
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 7

Mechanism of Interactions of Zinc(II) and Copper(II)
Complexes with Small Biomolecules

Tanja Soldatović

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.79472

Abstract

Over the past few decades, transition metal complexes have attracted considerable atten-
tion in medicinal inorganic chemistry, especially as synthetic metallonucleases and metal-
based anticancer drugs that are able to bind to DNA under physiological conditions. The
use of metal-based drugs presents the most important strategy in the development of new
anticancer and antimicrobial agents. Negative side effects during treatment (such as
vomiting, resistance, nephrotoxicity, ototoxicity, neurotoxicity and cardiotoxicity) prompted
researchers to design new classes of DNA and protein targeting metal-based anticancer
agents with potential in vitro selectivity and less toxicity. Knowledge of mechanism of the
interaction zinc(II) and copper (II) ions with biomolecules and other relevant ligands is
essential for understanding the cellular biology of delivery complexes to DNA and proteins.
Results obtained from investigations provide useful information for the future design of
potential zinc- and copper-based anticancer drugs. Different mechanism of interactions
with selected biomolecules compared to platinum-based drugs has been observed.

Keywords: transition metal complexes, kinetics, mechanism of interactions, metal-based
drugs, biomolecules, antitumour activity

1. Introduction

The aim of this chapter is to present fundamental chemical properties and new investiga-

tions of coordination compounds of some transition metal ions with an overview of medic-

inal applications. Transition metals appear in almost every facet of our day-to-day life, from

industrial uses such as the manufacture of construction and building materials, tools, vehi-

cles, up to cosmetics, paints and fertilizers. Their reactions are in general important in many
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technical processes such as catalysis, materials synthesis, photochemistry, as well as, in

biology and medicine.

It is known that metal ions play an important role in the biological and biomedical processes.

Namely, many processes such as breathing, metabolism, photosynthesis, growth, reproduc-

tion, muscle contraction cannot imagine without the presence of some metal ions. It is cur-

rently believed that about 24 elements are essential for the life of mammals, which are: H, C, N,

O, F, Na, Mg, Si, P, S, Cl, K, Ca, V, Mn, Fe, Co, Ni, Cu, Zn, Se, Mo, Sn and I.

The field of inorganic coordination chemistry, among other thing, is concerned with the study

of the use of compounds of essential and non-essential elements in medicine, as well as, of the

interaction of given compounds with the present biomolecules within the organism. Now

many inorganic coordination compounds are widely used in medicine for the treatment of

many diseases, including various cancers, Alzheimer’s disease, diabetes, rheumatoid arthritis

and others. In this chapter, among other things, we are focused on coordination compounds

zinc(II) and copper(II) and on investigation of the mechanism of interactions with biologically

relevant molecules.

2. Transition metal ions chemistry

2.1. Lewis acid base theory

Although, in this chapter, we mainly discuss the coordination compounds of transition metal

ions, it is very important to explain some of the basic characteristics of complex compounds

such as are definition of Lewis acids and bases.

A Lewis acid is an electron acceptor and a Lewis base is an electron donor. In a coordination

complex, the central metal ions act as a Lewis acid and are coordinated (bonded) by one or

more molecules or ions (ligands) which act as Lewis bases. Formed coordinated bonds

between central atom or ion with ligands have covalent character and are known under name

coordinate covalent bond or simple coordinate bond. Atoms in the ligands that are directly bonded

to the central atom or ion are donor atoms.

2.2. Hydration or hydrolysis of metal ions?

When a metal salt is dissolved in water, the ionic bond is interrupted, the cations and anions

are hydrated. For example, when NaCl is dissolved in water, the inner hydration shell around

Na+ is formed. The Na+ �����O interaction can be described in terms of an ion-dipole interaction,

while the solvation of the anion can be described in terms of the formation of hydrogen bonds

between Cl� and H atoms of surrounding H2O molecules (Figure 1).

