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Abstract

The organometal halide perovskite solar cells (PSCs) have attracted attention and 
achieved efficiencies compared with traditional solar cells. There are several ways to 
develop perovskite solar cells like effect of moisture, degradation, and understanding the 
reason for instability of perovskite. In this chapter, we are specified how to make coating 
and film fabrication are affected by the existing methods. Improvement in the photo-
voltaic performance of PSCs can be achieved by enhanced processing technique. These 
techniques include the spin-coating PbI

2
 solution controlling the substrate temperature 

and crystal quality of the morphology for perovskite films. There is no doubt that film 
coating indicates that the crystallization and morphology of perovskite films affect the 
absorption intensity and obviously influence the short-circuit current density. This study 
points out an enhancement of the stability of perovskite films and solar cells by reducing 
residual strains in perovskite films.

Keywords: perovskite solar cells, working mechanism, photovoltaic parameters, 
stability, low cost

1. Introduction

Metal halide perovskite solar cells (PSCs) have emerged as a kind of encouraging alterna-

tive to existing photovoltaic technologies with both solution processability and superior 
photovoltaic performances. Fundamental studies on perovskite materials [1], device designs 
[2, 3], fabrication processes [4–10], and materials engineering [11–16] have boosted the rapid 
development of PSCs. Consequently, a certified power conversion efficiency (PCE) of 22.1% 
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has been obtained after the past several years of vigorous work. However, despite the over-
whelming achievements in terms of performance of PSCs, the long-term stability and current– 
voltage hysteresis still remain critical [4].

Perovskite solar cells, the most promising new technology in the academia and industry, 
have promised a highly competitive alternative to silicon solar cells and other commercial 
alternatives. Perovskite solar cells are high-performance photovoltaic devices which have the 
potential to enter in the market in the near future. Low processing costs and highly abundant 
raw materials may permit a short-energy payback time and low overall CO emissions. After 
an impressive increase in PCE from ~10% in 2012 to ~22.1% in early 2016, experts expect to 
discover further improvements in efficiency in the next several years [12]. Perovskite solar 
cell research is still in its infancy considering that the first work was only published in 2009 
[1]. The commercialization of perovskite solar cell needs to address several fundamental 
issues in the near future: for example, control the growth of thin film and deposition, make 
scale and numerous process, achieve high stability and long lifetime, and low toxicity. To be 
competitive, cost will be a concern for manufacturing companies. Although the raw materi-
als for making perovskite solar cells are inexpensive and abundant, recent analyses of cost-
performance and commercialization requirements are not entirely positive [17]. To make 
perovskite solar cells competitive, several goals are needed to be achieved. For example, the 
levelized cost of electricity (LCOE) for residential use is 9.0 cents per kWh by 2020 and is 
expected to decline to 5.0 cents/kWh by 2030 [18]. This is a huge challenge for perovskite 
technology at present.

In this review, we summarize recently developed perovskite film deposition techniques and 
evaluate their suitability for industrial production of perovskite solar cells and modules. Our 
discussion of stability and device lifetime focuses mainly on the measurement standards and 
issues relative to commercialization. Thereafter, we present techniques that used to fabricate 
the perovskite solar cells such as one-step spin-coating and two-step deposition techniques, 
solvent-solvent extraction, vapor-assisted solution processes, dual-source vacuum deposi-
tion, hybrid deposition, hybrid chemical vapor deposition, sequential vapor deposition, and 
flash evaporation. The control of the morphology for perovskite thin films has been observed 
by many efforts.

2. The common architecture of PSC

Generally, PSC has three main types of device architectures: (i) mesoscopic structures using 
mesoporous semiconducting materials as electron-transporting layers (ETLs), i.e., TiO

2
 [19], 

WO
3
 [20], SrTiO

3
 [21], ZnO [22], Zn

2
SnO

4
 [23], and SnO

2
 [24]); (ii) meso-superstructures 

employing mesoporous insulators such as Al
2
O

3
 [25] and ZrO

2
 [26] as scaffolds, while 

perovskite itself acts as ETL; and (iii) planar structures implementing ultrathin compact layer 
materials for both hole-blocking and electron-conducting purposes. Among these types, the 
planar PSC was motivated by the requests of more simple process and lower cost for future 
applications [27]. Figure 1 reveals the evolution of device configuration as sequence from 
mesostructure to planar heterojunction. The categories related to the types of device architec-
ture were discussed here in summary.
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2.1. The mesoporous scaffold

