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Abstract

A major challenge to commercial production of cellulosic ethanol pertains to the cost-
effective breakdown of the complex and recalcitrant structure of lignocellulose into its 
components by pretreatment methods—physical, chemical, physico-chemical, biological 
and various combinations thereof. The type and conditions of a pretreatment impacts 
both upstream processes such as size reduction as well as downstream processes such 
as enzymatic hydrolysis and enzyme loadings, and as such the choice of a pretreatment 
method for a specific biomass (or mix of materials) is influenced by several factors such as 
carbohydrate preservation and digestibility, sugar and ethanol yields, energy consump-
tion, equipment and solvent costs, lignin removal and quality, formation of sugar/lignin 
degradation products, waste production, and water usage, among others. This chapter 
reviews both well-known and emerging physico-chemical methods of biomass fraction-
ation with regards to process description and applications, advantages and disadvan-
tages, as well as recent innovations employed to improve sugar yields, environmental 
sustainability and process economics.

Keywords: lignocellulose, ethanol, pretreatment, physico-chemical pretreatment

1. Introduction

Pretreatment and enzymatic hydrolysis present the most practical challenges (technical, envi-
ronmental and economic) in the attempt to commercialize cellulosic bioethanol. Pretreatment 
is costly since it represents about 20% of total cost [1]. However, without pretreatment, enzy-

matic degradation of native biomass is generally below 20% yield [2], making pretreatment a 
crucial process of bioethanol production. In general, the selection of a pretreatment method 
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for a material or mix of feedstocks is influenced by factors that include carbohydrate preserva-

tion and digestibility, sugar and ethanol yields, energy consumption, equipment and solvent 
costs, lignin removal and quality, formation of degradation products from sugars and lignin, 
waste production, and water usage.

Pretreatment may be categorized as physical (e.g., size reduction, autoclaving, irradiation, 
popping, ultrasonication, steaming and extrusion), chemical (use of acids, alkali, solvents, 
etc.), biological (white-rot fungi, brown rot fungi, etc.), and physico-chemical which combine 
both physical and chemical processes to ensure the digestibility of the lignocellulosic mate-

rial. Physical pretreatment usually demands high-energy consumption (e.g., side reduction) 
and is undertaken before chemical or biological pretreatment. While chemical methods offer 
benefits such as efficient fractionation of biomass and good sugar yields during enzymatic 
hydrolysis, their environmental impacts are higher than physical and biological methods due 
to biomass degradation into enzyme-inhibiting compounds, corrosion of reactors, solvent 
recycling issues, and generation of waste [3, 4].

The well-known physico-chemical pretreatment include liquid-hot water (LHW), steam 
explosion (SE), ammonium fiber explosion (AFEX), soaking in aqueous ammonia (SAA) and 
irradiation-chemical method. This chapter reviews and present novel findings as well as pro-

cess innovations in physico-chemical processing of recalcitrant biomass to sugars and ethanol.

2. Liquid hot-water (LHW) pretreatment

2.1. Description

This hydrothermal process involves cooking of biomass in liquid water at high temperatures 
(150–240°C) and short times (≤ 50 min). Pretreatment causes pressurized water to rupture and 
penetrate the cell structure, resulting in fractionation of biomass into two product streams—
liquid hydroxylate containing hemicelluloses sugars, minerals, and degradation products 
such as furfural and acetic acid, and a solid fraction comprising most of the cellulose and lig-

nin and some residual hemicellulose. Pretreated solid substrates have increased surface area 
and pore volume, and consist of separated individual cellulose fibers, with large particles of 
repolymerized lignin on the surfaces of the cellulose matrix [5]. The harshness of the process 
is described by a severity factor (R

o
) that allows for the determination of combined effects of 

temperature and reaction time on sugar yields and degradation products. It is expressed as:   
R  
o
   = t × exp  [ (T − 100)  / 14.75]  , where t = reaction time (min), and T = temperature (°C) [6].

Generally, the carbohydrate content of pretreated substrates increases with temperature until 
a maximum temperature is reached where further temperature increase result in substantial 
degradation. Thus, high temperatures greater than 230°C disrupt pretreated particles and 
reduce the surface area and pore volume, which in turn limit enzymatic digestibility [5].

Based on the work of Mosier et al. [2], it is observed that at reaction conditions of 200–230°C 
and ≤ 15 min, biomass dissolution ranged from 40 to 60%, comprising 4–22, 35–60, and 100% 
of cellulose, lignin, and hemicellulose, respectively. Much of the hemicellulose dissolve into 
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poly- and oligosaccharides even at high severities which is beneficial since the minimization 
of monomer formation reduces the chance of further degradation into aldehydes (2-furalde-

hyde, 5-hydroxymethylfurfural, etc.), which are known inhibitors of enzymatic hydrolysis. 
However, oligomers also possess inhibitory tendencies to cellulase activity [7]. It has been 
established that digestibility of pretreated substrates depended more on partial removal of 
hemicellulose and relocalization of lignin than the modification of crystallinity and rupture 
of the cell wall [5, 8].

2.2. Applications

LHW pretreatment has been applied to pretreat various feedstocks including agricultural 
residues, woods and industrial waste. Archambault-Leger et al. [9] applied both batch and 
flowthrough pretreatment to corn stover, bagasse, and poplar and observed higher hemicel-
lulose recovery, removal of non-carbohydrate carbon, and glucan conversion under simulta-

neous saccharification and fermentation (SSF) in the flowthrough reactor. Some authors have 
included additives to positively influence pretreatment outcomes. For example, by adding 
AlCl

3
 to pretreatment solution of microcrystalline cellulose, low concentration of degradation 

products and high glucose yields were obtained [10]. Optimum glucose yield of 80% was also 
observed when solid carbon dioxide was used in hydrothermal fractionation of Eucalyptus 
[11]. In another study, an alcohol-water mixture was used to overcome challenges due to 
deposition of lignin particles on pretreated materials, and thus achieved increased pore vol-
ume and higher sugar yields [12].

Combinations of LHW and other methods have also been employed to overcome inher-

ent drawbacks and to improve sugar yields. Low degradation products and higher sugar 
yields—xylose (91.62%) and glucose (88.12%)—was observed when LHW treatment (180°C, 
20 min) of Eucalyptus was followed by wet disk milling before saccharification [13]. Alkaline-
assisted LHW treatment of rice straw was found to improve glucose recovery and yield under 
enzymatic hydrolysis, caused by increased removal of hemicellulose and lignin [14].

At demonstration and industrial scale, one notable application of LWH is in the Integrated 
Biomass Utilization System (IBUS) platform where biomass is converted into ethanol, C5 
molasses, and lignin pellets using uncatalyzed steam in an energy efficient manner under-

scored by high dry matter content in all process routes [15]. It was developed as a three-stage, 
pilot-scale process for treating wheat straw—by soaking at 80°C for 20 min, hemicellulose 
recovery at 170–180°C for 7.5–15 min, and cellulose hydrolysis at 195°C for 3 min. Under these 
conditions both ethanol production and lignin recovery for power production are maximized 
[16]. High glucose yield required the avoidance of water addition to the third stage while 
high hemicellulose yield (83%) required water addition. It was improved by Petersen and 
team [17] who used a two-stage procedure to achieve high cellulose recovery (over 90%) on 
wheat straw: soaking of biomass at 80°C for 5–10 min followed by pretreating at temperatures 
and residence times ranging from 185 to 198°C and 6–12 min respectively. The optimum pre-

treatment temperature was observed at 195°C at which cellulose and hemicellulose recovery 
reached 93–94 and 70% respectively at lower water/biomass ratio compared to the three-
stage process. However, the two-step process was found to present economic challenges in 
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the recovery of C5 sugars after the first pretreatment in a commercial-scale plant, prompting 
Inbicon to settle for a simpler, one-stage treatment processs [15]. Currently, the Inbicon dem-

onstration plant, which is based in Kalundborg (Denmark), processes about 4 tonnes straw/h 
and at yields greater than 198 L ethanol/tonne of wheat straw.