Hydration is solvation when the solvent is water. If the metal-oxygen bond possesses covalent

character, there is also an ionic contribution to the bonding interaction. Each O atom donates a

pair of electrons to the metal Mz+ ion, and each H2O molecule acts as a Lewis base while the

metal ion acts as a Lewis acid. The M-O interaction is covalent, in contrast to the case for Na+.
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In practice, the character of the metal-�oxygen interaction varies with the nature of the metal

ion and relevant to this is the electroneutrality principle (Figure 1).

In concentrated solutions, the plane of the water molecule makes an angle of up to 50� degree

with the Mz+
�����O axis (Figure 2) implying interaction of the cation with a lone pair of electrons

rather than an ion-dipole interaction, it suggests that the metal-oxygen interaction involves the

use of an oxygen lone pair. Metal cations are equated with the formula [M(H2O)n]
z+, where z is

1, 2 or 3, and they tend to hydrolyze [1].

2.3. Transition metal ions as Brønsted acids

Metal ions in aqueous solution behave as Lewis acids. The positive charge on the metal ion

draws electron density from the O-H bond in the water. This increases the bond’s polarity

making it easier to break. When the O-H bond breaks, an aqueous proton is released produc-

ing an acidic solution. Hydrolysis refers to the reversible loss of H+ from an aqua species.

Transition metal ions can act as Brønsted acids by loss of H+ from a coordinated water

molecule. Small cations such as Li+, Mg2+, Al3+, Fe3+ and Ti3+ possess high charge densities,

cannot be Brønsted acids by themselves. Water molecules covalently bound to one of these

metal ions are more acidic than normal, the H atoms carry significant positive charge. Thus,

reactions such as the following occur.

Figure 1. Left: the first hydration shell of an Na+ ion; ion-dipole interactions between the Na+ ion and the H2Omolecules;

Right: bonding of metal ions and H2O molecules.

Figure 2. The plane of the water molecule in the direction Mz+
�����O axis.
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The characteristic colour of the [Fe(H2O)6]
3+ ion is purple, but aqueous solutions appear yellow

due to the formation of the hydroxo species [Fe(H2O)5(OH)]2+ and [Fe(H2O)4(OH)2]
+.

The equilibrium constant Keq for the hydrolysis of a hydrated cation is analogous to the Ka for

the ionization of a weak acid. Generally, hydrolysis constants for cations are signed as �log Ka.

These hydrolysis constants are averages of different experimental measurements. If we com-

pare the value of constant for previous reaction with Ka of weak acids, it can be seen that pKeq

of [Fe(H2O6)]
3+ correspond to pKa of weak nitrous acid.

2.4. Stability constants of coordination complexes

Metal ions in aqueous solution are hydrated; the aqua species may be accounted as Mz+
(aq)

where this often represents the hexaaqua ion [M(H2O)6]
n+. Addition of a neutral ligand L to the

solution leads the formation of a series of complexes [M(H2O)5L]
n+, [M(H2O)4L2]

n+
…[ML6]

n+.

The stepwise displacements of coordinated H2O by L are represented by Eqs. (1) and (2).

ð1Þ

ð2Þ

In step-wise formation of complex [ML6]
+ from [M(H2O)6]

z+, each displacement of a coordi-

nated water molecule by ligand L has a characteristic stepwise stability constant, K1, K2, K3, K4,

K5 or K6. Alternatively, we may consider the overall formation of [ML6]
z+ (Eq. (3)).

ð3Þ

The constant β6 we call as cumulative stability constant. The connection between values of

stepwise formation stability constant and overall stability constant is given by expression:

β6 = K1K2K3K4K5K6 or logβ6 = logK1 + logK2 + logK3 + logK4 + logK5 + logK6. Determinations

of stability constants can be made by polarographic or potentiometric measurements (if a

suitable reversible electrode exists), by pH measurements (if the ligand is the conjugate base

of a weak acid) or by ion-exchange, spectrophotometric (i.e. observation of electronic spectra

and use of the Beer–Lambert Law), NMR spectroscopic or distribution methods [1].
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2.5. Hard and soft acid base principle

Based on acceptor properties of metal ions towards ligands (i.e. Lewis acid-Lewis base inter-

actions), two classes of metal ion can be identified, although the distinction between them is

not clear-cut. The terms “hard” and “soft” acids arise from a polarizabilities of the metal ions.