The best performance for PSCs have reported and reached a certified PCE of 22.1%, have 
depend on high temperature processing (450–550°C) and the mesoporous structure used TiO

2 
 

as ETLs [29]. Moreover, in another work, a 16.2% efficiency was obtained from the combination 
of uniform and dense MAPbI

3
 and MAPbBr

3
 bilayer architecture consisting of perovskite-infil-

trated mesoporous TiO
2
 electrodes [30]. Similarly, the same group proceeded the FAPbI

3
-

MAPbBr
3
 system with an architecture as follows: FTO/blocking TiO

2
 (70 nm)/mesoporous TiO

2
 

and perovskite composite layer (200 nm)/perovskite upper layer (300 nm)/PTAA (50 nm)/Au 
(100 nm) with a PCE of 18.4% at maximum power point condition [31, 32].

A simple binder-free colloid Al
2
O

3
 nanoparticle meso-superstructured scaffold with anneal-

ing temperature of 150°C deposited over compact TiO
2
 layer delivered PCEs of up to 12.3%. 

Furthermore, it has been revealed that a solid thin film of the perovskite absorber was formed 
on top of the scaffold thin porous Al

2
O

3
 films. This supported charge separation and transport of 

both carrier species with an internal quantum efficiency approaching 100% [33]. Mahmood et al. 
reported two-dimensional (2D) nanosheets with enhanced absorber infiltration as compared with 
1D nanostructures as revealed in Figure 2. The author utilized WO

3
 n-type semiconductor as a 

nanostructured porous ETL to obtain highly efficient perovskite solar cells with PCE of 11.2% [34].

Figure 1. Development of device configuration in perovskite solar cells [28]. These figures reveal (a) a sensitization 
concept, (b) extremely thin layer of perovskite deposited on mesoporous scaffold layer, (c) perovskite infiltration into 
mesoporous film and (d) planar heterojunction structure.

Figure 2. (a) Schematic cross section of WO
3
 n-type semiconductor as a nanostructured porous ETL for perovskite solar 

cells and (b) energy band diagram [34].
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2.2. The planar heterojunction

Planar PSCs have been demonstrated by Tan et al. with smooth and pinhole-free TiO
2
-Cl 

as the ETL. The film also exhibited negligible parasitic absorption loss over the entire vis-

ible to near-infrared spectrum. Solar cells fabricated on TiO
2
-Cl exhibit considerably better 

performance than those on TiO
2
 for all PV parameters. Correspondingly, TiO

2
-Cl resulted in a 

higher average PCE (19.8%) than the Cl-free TiO
2
 (15.8%) [35, 36]. The best-performing small-

area CsMAFA solar cell (0.049 cm2) exhibited a high laboratory PCE of 21.4% without hyster-

esis in J-V sweeps. Similarly, large-area (1.1 cm2) cells fabricated on TiO
2
-Cl showed a PCE 

value >20% with negligible hysteresis. Zhou et al. manipulated carrier behavior with planar 
heterojunction perovskite solar cells. Yttrium-doped TiO

2
 (Y-TiO

2
) was fabricated at <150°C 

annealing temperature as the ETL to enhance electron extraction and transport over reduced 
work function ITO treated with polyethylenimine ethoxylated (PEIE) solution. These treat-
ments produced a PCE of 19.3% [37, 38]. The use of CdSe nanoparticles (solution processed at 
150°C) has been investigated to replace the widely used TiO

2
 as the ETLs for the conventional 

planar heterojunction PSCs. Devices with CdSe nanoparticle ETLs were performed well, with 
the PCE of 11.7% [39]. A planar device with high PCE was applicable through Hagfeldt et al. 
and Jiang et al., using SnO

2
 [24, 40–42].