2.3. Positive attributes and drawbacks

LHW offers improved digestibility of cellulose by enzymes due to the solubilization of 
hemicelluloses and avoidance of inhibitors. Compared to steam explosion, LHW gives lower 
concentrations of solubilized hemicellulose and lignin products due to higher water input as 
well as higher pentosan recovery. Generally, catalysts/chemicals are avoided resulting in no/
low neutralization demands and byproduct/precipitate generation, with additional benefits 
such as reduced risk of reactor corrosion and explosion. Reactor cost is lower compared to 
methods such as AFEX [18]. The effect of particle size reduction on hydrolysis is low, thus, 
large biomass flowrates can be handled effectively.

There are however drawbacks in LHW related to hemicellulose fractionation into large frac-
tions of oligomers, and xylose yields are generally low, which affect sugar and ethanol yields. 
There is a risk of sugar degradation into byproducts such as carboxylic acids and furans at 
severe conditions [19, 20]. A major cost involved in LHW pertains to high energy used to 
generate saturated liquid water. Consequently, solid loadings are restricted to about 20% [21].

3. Steam explosion (SP)

3.1. Description

In steam explosion, biomass is exposed to saturated steam at high pressure (0.5–4.8 MPa) 
for a maximum period of 60 min followed by sudden reduction of pressure to atmospheric 
or lower, resulting in explosive decompression of biomass into component fiber and fiber 
bundles. The explosion is triggered by evaporation within biomass cells and sudden drop of 
pressure around the biomass. Exploded materials experience increase in water retention and 
pore size and specific surface area. Consequently, the bulk density is decreased. To improve 
penetration efficiency and swelling, biomass is pre-soaked before pretreatment. While the 
buffering effects of free moisture reduce heat transfer and increase energy demand, bound 
moisture softens fibers and increase pretreatment efficiency [22]. Thus, by carefully regulating 
water content of feedstock, substantial gains in sugar yield can be obtained during enzymatic 
hydrolysis, with collateral benefits in reduced energy demand [23].

The pretreated solids comprise unhydrolyzed cellulose, chemically-transformed lignin, and 
residual hemicelluloses. The liquid hydrolysate, on the other hand, contains solubilized hemi-
celluloses in oligomeric forms, with concentrations of monomers usually exceeding similar 
situations under LHW. Hemicellulose is hydrolyzed via the breakdown of both glycosidic and 
hemicellulose-lignin bonds. Hydrolysis of parts (acetyl groups and uronic acid substitutions) 
of hemicelluloses—via the catalytic actions of protons generated from the autoionization of 
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water—occurs to form acetic and other acids which enhance further fractionation of hemi-
cellulose [24], and trigger the release of carbonium ions from benzyl alcohol structures in 
lignin which cause the breakdown of some of the β-O-4 structures in lignin leading to reduced 
molecular weight [25]. Simultaneously, condensation reactions may take place in the presence 
of electron-rich carbon atoms, resulting in lignin repolymerization [25, 26], with the composi-
tion affected by pretreatment severity [27].

The process is affected by temperature, reaction time, material size, moisture content and effi-

cient mixing of biomass. The explosion mechanism and time which are independent of the 
severity factor are also known to affect yields [28]. Increasing reaction time and temperature 
decreases the degree of polymerization of cellulose [29]. Though severe conditions contribute 
to reduction in crystallinity and increase in moisture retention, they do not necessarily lead 
to increased hydrolysis rates due to possibility of thermal degradation of cellulose. Similarly, 
xylose recovery is reduced for longer pretreatment times due to formation of degradation 
products. Further, severe conditions increase the intensity of repolymerization and condensa-

tion reactions from byproducts of lignin, hemicellulose, and extractives leading to increased 
molecular weights of lignin [30]. This development reduces substrate amenability to enzymatic 
hydrolysis caused by the covering of cellulose surface with the repolymerised lignin-like mate-

rials (pseudo-lignin). The problem of lignin repolymerization was overcome by Li et al. [31] 

who used a carbonium ion scavenger (2-napththol) to achieve solubilize lignin, resulting in 
improved recovery (91%) as against 51% for steam pretreated aspen wood without the additive.

3.2. Applications

SE has been applied in combination with additives and pretreatment methods to improve 
yields and overall process economics. The major variations include the use of acids and bases 
as catalysts.

3.3. Acid-catalyzed steam explosion (ACSE)

In this process, SE is undertaken after the biomass is soaked with dilute acid or impregnated 
with SO2 or CO2 at low or atmospheric pressures for 0.5–25 h depending on the temperature 
(5–100°C). It favors solubilization of hemicelluloses into monomer units, making substrates 
more reactive while improving enzymatic hydrolysis of cellulose. Compared to dilute acid, 
SO2 impregnates biomass substrates better and more uniformly but requires harsher condi-
tions to remove hemicellulose [32]. Both SO2- and CO2-based SE create the formation of pores 
of different sizes and shapes in the outer region of the cell wall of pretreated substrates, with 
the effect more noticeable in SO2-based applications due to its higher combined severities 
under similar conditions [33]. Though CO2 has a lower solubility compared to SO2, CO2 is 

highly available, less toxic and corrosive, and thus safer to apply.

A major positive attribute about ACSE is that most glucan and lignin are untouched and 
remain in solid form after pretreatment [34] though lignin presence hinders enzymatic hydro-

lysis [35]. Nonetheless, high sugar yields are generally obtained. Yields obtained by some 
investigators are given in Table 1.
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The main disadvantages include the toxicity of SO2 in SO2-catalyzed applications and the 
unavoidable release of degradation products. The acidic nature of pretreatment requires 
expensive reactors that can withstand corrosion. SO2 may be costly and as such on-site pro-

duction could be an alternative for improving the financial viability [18]. The efficient use of 
co-products such as lignin and hemicellulose in process integration improves the economic 
health of the process considerably.

3.4. Alkaline-catalyzed steam explosion

Alkaline-catalyzed SE has received less attention compared to acid-based SE. The alkaline 
solution improves delignification of biomass, giving higher enzymatic degradability. Park 
et al. [40] pretreated Eucalyptus under alkaline environment and observed enzymatic digest-
ibility (relative to uncatalyzed SE), leading to a maximum glucose recovery of 66.55%.

3.5. Double-stage pretreatment involving SE

The major target of the two-step process is to achieve higher delignification and increase bio-

mass digestibility. In many cases, significant increase in glucose yields relative to SE applica-

tion only, have been observed as outlined in Table 2.

3.6. Industrial application

SE is among leading pretreatment methods in terms of cost effectiveness and has been imple-

mented at demonstration (e.g., BioGasol plant in Denmark; Green Plains’s plants in USA) and 
industrial scale (e.g., Crescentino, Italy; Raízen and Iogen’s plant in São Paulo, Brazil).

Agent/catalyst T (°C), t (min) Biomass Observation Reference

CO2 205, 15 Sugar cane bagasse 
and leaves

High glucose yield of 86.6% [36]

220, 5 High glucose yield of 97.2%

SO2 190, 5 Sugarcane bagasse Moderately high glucose yield of 79.7%

Sugarcane leaves High glucose yield of 91.9%

SO2 205–225, 5–10 Spruce, pine, birch 
and aspen

High fractionation efficiency of alkaline 
extractable lignin for hard woods, but low for 
softwoods.

[31]

H2SO
4

185, 2 Rice straw Overall saccharification yield of 73% in a pilot 
plant

[37]

H2SO
4

190, 10 Wheat straw Glucose and xylose yields of 102 and 96% of 
theoretical. Ethanol yield of 67% based on 
glucose content of raw material in SSF.