Hard acids are typically either small monocations with a relatively high charge density or are

highly charged, again with a high charge density. These ions are not very polarizable and show

a preference for donor atoms that are also not very polarizable, for example, F�. Such ligands

are called hard bases. Soft acids tend to be large monocations with a low charge density, for

example, Au+, and are very polarizable. They prefer to form coordinate bonds with donor

atoms that are also highly polarizable, for example, I�. Such ligands are called soft bases [1].

Hard acids (hard metal cations) form more stable complexes with hard bases (hard ligands),

while soft acids (soft metal cations) show a preference for soft bases (soft ligands). The list of

hard and soft acids and bases with included intermediates is shown in Table 1.

The hard and soft acid base (HSAB) principle is qualitatively useful, the hard-hard or soft-soft

matching of acid and base represents a stabilization that is additional to other factors that

contribute to the strength of the bonds between donor and acceptor. These factors include the

sizes of the cation and donor atom, their charges, their electronegativities and the orbital

overlap between them.

Complex formation usually involves ligand substitution. If we suppose that Mz+ is a hard acid.

It is already associated with hard H2O ligands, and hard-hard interaction is a favourable. If L is

a soft base, ligand substitution will not be favourable. If Mz+ is a soft acid, ligand substitution

will be favourable [1].

3. Medicinal application of inorganic complexes (metal-based drugs)

3.1. Medicinal inorganic chemistry

Medicinal inorganic chemistry is a part of bioinorganic chemistry that occupies a significant

place in the field of therapeutic and diagnostic medicine. Inorganic coordination compounds

are now used in medicine for the treatment of numerous diseases.

Hard (acids) Intermediate (acids) Soft (acids)

Li+, Na+, K+, Rb+, Be2+, Mg2+, Ca2+, Sr2+, Sn2+, Mn2+,

Al3+, Ga3+, In3+, Sc3+, Cr3+, Fe3+, Co3+, Y3+, Th4+, Pu4+,

Ti4+, Zr4+, [VO]2+, [VO2]
+

Pb2+, Fe2+, Co2+, Ni2+,

Cu2+, Zn2+, Os2+, Ru3+,

Rh3+, Ir2+

Zero oxidation state metal centres, Tl+, Cu+, Ag+,

Au+, [Hg2]
2+, Hg2+, Cd2+, Pd2+, Pt2+, Ru2+ Tl3+

Hard (bases) Intermediate (bases) Soft (bases)

F�, Cl�, H2O, ROH, R2O, [OH]�, [RO]�, [RCO2]
�,

[CO3]
2�, [NO3]

�, [PO4]
3�, [SO4]

2�, [ClO4]
�, [ox]2�,

NH3, RNH2

Br�, [N3]
�, py, [SCN]�

(N-bound), ArNH2,

[NO2]
�, [SO3]

2�

I�, H�, R�, [CN]� (C-bound), CO (C-bound),

RNC, RSH, R2S, [RS]
�, [SCN]� (S-bound), R3P,

R3As, R3Sb, alkenes, arene

Table 1. Selected hard and soft metal centres (Lewis acids) and ligands (Lewis bases) and those that exhibit intermediate

behaviour.
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Today, it is well known that some metal ions are required for normal functions of organism.

Lack of zinc, iron, copper, ions and so on can induce disease. Some metal ions such as arsenic,

cadmium, chromium, lead and mercury can induce toxicity in humans. Even essential metal

ions can be toxic when present in excess. An important aspect of medicinal bioinorganic

chemistry is ability to understand all this in the molecular level and treat diseases caused by

inadequate metal ion function constitutes.