By modifying the surface of a planar structure of the TiO
2
 compact layer with C

60
-SAM 

molecules (Wojciechowski et al.), a PCE of 15.7% has been obtained (Figure 3) [43]. Pablo 
Docampo et al. have demonstrated 10% PCEs for inverted planar PSCs with bilayer of 
PC

60
BM and compact TiOx as ETL [44]. Further, hysteresis-less inverted planar hybrid solar 

cells with 18.1% PCE has been fabricated by Heo et al. Better PCE and stability were attrib-

uted to the electron extraction from MAPbI
3
 into PCBM, the increased EQE value by the 

better charge injection/separation efficiency, and the improved FF by the increased diffu-

sion coefficient (D
n
) and charge carrier lifetime ( τ 

n
). In addition, the air and humid stability 

was improved by the corrosive additive-free device architecture and hydrophobicity of the 
PCBM top layer [45].

Figure 3. Planar structure of the TiO
2
 compact layer with C

60
-SAM molecules [43].
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3. Film formation of ETL

There is no doubt that the crystallinity, thickness, material film morphology, and purity 
have impact on the efficiency of solar cell performance. The film formation has been relied 
on deposition techniques such as one-step spin-coating [7, 46–50] and two-step deposition 
techniques [51, 52], solvent-solvent extraction [53], vapor-assisted solution processes [54–57], 
dual-source vacuum deposition [58–61], hybrid deposition [62, 63], hybrid chemical vapor 
deposition [62, 64–66], sequential vapor deposition [67, 68], and flash evaporation [69]. The 
control of the morphology for perovskite thin films has been observed by many efforts. These 
efforts include the optimization of the annealing time, temperature [70, 71], selection of the 
underlayer material and thickness [3, 72–75], and the use of alternative deposition methods 
such as two-step deposition and vacuum sublimation [4, 76, 77]. Herein, some of these meth-

ods have been discussed.

3.1. Vacuum thermal co-evaporation

In this method, the authors used vacuum thermal co-evaporation of organic halide and metal 
halide to resulting perovskite thin films with homogeneous morphology and improved thin-
film coverage. These results achieved a high performance of 12–15% PCE [5, 78]. Despite the 
promising results, however, to date, only limited reports have utilized this vacuum sublima-

tion technique to fabricate perovskite layers [5, 78]. The main reason could be due to the small 
molecular weight of organic halide and make the monitoring without control of the CH

3
NH

3
I 

deposition rate using quartz microbalance sensors [5, 78]. In another way, Zhu et al. reported 
how to develop this technique deposition to fabricate pinhole-free cesium-substituted 
perovskite films and enhance the surface coverage as shown in Figure 4. The same method 
used to promise tunable bandgap reduced trap-state density and longer carrier lifetime, with 
efficiency 20.13%, which is the highest fabrication for planar perovskite solar cells [79].

3.2. Layer-by-layer sequential vacuum sublimation

Chen et al. reported a novel method of perovskite thin-film deposition via a layer-by-layer 
sequential vacuum sublimation. This method has been easier than the previous technique. The 
very uniform perovskite thin films can achieve high coverage via incorporating the thin films 
of perovskite with a poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) 
hole-transporting layer (HTL) and thermally evaporated C60/bathophenanthroline (Bphen) 
electron-transporting layers (ETLs). The cells here attain efficiencies as high as 15.4% because 
the devices were free of high-temperature-prepared metal oxide layers [80].

3.3. Vapor deposition by dual source

The large-scale production in optoelectronic applications has been achieved by vapor 
deposition techniques because this technique is widely used in semiconductor industry. 
The feasibility of organometal halide perovskite materials via vapor deposition techniques 
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has advantages like the possibility to fabricate films with high purity; these techniques are 
more proper to prepare multilayered structures of thin films, and suitable optimization of 
perovskite films also can be deposited by vapor deposition [5, 81]. Liu et al. [5] reported 

preparation of CH
3
NH

3
PbI3−xClx by dual-source vapor deposition technique in the presence 

of PbCl
2
 and CH

3
NH

3
I. This method leads to high-efficiency photovoltaic devices of 15.4%. 

Malinkiewicz et al. used the same technique to deposited CH
3
NH

3
PbI

3
 in the presence of PbI

2
 

and CH
3
NH

3
I and give uniform film formation with root-mean-square roughness of 5 nm 

measured by AFM [81]. In addition, the films showed uniform grainy structures with an aver-

age grain size of 150 nm [82]. Schematic illustration of the dual-source vacuum deposition 
process is shown in Figure 5 [59].

