

81

47

n-dodecane

GC–MS and HPLC

Extraction condition;

Time: 60 min

Settling: 15 min

Temp.: 40�C

(equal volume ratio)

Table 1. Results of DBT removal using some ILs in extractive desulphurization.
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[omim]) with [BF4] as anion and seven types of anions ([PF6], [CF3SO3], [BF4], [Cl], [MeSO4],

[MeSO3] and [OSO4]) with [bmim] as cation, [omim] and [OSO4] depicted better extractability

for DBT removal. It was later proved that the combination of these cation-anion, [omim][OSO4]

has high viscosity at ambient conditions. Further work was carried out which indicated that

[bmim][OSO4] has the best extractability of some sulfur compounds (Eβer et al.; Nie et al.).

Later, Holbrey and co-worker screened out 20 ILs for extracting DBTand revealed that 1-butyl-

dimethylpyridinium bis(trifluoromethylsulfonyl)imide ([bdmpy][NTf2]) yielded the highest

DBT removal (83%) from n-dodecane. Recently, [bmim] tricyanomethane ([C(CN)3] has been

found to yield higher DBT removal (86%) as compared to previous works [28, 29]. The result of

both research studies are summarized in Table 1.

3. Extractive desulphurization

When a separation by distillation is ineffective or very difficult, liquid–liquid extraction (LLE)

is one of the main alternatives to be considered. Close boiling point mixtures or substances that

are unstable at the temperature of distillation, even under a vacuum condition, may often be

separated by extraction which utilizes the chemical differences instead of vapor pressure

differences. One of the major uses of extraction is to separate petroleum products that have

different chemical structures, but have about the same boiling range. In liquid–liquid extrac-

tion, two phases must be brought into good contact to permit transfer of solute and then be

separated [29, 30].

Extraction is a process in which a liquid mixture (of normally two species that contain the

solute and the feed carrier) is contacted in a mixer with a third liquid (normally the solvent)

that is immiscible or nearly immiscible with the feed carrier component. When the liquids are

contacted, the solute is transferred from the feed carrier into the solvent. It is because during

mixing process, bonds between solute and feed carrier are broken and possible new bonds are

formed between solute and solvent. The energy, which may or may not be required in breaking

the bonds between the solute and feed carrier or in forming the bonds between the solute and

solvent, depends on the type of interaction.

The combined mixture is then allowed to settle into two phases that are then separated by

gravity in a decanter. When a solute transfers from one phase to another, the transfer rate

generally decreases with time until the second phase is saturated with the transferred solute,

holding as much as it can hold at the prevailing process condition. When the concentrations of

the solute in each phase no longer changes with time, the phases are said to be at equilibrium.

The effectiveness of any of the separation processes described depends on both how the solute

is distributed between the phases at equilibrium and on the rate at which the system

approaches equilibrium from its initial state. The extract is the layer of solvent plus extracted

solute and the raffinate is the layer from which the solute has been removed from the feed

carrier substance [31, 32].

Recently, ILs has been applied in the petrochemical industry especially in catalytic processes,

extractive distillation and LLE process for example upgrading heavy oils for desulphurization.
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Their negligible vapor pressure allows the extracted product to be separated from the ILs

through low pressure distillation with potential energy savings. In addition, as a result of their

negligible vapor pressure, they are able to be regenerated for reuse.

The use of ILs for selective extraction of sulfur compounds from diesel is first described by

Bosmann et al. in 2001 [33]. Based on the initial idea to extract the sulfur compound by

chemical interaction, the extraction of DBT with Lewis and Brønsted acidic ILs was majorly

investigated. They indicated that such Lewis-acid based interactions enhance the extraction

power of ILs that permit complex formation of sulfur compound and ILs. They also identified

that extraction of actual diesel is much more complicated due to the complex chemical compo-

sition of diesel which includes many different sulfur compounds and other impurities like

organic nitrogen and oxygen compounds [34].