[38]

Acetic/ethanol 180–225, 3–60 Wheat straw Sugar yield after enzymatic conversion was 
found higher than treatment without additive, 
with maximum yield of 264 g/kg DS obtained 
for ethanol/SE.

[39]

Table 1. Results of acid-catalyzed SE of selected biomass.
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3.7. Positive attributes and drawbacks

SE is among the most cost-effective methods for and agricultural residues and hardwoods 
since it does not require external catalysts. It offers the possibility of pretreatment at high 
solids loading due to the high-energy content of steam and low water requirements which 
reduce capital expenditure. Moreover, excessive dilution of sugars in pretreated liquor is 
reduced while the downstream processing of waste solution is minimized or eliminated. 
Another advantage relates to the possibility of using large biomass sizes which can lead to 
lower energy intensity. Though particles smaller than 2 cm are usually used, a recent study 
using larger biomass size (2.5 cm) was found to improve saccharification yield and overall 
process economics more than smaller sizes (0.5–1 cm); however, smaller particles recorded 
higher pretreated sugar recovery [49]. Corrosion is reduced due to the non-usage/low-use of 
chemicals.

Despite the advantages, there are inherent drawbacks associated with SE. The formation of 
inhibitory products, especially furan derivatives, weak acids and phenolic compounds, nega-
tively affect enzymatic hydrolysis and fermentation [50]. Severe conditions cause increased 
degradation of cellulose and hemicellulose. There is also a risk of condensation and precipita-
tion of soluble lignin components which leads to reduced digestibility of the biomass sub-
strates [41, 51], while disrupting the lignin structure. SE is less effective on softwood and 
unexploded materials are common. Further, pretreatment at high temperatures and pressures 
creates additional challenges in material handling, reactor operation, energy management 
and heat recovery [52]. Thus, scaling-up is a challenge since large volumes of biomass must 
be heated to high temperatures in short times.

First 

stage

Second stage Biomass Results Reference

SE Organosolv Poplar Improved lignin removal; over 
98% recovery of cellulose; glucan 
digestibility >88%

[32]

SE O2 in alkaline solution Douglas-fir 84% removal of lignin left in exploded 
substrates

[41]

SE H2O2 + stabilizers Douglas-fir Effective lignin removal [42]

SE Laccase Wheat straw Effective removal of lignin phenols; high 
ethanol yields

[43, 44]

SE Fungi Wheat straw 75% of lignin degraded [45]

SE WO Pine 96% cellulose yield; ~100% hemicellulose 
yield

[46]

Dilute 
acid

SE Rice straw Reduced inhibitor formation; enhanced 
xylose yield degradability

[47]

SE Alkaline Sugarcane 
straw

Enzymatic conversion of 85% in an 
industrial (SE) reactor

[48]

Table 2. Examples of combined pretreatment including SE.
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4. Ammonium fiber explosion (AFEX)

4.1. Description

In AFEX, liquid (anhydrous) ammonia at moderate-to-high temperatures (60–200°C) and 
pressures (6.5–45 bar) is mixed with moist biomass for about 5–30 min, followed by a sudden 
drop in pressure to atmospheric. Ammonia is usually fed at less than 2 kg/kg of dry biomass. 
AFEX leads to the removal of lignin and some hemicelluloses, in addition to the decrystalliza-
tion of cellulose, partly due to the strong affinity of ammonia for such biomass components. 
According to Chundawat et al. [53], pretreatment causes morphological and physicochemical 
changes to cell walls of the material, by creating nanoscale network of interconnected tunnels 
within the cell wall structure through the cleaving of lignin-carbohydrate ester bonds, and 
the partial removal and subsequent deposition of extractives on cell wall surfaces, leading to 
enhanced enzymatic access to cellulose. Further, Maillard reactions between ammonia and 
carbonyl-based aldehydic groups give rise to several intermediate products [54].

AFEX is generally affected by the moisture content and particle size of biomass, ammonia 
loading and process conditions including temperature and residence time. Higher tempera-
tures cause more ammonia to flash causing greater disruption of the fibrous structure. Both 
glucan and xylan conversion (at fixed temperature and ammonia loading) was found to 
increase with moisture content of switchgrass [55]. In another study, particle size reduction 
increased the conversion of cellulose and xylan during pretreatment of corn stover [56].

4.2. Applications

AFEX has been widely applied to various class of lignocellulosic materials. Some results 
obtained from AFEX pretreatment of some biomass are given in Table 3.

4.3. Positive attributes and drawbacks

AFEX is a dry-to-dry process since no liquid stream is produced, making it potentially less 
costly compared to steam explosion [63] and dilute acid methods [64]. The process is simple 
as it reduces requirements of post-pretreatment washing, stream separation and nutrient 
supplementation, and produces intermediates that are of value in developing advanced bio-
products. Reaction temperatures are moderate and energy requirements are low. Large solids 
(up to 5 cm) can be fractionated with good yields. Moreover, desired solid loadings are easily 
obtained, and high solid loadings are easier to implement due to low water demands. High 
glucose and xylose yields are both obtained under similar process conditions which simplify 
the optimization of process parameters. Moreover, except for some phenolic fragments of 
lignin and cell wall extractives that may form on the surface of pretreated solids, no enzyme-
inhibitors are produced [50]. AFEX give high sugar yields at low enzyme loadings of 1–10 
FPU cellulase/g of dry biomass [1]. Klason lignin and carbohydrates are preserved and pre-
treated substrates possess high fermentability. Recently, process improvements bordering on 
ammonia loading and recovery, ammonia recycle concentration, and enzyme loadings have 
been developed and shown to reduce the cost of operation of AFEX-based biorefinery [65].
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Its main demerit is its unsuitability for handling materials with high lignin content such as 
wood. Much of the hemicellulose is fractionated to oligomers making it more challenging 
during fermentation. High pressures are usually required due to high ammonia loadings 
and high vapor pressure of ammonia. Moreover, ammonia is expensive and recovery of all 
feed ammonia for reuse is challenging. Safety issues arising from the corrosive and toxic 
nature of ammonia present additional challenges in process operation at industrial level. 
Compared to soaking in aqueous ammonia (SAA), AFEX requires expensive reactors and 
equipment.

5. Soaking in aqueous ammonia (SAA)

5.1. Description

SAA involves treatment of biomass with aqueous ammonia (5–50%w/w) at low temperatures 
(25–90°C) under ambient pressure in a batch reactor. Pretreatment is undertaken for residence 
times ranging from about 1 h to 3 months. Pretreatment efficiency is depended on variables 
such as temperature, reaction time and ammonia concentration. Lignin dissolves in the aque-
ous solution without appreciable decrease in the carbohydrate content, and high levels of 
solubilization are observed with high temperatures and times. In addition, severe conditions 
also cause release of acetyl groups, hemicelluloses, extractives and ash into pretreatment 
liquor [66]. In other aqueous ammonia treatment, moderate temperatures (≥100°C) are used 
to achieve high delignification of biomass using pressure vessels [67]. Higher temperatures 
are compensated using lower reaction times.

Reaction conditions NH
3
 loading, 

g/g dry mass

Biomass Results Reference

102°C, 30 min, 
2.24 MPa

2a Agave bagasse ~100% carbohydrate preservation; 
42.5 g glucose and xylose/100 g 
native biomass

[57]

40–110°C, 1.4 MPa 1 Rice and wheat straw, 
sorghum and maize 
stovers

60–85% glucose recovery, 50–85% 
xylose recovery

[58]

165.1°C, 69.8 min, 
14.3% NH

3
, 2.2 MPa 

of CO2

Rice straw 93.6% glucose yield; 97% 
theoretical ethanol yield

[59]

170°C, 10 min 5 Giant weed 94.2% glucan conversion; 84.4% 
xylan conversion

[60]

150°C for 30 min 1.5 Switchgrass 98% xylose yield [61]

70°C, 350–430 psi, 
14–18 min

0.8 Dry distillers’ grains 90% cellulose conversion to 
glucose

[62]

aWet-basis.