3.4. Spin coating

Spin coating is widely used to fabricate a small area from thin films in lab scale. Spin coat-
ing used a small amount of solution, which was then dropped on the substrate as shown in 
Figure 6a. Then, the substrate has been covered by a layer of solution and spun to acceler-

ate evaporation of the solvent [83]. This technique controls the thickness of the film by the 
concentration of the solution and speed [83]. In general, with regular spin coating, a one-step 
process with PbI

2
/MAI or PbCl

2
/MAI with gamma-butyrolactone (GBL), dimethylformamide 

(DMF), or dimethyl sulfoxide (DMSO) as solvents prompts poor film quality [71, 84]. Despite 
the fact that all preparing conditions have been considered, spin-coated perovskite film qual-
ity is regularly poor, with a high thickness of pinholes and little grain sizes. These pinholes 
cause shunt that debase the efficiency. With added substances designing the crystallization 

Figure 4. (a) Illustration of the vacuum co-evaporation, (b) deposition of the Cs-substituted MA1-xCsxPbI
3
 perovskite thin 

film and (c) final perovskite thin film [79].
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Figure 5. Description of the dual-source vacuum deposition instrument (reproduced with permission from Ref. [59]).

Figure 6. Different techniques used for large-area perovskite film deposition: (a) spin-coating technique and (b) spray-
coating technique (reproduced with permission [6, 98]).
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of perovskite could be finely tuned, and perovskite films with altogether enhanced quality 
can be set up for superior power conversion [85, 86]. For instance, by utilizing lead acetic 
acid as lead source, the crystallization of perovskite is significantly speedier. The free pinhole 
perovskite films were shown by a basic one-step coating process [87].

Concerning the two-step process, made to create good morphology perovskite films, convo-

lutes control over the change rate of PbI
2
 to perovskite [4]. In the recent date, it has been dem-

onstrated that the order of PbI
2
-DMSO-MAI essentially improves the film morphology and 

quality utilizing a propelled hostile to dissolved designing strategy [6, 88, 89]. Furthermore, 
this hot-throwing procedure could be exchanged to a considerably less difficult plunge-cov-

ering process for large-area film deposition. There is no doubt that the high performance and 
scale of large area for PSCs are closely related to perovskite film quality. A 1-cm2 PSC was fab-

ricated for the first time with a modified interface layer and certified efficiency of 15.6% [90]. 
Then, enhancing the gradient of heterojunction structure for charge separation/transport, its 
performance increased to 18.21% [91]. Moreover, a vacuum, flash-assisted process has been 
produced by a solar cell with a 1-cm2 area [92]. This technique showed a maximum efficiency 
of 20.5% and a certified efficiency of 19.6% [93].

3.5. Spray coating

Spray coating has been broadly utilized to deposit perovskite films and compact TiO
2
 films and 

is perfect with large-scale, high-throughput manufacture (Figure 6b). The first thinking about 
how to get perovskite films via spray coating came from polymer solar cell fabrication. An 
ultrasonic spray-coating technique has been discovered in ambient conditions. In this method 
a system from DMF or DMSO and perovskite materials was investigated with deposition 
parameter to achieve higher coverage of perovskite films. The parameters which are related 
to spray coating require to form high-coverage perovskite film such as drying time, substrate 
temperature, solvent volatility, and post-annealing conditions. With PCE of 11% and an active 
area about 0.025 cm2, the potential of spray coating in fabricating perovskite solar cells has been 
indicated [94]. A similar work was performed in TiO

2
 and achieved PCE of 13% with 0.065 cm2 

active area on a glass/ITO substrate. In low-temperature PET/ITO substrate in the presence of 
TiO

2
, an efficiency of 8.1% was attained on a flexible device, which is comparable with roll-

to-roll processing [95]. This spray-coating process is suitable for various perovskite precursor 
solutions; for example, spray-coating deposition of large bandgap CsPbIBr

2
 thin films has a 

potential for tandem structure devices [96]. Other mixed cations and halide perovskites, FA
1-

xCsxPbI
3
 mixed cation films, were prepared with a spray-assisted solution process [97]. Solar cell 

devices based on this mixed cation film showed enhanced stability and performance compared 
with those based on the other. Efficiency increased from 11.3 to 14.2% for the mixed cations.