Medicinal inorganic chemistry is a multidisciplinary field combining elements of chemistry

(synthesis and reactivity), pharmacology (pharmacokinetics and toxicology), biochemistry

(targets, structure and conformational changes) and medicinal chemistry (therapeutics, phar-

macodynamics and structure-activity relationships). The main focus of this field is to design of

novel therapeutic and diagnostic agents and to investigate the mechanism of medicinal action,

as improvement of the action of many organic compounds used in medicine by activation or

biotransformation by metal ions [2–4].

3.2. Metal complexes as drugs

In order for the coordination complexes to be approved as drugs, it is necessary to detailed

examination of the fundamental aqueous chemistry of the proposed drug, including its phar-

macokinetics, the metabolic processes in blood and intracellularly, and the effects of the drug

on the target of choice. Inorganic coordination chemistry offers a wide variety of synthesis of

coordination compounds with different coordination spheres, including ligand designs, oxida-

tion states and redox potentials of transition metal ions, thus gives the ability to systematically

alter the kinetic and thermodynamic properties of the complexes towards biological receptors.

Well-known metal ions and their coordination complexes that have found usage in medicine

can be divided into:

1. Platinum anticancer agents (e.g., cisplatin, cis-[PtCl2(NH3)2])

2. The gold(I)-containing antiarthritic drugs (e.g. auranofin)

3. Metal-mediated antibiotics like bleomycin, which requires iron or other metals for activity

4. Technetium-99 m and other short-lived isotopes (rhenium-186, rhenium-188 and gallium-68)

used as radiopharmaceuticals in disease diagnosis and treatment

5. Magnetic resonance imaging (MRI)-enhancing gadolinium(III) compounds

6. Antibacterials, antivirals, antiparasitics and radiosensitizing agents

Platinum complexes are now among the most widely used drugs for the treatment of cancer.

Thanks to the successful and widespread use of cisplatin a large number of analogous com-

pounds were synthesized. All these compounds have several common characteristics:

1. bifunctional complex compounds with cis-geometry

2. the general formula of these compounds is cis-[PtA2X2] where A2 are two inert monodentate

nitrogen donor ligands or one inert bidentate nitrogen donor ligand, while with X2 are two

labile monodentate or one labile bidentate ligand
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3. the oxidation state of platinum in the complexes is +2 or +4

4. nitrogen-donor ligands have to contain at least one NH bond.

Figure 3 presents some of platinum complexes that are in the medicinal use worldwide.

The second-generation platinum(II) antitumour complexes are carboplatin, oxaliplatin,

nonplatinum, zenithplatin, enloplatin, NK121, CI-973 and others. Instead of labile chloride

ligands, they contain bidentate ligands such as 1,1-cyclobutanedicarboxylate, glycolate, and

complexes with 1,2-diaminocyclohexane as an inert ligand, while the labile ligands are sul-

phates, malonates and other ligands [5]. The second-generation complexes based on the cis-

platin structure were developed to improve toxicity and/or expand the range of useful

anticancer activity. The third-generation platinum antitumour complexes are octahedral plati-

num(IV) coordination compounds with general formula cis-[PtA2X2Y2], where two labile

monodentate or one labile bidentate ligand is labeled as Y2. The platinum(IV) drugs are orally

administrated to patients. In the presence of various biomolecules such as cysteine or ascorbic

acid, the redaction to Pt(II) occurred by leaving the axial ligands Y2. In addition, this group

includes new complexes with a trans-geometric structure, polynuclear platinum complexes

(BBR3464) and complexes containing a ligand with an asymmetric carbon atom [6].

The mechanism of the antitumour effects of platinum complexes consists in their binding to

DNA molecules, thereby preventing replication and transcription of DNA, that is, preventing

the process of uncontrolled cell growth [7–9]. From the moment of injection of the drugs in the

body to their binding to DNA molecules, a large number of secondary processes happen that

Figure 3. Platinum antitumour complexes with adopted commercial names.
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are responsible for the occurrence of toxic effects [8, 9]. Hydrolysis of Pt(II) drugs in the body

occurs as a result of a different concentration of chloride ions in and out of the cell. Namely, the

high concentration of Cl� ion in the extracellular fluid (104 mM) suppresses the hydrolysis

process, while in the intracellular low concentration of about 4 mM, it is suitable for the

hydrolytic reactions of platinum(II) antitumour drugs [10, 11]. The antitumour platinum(II)

agents must not be either too reactive or too inert, since in both cases their toxicity is increasing