3.1. Extractive desulphurization on model oil

As mentioned previously, due to the limited efficiency of HDS towards aromatic sulfur com-

pounds, a number of research have been focused on extracting them, mainly thiophene, BT,

DBT and their derivatives. By using various types of ILs through various anion/cation combi-

nations, some researchers have found that extraction process alone could remove up to 86%

sulfur in model oil and 30% in actual diesel, which due to the steric hindrance of various sulfur

compounds [25]. There are various types of model oil that have been investigated including

aliphatics (n-hexane, n-heptane, n-octane, n-dodecane) and aromatics (toluene). In evaluating

desulphurization performance, besides removal percentage, sulfur partition coefficient (KN)

gives a better insight in terms of explaining the relationship between ILs amount and its

structure against desulphurization performance [25, 27]. KN is defined as the ratio of sulfur

concentration on weight basis in ILs to sulfur concentration in hydrocarbons, which the higher

KN the better the desulphurization performance of that ILs [33, 34].

Taib and Murugesan [35] in their report said that at ambient condition operation, sulfur com-

pounds with C5 aromatic ring were observed to favorably absorb over C6 aromatics sulfur, while

sulfur with non-aromatic structures were poorly absorbed by imidazolium-based ILs. Eβer and

co-worker reported in their article that, even though the concept of extraction in desulphurization

seemed feasible, but selective extraction of nitrogen-containing compounds and aromatic hydro-

carbons still needs further investigation. Although quite a few researchers preferred pyridinium-

based [36] and ammonium based ILs [37] for extractive desulphurization, it seems that the

extraction ability is less promising. Some have been noticed to be comparable to imidazolium-

based ILs if the anions matchup is just appropriate [38].

3.2. Extractive desulphurization on model fuel

Extractive desulphurization has been performed on model fuel containing up to 25% aro-

matics. Basically naphthalene, methylnaphthalene, indole, pyridine and tetralin are the most

common aromatics used for preparing model fuel. The extraction efficiency is relatively

high, and competing removal of aromatics and sulfur compounds was not detected based on

model fuel containing n-dodecane/indole/DBT using [BMIm][OSO�] as extractant. Further
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investigations showed that ILs gave higher removal of molecules that have higher density of

aromatic π-electrons. Cross-miscibility of the studied aromatics in the ILs produced an

unwanted effect, whereby high cross-miscibility will demonstrate a loss of fuel or at least

contribute to an increase of process costs [39]. However, the effect of aromatic hydrocarbons

such as benzene and xylene needs further research in order to understand the selective extrac-

tion process.

3.3. Extractive desulphurization on actual diesel

An approach based on extraction for removing sulfur compounds from actual diesel using ILs

have been investigated by many researchers [39]. Compared to model oil or model fuel, the

extraction from actual diesel is much more complicated due to its complex chemical composi-

tion including many different sulfur compounds and other impurities such as nitrogen and

oxygen-containing compounds. For example, the removal of sulfur from model oil is 64% but

in actual diesel this percentage is drastically reduced to 24.3% when the same ILs is applied.

The obvious or most sterically hindered sulfur species would still remain in the actual diesel

even though after several extraction steps. However, it has been proven that extractive

desulphurization of actual diesel with ILs is still possible, although the operating expenses

such as the number of theoretical extraction steps may vary in order to reach ultra-low

concentration of sulfur [40].

4. Regeneration of spent ILs

Besides being efficient for extraction process, regeneration or recycibility of spent ILs is equally

important since ILs has been recognized as environmentally benign solvent. Since ILs is quite

expensive as compared to some conventional organic solvents, finding an alternative way to

recycle spent ILs is the key for cost effectiveness in order to ensure the feasibility of using ILs at

a larger scale application.

Undoubtedly, regeneration has become a fundamental issue from economic point of view.

However, this is not only limited to the operating cost, but also concerning environmental issues

such as disposal, biodegradable and toxicity. In general, ILs has a higher density compared to

organic solvents or water; therefore, many ILs form separate phases when mixed with organic or

aqueous solution. This behavior makes ILs as feasible for regeneration, which in turn presents

potential economic viability of desulphurization process using ILs. In addition, the process is

considered as being environmental benign since no waste is generated [33–40].

In conclusion, extractive desulphurization process using selective ILs as the extractant is still in

need of further research, starting from screening of suitable ILs for desulphurization, synthesis

of ILs, physical property analysis of ILs, single batch extraction study encompassing process

optimization up to actual diesel application, and including regeneration of spent ILs.
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