3.6. Screen printing

Screen printing is a technique used to fabricate PSCs that could be easily fabricated with a 
printing process. The layer-by-layer printing process starts with screen printing of TiO

2
, fol-

lowed by printing of ZrO
2
 and carbon electrodes. Then, perovskite solution is dropped onto 

the porous carbon electrode so that it infiltrates into the mesoporous TiO
2
 and ZrO

2
. Herein, 
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ZrO
2
 functions as a porous insulating layer to prevent direct contact between the carbon elec-

trode and the TiO
2
/FTO substrate. Although it is easy to fabricate solar cells with this printing 

technique, infiltration of perovskite precursor solution remains a challenge and is the main 
reason for lower efficiency compared to those of devices fabricated by other means. The most 
intriguing properties of this carbon-coated, printed, mesoscopic device are the high stability 
and outstanding outdoor performance. A certified PCE of 12.8% and stable performance over 
>1000 h in ambient air under full sunlight has been recorded for a device with an active area of 
0.28 cm2 [26, 99]. Figure 7 shows noncontact inkjet printing offering rapid and digital deposi-
tion combined with excellent control over the layer formation for printed perovskite solar 
cells. Mathies et al. [100] reported that inkjet printing is used to deposit triple cation perovskite 
layers with 10% cesium in a mixed formamidinium/methylammonium lead iodide/bromide 
composite for solar cells with high temperature and moisture stability. A reliable process 
control over a wide range of perovskite layer thickness from 175 to 780 nm and correspond-
ing grain sizes is achieved by adjusting the drop spacing of the inkjet printer cartridge. A 
continuous power output at constant voltage, resulting in a power conversion efficiency of 
12.9%, is demonstrated, representing a major improvement from previously reported inkjet-
printed methylammonium lead triiodide perovskite solar cells [100]. Compared with solution 
processes, dry deposition processes may be more environmentally friendly, as they do not 
require toxic solvents (DMSO, GBL, DMF, chloroform, chlorobenzene, isopropanol, toluene, 
diethyl ether, etc.), and they are compatible with high-quality, large-area perovskite film 
deposition, such as vacuum deposition and chemical vapor deposition.

Figure 7. (a) 520 nm-thick inkjet-printed perovskite layer on FTO/TiO
2
-coated glass substrate. (b) Photograph of inkjet-

printed perovskite solar cells. The substrate contains eight cells with each 3×3 mm2 active area. (c) Schematic diagram 
of the solar cell stack, denoting with the different layers: glass/FTO/TiO

2
/triple cation perovskite (PVK)/Spiro-MeOTAD 

(HTL)/Au [100]. (d) Real solar cell achieved 12% with the configuration: Glass/FTO/TiO
2
/triple cation perovskite (PVK)/

Spiro-MeOTAD (HTL)/Au.
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4. Summary and future outlook

The effectivity of photon capture in PSCs has resulted in tangible action and contributed to 
scientific community [101]. These achievements have an economic impact for future endeavor. 
Therefore, the innovation in PSC field required a large amount of effort and attention to be reliable 
and highly efficient at converting sunlight to electricity. Furthermore, the improvement of device 
engineering methods is urgent. In particular, investigation of photophysical mechanism of the 
materials also plays an important role. The continuous investigation on current density and volt-
age characteristics of PSCs would provide a good understanding point for the semiconducting 
behavior [102]. The improvement in PSC efficiency relies on deposition techniques and material 
composition [103]. The solution processed in PSCs is more important [104]. We are noticed that 
the one-step spin coating is broadly the used method because of its simplicity and low cost. The 
films synthesized by this method have a poor morphology and incomplete coverage, for instance, 
in the case of planar architecture [84, 85, 105]. On the other hand, in the two-step coating, a layer 
of lead halide was deposited by spin coating then followed by immerging in organic salt solu-
tion and the perovskite films formed by a chemical reaction [51, 52]. The high reaction rates of 
perovskite materials are important to optimize the coating conditions with sufficient reproduc-
ibility. To record high efficiencies by solution processing, it is revealed that the reaction kinetics 
are required to control and maintain consistent device to minimize batch-to-batch variations. The 
different vapor-based methods to deposit perovskite films are also discussed, which in many 
cases show properties different from their counterparts prepared by solution-based methods.
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