Table 3. Results of AFEX pretreated biomass.
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Biomass Optimal pretreatment DL, % X/H, % Hydrolysis Yield, % Reference

Glu Eth

Rice straw 27 wt% NH
3
, 25°C, 2 wk 42 71 44–49 [75]

Rice straw 21 wt% NH
3
, 69°C, 10 h 60.6a 15 FPU/g-

glucan, 30 
CBU/g-glucan

71.1 83.1 [76]

15 wt% NH
3
, 

130°C, 325 psig, 
20 min

No acid 
treatment

69.8 77 50°C, 15 FPU/g-
glucan, 15 
CBU/g-glucan

83.2 [77]

+ acid 

treatment

90.8

60°C, 15 wt% 
NH

3
, 24 h

PBI: 3 kGy, 
45 MeV

50°C, 60 FPU/g-
glucan, 10 
CBU/g-glucan

90 [78]

Corn fiber 
(destarched)

15 wt% NH
3
, 65°C, 8 h 76–78 50°C, 72 h, 

15.57 FPU/g-
glucan, 30 
CBU/g-glucan

85.4 [79]

Corn stover 29.5 wt% NH
3
, 10–60 days, RT 56–74 85 50°C, 72 h, 

15 FPU/g-
glucan, 30 
CBU/g-glucan

86–89 73–77 [80]

15 wt% NH
3
, 60°C, 12 h 62 85 15 

FPU/g-glucan
85 77 [81]

50 wt% NH
3
, 30°C, 4 weeks 55 15 FPU/g-

glucan, 30 
CBU/g-glucan

86.5 73 [82]

15 wt%NH
3
, 69°C, 12 h >80 84 [70]

15 wt% NH
3
, 

60°C, 8 h
Hot water, 
10 min

68 50°C, 24 h, 
15 FPU/g-
glucan, 30 
CBU/g-glucan

96 [83]

12.5 wt% NH
3
, 

60°C, 24 h, O2

+ TiO2, UV 70 50°C, 24 h, 
15 FPU/g-
glucan, 30 
CBU/g-glucan

85 [84]

+ ZnO, UV 82

Switchgrass 29.5 wt% NH
3
, 10 days, RT 40–50 50 72 [85]

30 wt% 
NH

3
, 5 days 

(pilot-scale)

Aseptic 

conditions

73 [86]

Semi-aseptic 52–74

15 wt% NH
3
, 40°C/24 h, 60°C/8 h 40.8–

46.9
50°C, 72 h, 
22–25 FPU/g-
glucan, 44–50 
CBU/g-glucan, 
+ xylanase

>85 [87]

15 wt% NH
3
, 

120°C, 24 h
No H2O2 65 15 FPU/g-

glucan, 30 
CBU/g-glucan

53.7 [88]

+ 5% H2O2 77 74.3
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5.2. Applications

Chen et al. [68] used aqueous ammonia to pretreat silvergrass, napiergrass and rice straw 
at room temperature, resulting in over 90% of cellulose recovery in 4 weeks. On destarched 
barley hull, SAA pretreatment (15w/w NH

3
, 75°C, 48 h) produced zero glucan loss and 83% 

saccharification yield using 15 FPU/g-glucan; and with the addition of a xylanase in simul-
taneous saccharification and co-fermentation (SSCF), a high ethanol yield of 89.4% of the 
maximum theoretical was obtained [69]. High ethanol concentration and yields from SAA-
pretreated corn stover followed the use of a two-phase SSF involving pentose and hexose con-

version with the help of S. cerevisiae and a recombinant bacterium, respectively [70]. Recently, 
the addition of surfactants such as Tween 80 and PEG 400 was found to improve sugar and 
ethanol yields [71]. In a similar study Raj and Krishnan [72] obtained high sugar yield by 
adding laccase and a mediator to enhance enzymatic hydrolysis of pretreated biomass. Nahar 
and Pryor [73] also found out that pelleting of samples before SAA application required less 
harsh pretreatment conditions and lower costs.

Two-stage processes targeting separate removal of hemicelluloses and lignin have also been 
investigated. Kim et al. [74] employed acetic acid medium to remove hemicelluloses followed 
by aqueous ammonia at elevated temperatures. Results obtained from other studies are given 
in Table 4.

5.3. Positive attributes and drawbacks

SAA retains most of the hemicelluloses in the solid, eliminating the need to separately process 
hemicellulose and cellulose sugars. It leads to efficient delignification, producing low levels of 
enzyme inhibitory compounds. The reactor configuration is simpler and less costly, while ammo-

nia recovery is easier compared to AFEX [18]. It can be adapted to small-scale production. Further, 
neutralized salts from liquid hydrolysates could be used as nutrient source in fermentation.

Biomass Optimal pretreatment DL, % X/H, % Hydrolysis Yield, % Reference

Glu Eth

Oil palm 
trunk

80°C, 8 h and 7 wt% NH
3

40–50 50°C, 96 h, 60 
FPU/g-glucan

95.4 78.3 [89]

Oil palm 
empty fruit 
bunch

60°C, 12 h, and 21 wt% NH
3

40.9 60 FPU/g-
glucan, 96 h

41.4 65.6 [90]

Miscanthus 150°C/30 wt% NH
3
, 180°C/10 wt% 

NH
3
, 1 h (not optimum)

>65 39.3–77.1 50°C, 96 h, 20 
FPU/g-glucan

53.4 [91]

News paper 4 wt% NH
3
 + 2 wt% H2O2, 

40°C, 3 h
50°C, 72 h, 60 
FPU/g-glucan

90 [92]

DL: delignification; RT: room temperature; PBI: proton beam irradiation; X/H: percentage of xylan/hemicellulose 
retained in the solids after pretreatment; Glu: maximum theoretical glucose yield after enzymatic hydrolysis;  
Eth: ethanol yield after fermentation, SSF, SSCF, etc.
aConditions: 70°C, 10 h, 20 wt% NH

3
.

Table 4. Sugar and ethanol yields from selected SAA pretreated biomass.
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There are few disadvantages associated with SAA pretreatment. Since pretreated solids con-
tain high fractions of hemicellulose, a high demand for C5 conversion enzymes is needed to 
produce xylose and other pentose monomers [18]. Post-treatment washing usually result in 
carbohydrate losses.

6. Irradiation-chemical pretreatment

6.1. Description

In irradiation-chemical pretreatment, the biomass is typically soaked in a solvent (water, acid, 
or alkali) before undergoing irradiation via microwaves, gamma radiation, proton and elec-
tron beam, or radio frequency. In some cases, irradiation is performed before the chemical or 
other pretreatment, with advantages that include solubilization of lignin and hemicellulose, 
minimization of cellulose degradation, use of lower doses of chemical and less severe condi-
tions. Further, undertaking irradiation before milling of biomass can reduce energy consump-
tion (from size reduction) significantly [93].

Dielectric heating of biomass causes more energy absorption by the more polar part which 
creates a hot spot, resulting in generation of high internal steam pressure that induces an 
explosive effect, disrupting the biomass structure [94, 95]. The disruption is underpinned 
by radiolytic reactions that cause release of free radicals, triggering cross-linking and chain 
scission [96]. Cross-linking reactions are believed to happen within the cellulose structure 
and as such when they predominate over chain scission reactions, sugar yields are not 
affected.

In general, pretreatment results in degradation of hemicellulose and lignin, and the altera-
tion of cellulose structure. There is an increase in the specific surface area and a reduction 
in the degree of polymerization [97], as well as a change in the crystallinity of cellulose to 
amorphous pattern [98]. In general, higher radiation intensities and lower biomass moisture 
content lead to higher rates of increase in final temperatures; however longer radiation time 
causes higher average final temperature and lower rate of temperature increase [99]. Increases 
in irradiation strength have been found to affect hemicellulose more than lignin or cellulose 
[96, 100].

6.2. Applications

Microwave-assisted pretreatment has been applied to various materials. In a comparative 
study of the efficacy of mild sulfuric acid (5% v/v) application in combination with vari-
ous heating modes—hot plate (100°C, 30 min), autoclave (121°C, 30 min), and microwave 
(200°C, 700 W, 15 min) on the biodegradability of garden biomass, microwave heat treatment 
was found to produce 53.95% cellulose recovery, leading to reducing sugar yield of 46.97%, 
which was about 10% higher than the other two modes [101]. Application of microwaves 
on alkali pretreated wheat straw [102] and coconut husk fiber [103] was found to produce 
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higher ethanol concentration and yield than substrates that did not receive any radiation. In 
another study, yields of 25.3, 21.2, and 46.5 g/100 g biomass, respectively, was obtained dur-
ing radio frequency-assisted NaOH pretreatment (27.12 MHz, 0.20–0.25 g NaOH/g biomass; 
90°C) of switchgrass at solids content of 20% [94]. In an investigation to ascertain the effects of 
microwave chemical pretreatment on sweet sorghum bagasse (12% moisture, 1–2 mm), lime 
was found to enhance lignin removal, with sugar yields reaching 23.2 g/100 g biomass (38% 
of theoretical yield) for lime concentration of 0.1 g/10 ml of water. Microwave has also been 
used in conjunction with eutectic solvent, with enhanced lignin and hemicellulose removal 
and improved cellulose digestibility [104].

Under electron beam application, Karthika et al. [105] obtained 79% sugar yield from the 
saccharification (30 FPU/g-biomass, 144 h) of a hybrid grass exposed to 250 kGy of radiation, 
while Bak et al. [106] realized 52.1% from rice straw when it was exposed to 80 kGy and 
saccharified using 60 FPU/g-glucan for 132 h. Prior removal of hemicellulose using dilute 
acid and alkaline before irradiation exposes cellulase to enzymatic action during hydrolysis, 
and culminates in higher sugar yields [107]. Electron beam has also been applied together 
with other physico-chemical methods such as SE with good results [108]. The main challenge 
regarding the use of electron beam pertains to its low energy and as such some interest are 
focusing on proton beam.

6.3. Positive attributes and drawbacks

The mode of heating is uniform, energy efficient and offers rapid processing of biomass. 
Pretreatment is performed at low temperatures and at shorter period. It has the potential to be 
used for effective isolation of hemicelluloses. Irradiation generates no/low levels of inhibitors 
and by carefully controlling the chemical pretreatment, inhibitor levels are reduced.

Irradiation-chemical methods do not come without disadvantages. Microwave-assisted pre-
treatment comes with the risk of causing extensive degradation of hemicelluloses and con-
tamination of dissolved lignin at severe conditions, releasing toxic compounds that inhibit 
enzymatic hydrolysis. Hu and team [94] argue that practical issues with scaling-up is more 
of a challenge in microwave than in radio frequency which can be used on large quantities 
of biomass, and at relatively high solids loading (20–50%) with uniform temperature profile 
when combined with chemical methods.

7. Conclusion

Among the three main stages of cellulosic ethanol production, namely, pretreatment, hydro-
lysis and fermentation, pretreatment presents the most practical and economic challenges 
in the attempt to produce ethanol at industrial-scale due its influence on both upstream and 
downstream processes. Thus, emerging and promising pretreatment methods that rely on 
physico-chemical fractionation of biomass are discussed, with prominence given to pro-
cess description, advantages, drawbacks, and innovations employed to counteract inherent 
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technical, economic and environmental challenges. The methods reviewed include liquid 
hot-water (LHW), steam explosion, ammonium fiber explosion (AFEX), soaking in aque-
ous ammonia (SAA), and irradiation-based pretreatment. Size reduction operations have 
been well integrated with other chemical and physico-chemical methods at the pilot and 
demonstration levels though energy consumption remains the rain challenge and as such 
research is shifting in favor of relatively low-energy methods such as wet disc milling as well 
as post-pretreatment size reduction. Irradiation-based methods have also shown promise 
at the industrial-level as demonstrated by burgeoning research interest around the world. 
With regards to physico-chemical methods, steam explosion and LHW-based methods have 
already been developed for industrial application.

Acknowledgements

The authors appreciate the support of DANIDA under the development research project (DFC 
journal no. 10-018RISØ) “Biofuels production from lignocellulosic materials (2GBIONRG).”

Author details

Edem C. Bensah1* and Moses Y. Mensah2

*Address all correspondence to: edem.bensah@gmail.com; cudjoe.ebensah@kstu.edu.gh

1 Department of Chemical Engineering, Kumasi Technical University, Kumasi, Ghana

2 Department of Chemical Engineering, Kwame Nkrumah University of Science and 
Technology (KNUST), Kumasi, Ghana

References

[1] Yang B, Wyman CE. Pretreatment: the key to unlocking low-cost cellulosic ethanol. 
Biofuels, Bioproducts and Biorefining. 2008;2:26-40

[2] Mosier N, Wyman C, Dale B, Elander E, Lee YY, Holtzapple M, Ladisch M. Features 
of promising technologies for pretreatment of lignocellulosic biomass. Bioresource 
Technology. 2005;96:673-686

[3] Chen H, Liu J, Chang X, Chen D, Xue Y, Liu P, Lin H, Han S. A review on the pretreatment 
of lignocellulose for high-value chemicals. Fuel Processing Technology. 2017;160:196-206

[4] Bensah EC, Mensah M. Chemical pretreatment methods for the production of cellulosic 
ethanol: Technologies and innovations. International Journal of Chemical Engineering. 
2013;2013:Article ID 719607. DOI: 10.1155/2013/719607

Fuel Ethanol Production from Sugarcane54



[5] Xiao L-P, Shi Z-J, Xu F, Sun R-C. Hydrothermal treatment and enzymatic hydrolysis of 
Tamarix ramosissima: Evaluation of the process as a conversion method in a biorefinery 
concept. Bioresource Technology. 2013;135:73-81

[6] Overend RP, Chornet E. Fractionation of lignocellulosics by steam–aqueous pretreat-
ments. Philosophical Transactions of the Royal Society of London. Series A. 1987; 
321:523-536

[7] Qing Q, Wyman CE. Supplementation with xylanase and b-xylosidase to reduce xylo-
oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn 
stover. Biotechnology for Biofuels. 2011;4:18

[8] Yu Q, Liu J, Zhuang X, Yuan Z, Wang W, Qi W, Wang Q, et al. Liquid hot water pre-

treatment of energy grasses and its influence of physico-chemical changes on enzymatic 
digestibility. Bioresource Technology. 2016;199:265-270

[9] Archambault-Leger V, Shao X, Lynd LR. Integrated analysis of hydrothermal flow-
through pretreatment. Biotechnology for Biofuels. 2012;5:49

[10] Ma Y, Ji W, Zhu X, Tian L, Wan X. Effect of extremely low AlCl3 on hydrolysis of cellu-
lose in high temperature liquid water. Biomass and Bioenergy. 2012;39:106-111

[11] Matsushita Y, Yamauchi K, Takabe K, et al. Enzymatic saccharification of Eucalyptus 
bark using hydrothermal pre-treatment with carbon dioxide. Bioresource Technology. 
2010;101:4936-4939

[12] Liu J, Li R, Shuai L, You J, Zhao Y, Chen L, et al. Comparison of liquid hot water (LHW) 
and high boiling alcohol/water (HBAW) pretreatments for improving enzymatic sac-

charification of cellulose in bamboo. Industrial Crops and Products. 2017a;107:139-148

[13] Weiqi W, Shubin W, Liguo L. Combination of liquid hot water pretreatment and wet disk 
milling to improve the efficiency of the enzymatic hydrolysis of eucalyptus. Technology. 
2013;128:725-730

[14] Imman S, Arnthong J, Burapatana V, Champreda V, Laosiripojana N. Influence of alka- 
line catalyst addition on compressed liquid hot water pretreatment of rice straw. 
Chemical Engineering Journal. 2015;278:85-91

[15] Larsen J, Haven MØ, Thirup L. Inbicon makes lignocellulosic ethanol a commercial real-
ity. Biomass and Bioenergy. 2012;46:36-45

[16] Thomsen MJ, Thygesen A, Thomsen AB. Hydrothermal treatment of wheat straw at 
pilot plant scale using a three-step reactor system aiming at high hemicellulose recov-

ery, high cellulose digestibility and low lignin hydrolysis. Bioresource Technology. 
2008;99:4221-4228

[17] Petersen MØ, Larsen J, Thomsen MH. Optimization of hydrothermal pretreatment of 
wheat straw for production of bioethanol at low water consumption without addition of 
chemicals. Biomass and Bioenergy. 2009;33:834-840

Emerging Physico-Chemical Methods for Biomass Pretreatment
http://dx.doi.org/10.5772/intechopen.79649

55



[18] Tao L, Aden A, Elander RT, Pallapolu VR, Lee YY, Garlock RJ, et al. Process and tech-

noeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol 
production using switchgrass. Bioresource Technology. 2011;102:11105-11114

[19] Negro MJ, Manzanares P, Ballesteros I, Oliva JM, Cabañas A, Ballesteros M. Hydrothermal 
pretreatment conditions to enhance ethanol production from poplar biomass. Applied 
Biochemistry and Biotechnology. 2003;105:87-100

[20] Thomsen S, Jensen M, Schmidt J. Production of 2nd generation bioethanol from lucerne – 
optimization of hydrothermal pretreatment. BioResources. 2012;7(2):1582-1593

[21] Modenbach AA, Nokes SE. The use of high-solids loadings in biomass pretreatment—A 
review. Biotechnology and Bioengineering. 2012;109(6)

[22] Sui W, Chen H. Effects of water states on steam explosion of lignocellulosic biomass. 
Bioresource Technology. 2016;199:155-163

[23] Sui W, Chen H. Water transfer in steam explosion process of corn stalk. Industrial Crops 
and Products. 2015;76:977-986

[24] Egüés I, Sanchez C, Mondragon I, Labidi J. Effect of alkaline and autohydrolysis pro-

cesses on the purity of obtained hemicelluloses from corn stalks. Bioresource Technology. 
2012;103:239-248

[25] Li J, Gellerstedt G, Toven K. Steam explosion lignins; their extraction, structure and poten-

tial as feedstock for biodiesel and chemicals. Bioresource Technology. 2009;100:2556-2561

[26] Sassner P, Mårtensson C-G, Galbe M, Zacchi G. Steam pretreatment of H2SO
4
-impregnated 

Salix for the production of bioethanol. Bioresource Technology. 2008;99:137-145

[27] Maniet G, Schmetz Q, Jacquet N, Temmerman M, Gofflot S, Richel A. Effect of steam 
explosion treatment on chemical composition and characteristic of organosolv fescue 
lignin. Industrial Crops and Products. 2017;99:79-85

[28] Yu Z, Zhang B, Yu F, Xu G, Song A. A real explosion: The requirement of steam explo-

sion pretreatment. Bioresource Technology. 2012;121:335-341

[29] Bobleter O. Hydrothermal degradation of polymers derived from plants. Progress in 
Polymer Science. 1994;19:797-841

[30] Martin-Sampedro R, Capanema EA, Hoeger I, Villar JC, Rojas OJ. Lignin changes after 
steam explosion and laccase-mediator treatment of eucalyptus wood chips. Journal of 
Agricultural and Food Chemistry. 2011;59:8761-8769

[31] Li J, Henriksson G, Gellerstedt G. Lignin depolymerization/repolymerization and its crit-
ical role for delignification of aspen wood by steam explosion. Bioresource Technology. 
2007;98:3061-3068

[32] Panagiotopoulos IA, Chandra RP, Saddler JN. A two-stage pretreatment approach to 
maximise sugar yield and enhance reactive lignin recovery from Poplar wood chips. 
Bioresource Technology. 2013;130:570-577

Fuel Ethanol Production from Sugarcane56



[33] Corrales RCNR, Mendes FMT. Structural evaluation of sugar cane bagasse steam pre-

treated in the presence of CO2 and SO2. Biotechnology for Biofuels. 2012;5:36

[34] Sipos B, Kreuger E, Svensson S-E, Réczey K, et al. Steam pretreatment of dry and ensiled 
industrial hemp for ethanol production. Biomass and Bioenergy. 2010;34:1721-1731

[35] Zhang X, Yuan Q, Cheng G. Deconstruction of corncob by steam explosion pretreat-
ment: Correlations between sugar conversion and recalcitrant structures. Carbohydrate 
Polymers. 2017;156:351-356

[36] Ferreira-Leitão V, Perrone CC, Rodrigues J, et al. Aesnea rachpproach to the utilisation 
of CO2 as impregnating agent in steam pretreatment of sugar cane bagasse and leaves 
for ethanol production. Biotechnology for Biofuels. 2010;3:7

[37] Chen W-H, Tsai C-C, Lin C-F, Tsai P-Y, Hwang W-S. Pilot-scale study on the acid-cata-

lyzed steam explosion of rice straw using a continuous pretreatment system. Bioresource 
Technology. 2013;128:297-304

[38] Linde M, Jakobsson E-L, Galbe M, Zacchi G. Steam pretreatment of dilute H2SO
4
-

impregnated wheat straw and SSF with low yeast and enzyme loadings for bioethanol 
production. Biomass and Bioenergy. 2008;32:326-332

[39] Zabihi S, Alinia R, Esmaeilzadeh F, Kalajahi JF. Pretreatment of wheat straw using steam, 
steam/acetic acid and steam/ethanol and its enzymatic hydrolysis for sugar production. 
Biomass and Bioenergy. 2010;105:288-297

[40] Park J-Y, Kang M, Kim JS, Lee J-P, Choi W-I, Lee J-S. Enhancement of enzymatic digest-
ibility of Eucalyptus grandis pretreated by NaOH catalyzed steam explosion. Bioresource 
Technology. 2012;123:707-712

[41] Pan X, Zhang X, Gregg DJ, Saddler JN. Enhanced enzymatic hydrolysis of steam-
exploded Douglas fir wood by alkali-oxygen post-treatment. Applied Biochemistry and 
Biotechnology. 2004:113-116

[42] Cullis IF, Mansfield SD. Optimized delignification of wood-derived lignocellulosics for 
improved enzymatic hydrolysis. Biotechnology and Bioengineering. 2010;106(6):884-893

[43] Jurado M, Prieto A, Martínez-Alcalá A, Martínez ÁT, Martínez MJ. Laccase detoxifi-

cation of steam-exploded wheat straw for second generation bioethanol. Bioresource 
Technology. 2009;100:6378-6384

[44] Moreno AD, Ibarra D, Ballesteros I, et al. Comparing cell viability and ethanol fermenta-

tion of the thermotolerant yeast Kluyveromyces marxianus and Saccharomyces cerevisiae on 

steam-exploded biomass treated with laccase. Bioresource Technology. 2013(135):239-245

[45] Zhang L-H, Li D, Wang L-J, Wang T-P, et al. Effect of steam explosion on biodegradation 
of lignin in wheat straw. Bioresource Technology. 2008;99:8512-8515

[46] Rana D, Rana V, Ahring BK. Producing high sugar concentrations from loblolly pine 
using wet explosion pretreatment. Bioresource Technology. 2012;121:61-67

Emerging Physico-Chemical Methods for Biomass Pretreatment
http://dx.doi.org/10.5772/intechopen.79649

57



[47] Chen W-H, Pen B-L, Yu C-T, Hwang W-S. Pretreatment efficiency and structural charac-

terization of rice straw by an integrated process of dilute-acid and steam explosion for 
bioethanol production. Bioresource Technology. 2011;102:2916-2924

[48] Oliveira FMV, Pinheiro IO, Souto-Maior AM, et al. Industrial-scale steam explosion 
pretreatment of sugarcane straw for enzymatic hydrolysis of cellulose for production 
of second generation ethanol and value-added products. Bioresource Technology. 
2013;130:168-173

[49] Liu Z-H, Qin L, Pang F, Jin M-J, Li B-Z, Kang Y, et al. Effects of biomass particle size on 
steam explosion pretreatment performance for improving the enzyme digestibility of 
corn stover. Industrial Crops and Products. 2013;44:176-184

[50] Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ. Pretreatment technologies for an 
efficient bioethanol production process based on enzymatic hydrolysis: A review. 
Bioresource Technology. 2010;101:4851-4861

[51] Hendriks ATWM, Zeeman G. Pretreatments to enhance the digestibility of lignocellu-

losic biomass. Bioresource Technology. 2009;100:10-18

[52] Ibbett R, Gaddipati S, Davies S, Hill S, Tucker G. The mechanisms of hydrothermal 
deconstruction of lignocellulose: New insights from thermal–analytical and comple-

mentary studies. Bioresource Technology. 2011;102:9272-9278

[53] Chundawat SPS, Donohoe BS, Sousa LD, et al. Multi-scale visualization and character-

ization of lignocellulosic plant cell wall deconstruction during thermochemical pretreat-
ment. Energy & Environmental Sciences. 2011;4:973

[54] Chundawat SPS, Vismeh R, Sharma LN, et al. Multifaceted characterization of cell wall 
decomposition products formed during ammonia fiber expansion (AFEX) and dilute 
acid based pretreatments. Bioresource Technology. 2010;101:8429-8438

[55] Alizadeh H, Teymoum F, Gilbert TI, Dale BE. Pretreatment of switchgrass by ammonia 
fiber explosion (AFEX). Applied Biochemistry and Biotechnology. 2005;121-124:1133-1142

[56] Shao X, Jin M, Guseva A, Liu C, et al. Conversion for Avicel and AFEX pretreated corn 
stover by Clostridium thermocellum and simultaneous saccharification and fermenta-

tion: Insights into microbial conversion of pretreated cellulosic biomass. Bioresource 
Technology. 2011;102(17):8040-8045

[57] Perez-Pimienta J, Flores-Gómez CA, Ruiz HA, Sathitsuksanoh N, et al. Evaluation of 
agave bagasse recalcitrance using AFEXTM, autohydrolysis, and ionic liquid pretreat-
ments. Bioresource Technology. 2016;211:216-223

[58] Blümmel M, Teymouri F, Moore J, Nielson C, Videto J, et al. Ammonia fiber expansion 
(AFEX) as spin off technology from 2nd generation biofuel for upgrading cereal straws 
and stovers for livestock feed. Animal Feed Science and Technology. 2018;236:178-186

[59] Cha Y-L, Yang J, Ahn J-W, Moon Y-H, Yoon Y-M, et al. The optimized CO2-added ammo-

nia explosion pretreatment for bioethanol production from rice straw. Bioprocess and 
Biosystems Engineering. 2014;37(9):1907-1915

Fuel Ethanol Production from Sugarcane58



[60] Zhao C, Cao Y, Ma Z, Shao Q. Optimization of liquid ammonia pretreatment conditions 
for maximizing sugar release from giant reed (Arundo donax L.). Biomass and Bioenergy. 
2017;98:61-69

[61] Garlock RJ, Balan V, Dale BE. Comparative material balances around pretreatment tech-
nologies for the conversion of switchgrass to soluble sugars. Bioresource Technology. 
2011;102:11063-11071

[62] Kim Y, Hendrickson R, Mosier NS, Ladisch MR, Bals B, Balan V, et al. Enzyme hydroly-
sis and ethanol fermentation of liquid hot water and AFEX pretreated distillers’ grains 
at high-solids loadings. Bioresource Technology. 2008;99:5206-5215

[63] Moniruzzaman M, Dale BE, Hespell RB, Bothast RJ. Enzymatic hydrolysis of high-mois-
ture corn fiber pretreated by AFEX and recovery and recycling of the enzyme complex. 
Applied Biochemistry and Biotechnology. 1997;67:113-126

[64] Li B-Z, Balan V, Yuan Y-J, Dale BE. Process optimization to convert forage and sweet 
sorghum bagasse to ethanol based on ammonia fiber expansion (AFEX) pretreatment. 
Bioresource Technology. 2010;101:1285-1292

[65] Sendich EN, Laser M, Kim S, et al. Recent process improvements for the ammonia fiber 
expansion (AFEX) process and resulting reductions in minimum ethanol selling price. 
Bioresource Technology. 2008;99:8429-8435

[66] Wang J, Xin D, Hou X, Wub J, Fan X, Li K, Zhang J. Structural properties and hydrolys-
abilities of Chinese Pennisetum and Hybrid Pennisetum: Effect of aqueous ammonia 
pretreatment. Bioresource Technology. 2016;199:211-219

[67] Zulkiple N, Maskat MY, Hassan O. Pretreatment of oil palm empty fruit fiber 
(OPEFB) with aquaeous ammonia for high production of sugar. Procedia Chemistry. 
2016;18:155-161

[68] Chen B-Y, Chen S-W, Wang H-T. Use of different alkaline pretreatments and enzyme 
models to improve low-cost cellulosic biomass conversion. Biomass and Bioenergy. 
2012;39:182-191

[69] Kim TH, Taylor F, Hicks KB. Bioethanol production from barley hull using SAA (soak-
ing in aqueous ammonia) pretreatment. Bioresource Technology. 2008;99:5694-5702

[70] Li X, Kim TH, Nghiem NP. Bioethanol production from corn stover using aqueous 
ammonia pretreatment and two-phase simultaneous saccharification and fermentation 
(TPSSF). Bioresource Technology. 2010b;101:5910-5916

[71] Cao S, Aita GM. Enzymatic hydrolysis and ethanol yields of combined surfactant and 
dilute ammonia treated sugarcane bagasse. Bioresource Technology. 2013;131:357-364

[72] Raj K, Krishnan C. High sugar yields from sugarcane (Saccharum officinarum) bagasse 
using low-temperature aqueous ammonia pretreatment and laccase-mediator assisted 
enzymatic hydrolysis. Industrial Crops and Products. 2018;111:673-683

[73] Nahar N, Pryor SW. Effects of reduced severity ammonia pretreatment on pelleted corn 
stover. Industrial Crops and Products. 2017;109:163-172

Emerging Physico-Chemical Methods for Biomass Pretreatment
http://dx.doi.org/10.5772/intechopen.79649

59



[74] Kim DY, Kim YS, Kim TH, Oh KK. Two-stage, acetic acid-aqueous ammonia, frac-

tionation of empty fruit bunches for increased lignocellulosic biomass utilization. Bio-
resource Technology. 2016;199:121-112

[75] Phitsuwan P, Permsriburasuk C, Waeonukul R, Pason P, Tachaapaikoon C, Ratana-
khanokchai K. Evaluation of fuel ethanol production from aqueous ammonia-treated 
rice straw via simultaneous saccharification and fermentation. Biomass and Bioenergy. 
2016;93:150-157

[76] Ko JK, Bak JS, Jung MW, Lee HJ, Choi I-G, Kim TH, et al. Ethanol production from rice 
straw using optimized aqueous-ammonia soaking pretreatment and simultaneous sac-

charification and fermentation processes. Bioresource Technology. 2009;100:4374-4380

[77] Kim J-W, Kim KS, Lee JS, Park SM, Cho H-Y, Park JC, et al. Two-stage pretreatment 
of rice straw using aqueous ammonia and dilute acid. Bioresource Technology. 2011; 
102:8992-8999

[78] Kim SB, Kim JS, Lee JH, Kang SW, Park C, Kim SW. Pretreatment of rice straw by 
proton beam irradiation for efficient enzyme digestibility. Applied Biochemistry and 
Biotechnology. 2011;164:1183-1191

[79] Nghiem NP, Montanti J, Johnston DB, Drapcho C. Fractionation of corn fiber treated 
by soaking in aqueous ammonia (SAA) for isolation of hemicellulose B and produc-

tion of C5 sugars by enzyme hydrolysis. Applied Biochemistry and Biotechnology. 2011; 
164:1390-1404

[80] Kim TH, Lee YY. Pretreatment of corn stover by soaking in aqueous ammonia. Applied 
Biochemistry and Biotechnology. 2005;121-124:1119-1132

[81] Kim TH, Lee YY. Pretreatment of corn stover by soaking in aqueous ammonia at moder-

ate temperatures. Applied Biochemistry and Biotechnology. 2007;(81):136-140

[82] Li X, Kim TH. Low-liquid pretreatment of corn stover with aqueous ammonia. Bio-
resource Technology. 2011;102:4779-4786

[83] Yoo CG, Lee C-W, Kim TH. Two-stage fractionation of corn stover using aqueous ammo-

nia and hot water. Applied Biochemistry and Biotechnology. 2011;164:729-740

[84] Yoo CG, Wang C, Yu C, Kim TH. Enhancement of enzymatic hydrolysis and Klason lig-

nin removal of corn stover using photocatalyst-assisted ammonia pretreatment. Applied 
Biochemistry and Biotechnology. 2013;169(5):1648-1658

[85] Isci A, Himmelsbach JN, Pometto AL III, Raman DR, Anex RP. Aqueous ammonia soak-

ing of switchgrass followed by simultaneous saccharification and fermentation. Applied 
Biochemistry and Biotechnology. 2008;144:69-77

[86] Isci A, Himmelsbach JN, Strohl J, Pometto AL III, Raman DR, Anex RP. Pilot-scale fer-

mentation of aqueous-ammonia-soaked switchgrass. Applied Biochemistry and Bio-
technology. 2009;157:453-462

Fuel Ethanol Production from Sugarcane60



[87] Pryor SW, Karki B, Nahar N. Effect of hemicellulase addition during enzymatic 
hydrolysis of switchgrass pretreated by soaking in aqueous ammonia. Bioresource 
Technology. 2012;123:620-626

[88] Gupta R, Lee YY. Investigation of biomass degradation mechanism in pretreatment 
of switchgrass by aqueous ammonia and sodium hydroxide. Bioresource Technology. 
2010;101:8185-8191

[89] Jung YH, Kim IJ, Kim JJ, Oh KK, Han J-I, Choi I-G, et al. Ethanol production from 
oil palm trunks treated with aqueous ammonia and cellulase. Bioresource Technology. 
2011;102:7307-7312

[90] Jung YH, Kim IJ, Han J-I, Choi I-G, Kim KH. Aqueous ammonia pretreatment of oil 
palm empty fruit bunches for ethanol production. Bioresource Technology. 2011;102: 
9806-9809

[91] Liu Z, Padmanabhan S, Cheng K, et al. Aqueous-ammonia delignification of miscanthus 
followed by enzymatic hydrolysis to sugars. Bioresource Technology. 2012(135):23-29

[92] Kim SB, Moon NK. Enzymatic digestibility of used newspaper treated with aqueous 
ammonia–hydrogen peroxide solution. Applied Biochemistry and Biotechnology. 2003: 
105-108

[93] Liu Y, Guo L, Wang L, Zhan W, Zhou H. Irradiation pretreatment facilitates the achieve-

ment of high total sugars concentration from lignocellulose biomass. Bioresource 
Technology. 2017;232:270-277

[94] Hu Z, Wang Y, Wen Z. Alkali (NaOH) pretreatment of switchgrass by radio frequency-
based dielectric heating. Applied Biochemistry and Biotechnology. 2008;148:71-81

[95] Li X-J, Lu K-Y, Lin L-Y, Zhou Y-D, Cai Z-Y, Fu F. Fundamental characteristics of micro-

wave explosion pretreatment of wood. I. Properties of temperature development. 
Forestry Studies in China. 2010;12(1):9-13

[96] Yin Y, Wang J. Enhancement of enzymatic hydrolysis of wheat straw by gamma irradia-

tion–alkaline pretreatment. Radiation Physics and Chemistry. 2016;123:63-67

[97] Sarkar N, Ghosh SK, Bannerjee S, Aikat K. Bioethanol production from agricultural 
wastes: An overview. Renewable Energy. 2012;37:19-27

[98] Lee B-M, Jeun J-P, Kang P-H. Enhanced enzymatic hydrolysis of kenaf core using irra-

diation and dilute acid. Radiation Physics and Chemistry. 2017;130:216-220

[99] Li X, Zhou Y, Yan Y, Cai Z, Feng F. A single cell model for pretreatment of wood by 
microwave explosion. Holzforschung. 2010;(64):633-637

[100] Sung YJ, Shin S-J. Compositional changes in industrial hemp biomass (Cannabis 

sativa L.) induced by electron beam irradiation pretreatment. Biomass and Bioenergy. 
2011;35:3267-3270

Emerging Physico-Chemical Methods for Biomass Pretreatment
http://dx.doi.org/10.5772/intechopen.79649

61



[101] Gabhane J, William SPMP, Vaidya AN, Mahapatra K, Chakrabarti T. Influence of heat-
ing source on the efficacy of lignocellulosic pretreatment—A cellulosic ethanol perspec-
tive. Biomass and Bioenergy. 2011;35:96-102

[102] Zhu S, Wu Y, Yu Z, Zhang X, et al. Production of ethanol from microwave-assisted 
alkali pretreated wheat straw. Process Biochemistry. 2006;41:869-873

[103] Ding TY, Hii SL, Ong LGA. Comparison of pretreatment strategies for conversion of 
coconut husk fiber to fermentable sugars. BioResources. 2012;7(2):1540-1547

[104] Chen Z, Wan C. Ultrafast fractionation of lignocellulosic biomass by microwave-
assisted deep eutectic solvent pretreatment. Bioresource Technology. 2018;250:532-537

[105] Karthika K, Arun AB, Rekha PD. Enzymatic hydrolysis and characterization of lig-
nocellulosic biomass exposed to electron beam irradiation. Carbohydrate Polymers. 
2012;90:1038-1045

[106] Bak JS, Ko JK, Han YH, Lee BC, Choi I-G, Kim KH. Improved enzymatic hydrolysis yield 
of rice straw using electron beam irradiation pretreatment. Bioresource Technology. 
2009;100:1285-1290

[107] Karthika K, Arun AB, Melo JS, Mittal KC, Kumar M, Rekha PD. Hydrolysis of acid 
and alkali presoaked lignocellulosic biomass exposed to electron beam irradiation. 
Bioresource Technology. 2013;129:646-649

[108] Leskinen T, Kelley SS, Argyropoulos DS. E-beam irradiation & steam explosion as bio-
mass pretreatment, and the complex role of lignin in substrate recalcitrance. Biomass 
and Bioenergy. 2017;103:21-28

Fuel Ethanol Production from Sugarcane62