[10]. On the other hand, the essential characteristic of these compounds must be selectivity

towards certain biomolecules [12]. High affinities for the platinum complexes show the bio-

molecules that contain sulphur, as the thiols and the thioethers, as soft acid platinum(II) drugs

form very stable compounds with sulphur donor biomolecules, for example, soft bases. The

resulting compounds are responsible for negative side effects during treatment (such as

vomiting, resistance, nephrotoxicity, ototoxicity, neurotoxicity and cardiotoxicity).

During the recent years, many ruthenium complexes with oxidation state +2 or +3 found to

have anticancer activity. Antitumour activities of Ru(II) and Ru(III) complexes take place in a

different manner in comparison with platinum(II) drugs, what is linked with geometrical

structures and reversible redox potential of ruthenium. The real revolution among the ruthe-

nium complexes was initiated by two isostructural complexes Ru(III): [ImH]trans-[RuCl4(Im)2]

and [IndH]trans-[RuCl4(Ind)2], better known by the names ICR and KP1019, respectively

(Im = imidazole and Ind = indazole) and [Na]trans-[RuCl4(Im)(dmso-S)] or NAMI-A (dmso-

S = dimethyl sulphoxide coordinated through sulphur), which is a structural analogue to the

previously synthesized ICR complex (Figure 4). Apart from the fact that these complexes have

shown activity to several different types of tumours, it is particularly interesting that they are

active against tumours resistant to platinum complexes. The mechanism of action of this

compound is not related to DNA binding; rather, it is an antimetastatic agent [13]. Metastasis

(the process whereby tumour growth occurs distant from the original or primary tumour site)

Figure 4. The structures of the ruthenium(III) complexes: [ImH]trans-[RuCl4(Im)2] or ICR; [IndH]trans[RuCl4(Ind)2] or

KP1019 and ([ImH]trans-[RuCl4(Im)(dmso-S) or NAMI-A.
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is linked with angiogenesis, the dynamic process that involves new blood vessel formation.

Antitumour activity of ruthenium complexes is related with interaction with proteins in cell

membrane or collagen in extracellular fluid.

The ruthenium(II) complexes types [Ru(II)(η6-arene)(en)X]+ (X = Cl� or I�, arene = p-cumene or

biphenyl, en = ethylenediamine) characterize higher stability to hydrolysis and get in cyto-

plasm in unchanged form. They are supposed to act as catalysts for glutathione oxidation,

which contribute to the increase in cellular oxidative stress and programmed cell death, i.e.

apoptosis. Ru(III) complexes tend to be more biologically inert than related Ru(II) complexes,

like several other metal ions, can be delivered to cells via the iron transport protein transferrin.

The coordination compounds of other metal ions such as Au(I), Au(III), Ti(IV), Cu(II) or

MnSOD (manganese-based superoxide dismutase mimics) are on clinical trial. The enzyme

superoxide dismutase (SOD), either as the manganese containing MnSOD (present in the

mitochondrion) or the dinuclear Cu/Zn-SOD (present in the cytosol and extracellular space),

performs the role of superoxide detoxification in normal cells and tissue [14].

Polyoxometallates of the Keggin type such as [NaW2lSb29O86][NH4]17 and K12H2[P2W12

O48]
�24H2O have potential in the anti-HIV field, they bind to viral envelope sites on cell

surfaces and interfere with virus adsorption [3]. Metal-chelating macrocyclic bicyclam ligands

are among the most potent inhibitors of HIV ever described, and there is considerable interest

in the role of Zn proteins in the viral life cycle. Metal ions are required for the activity of anti-

HIV G-quartet oligonucleotides (antisense oligonucleotides) such as T30177, a potent inhibitor

of the enzyme HIV-1 integrase [3].

Bismuth compounds have been used for their antacid and astringent properties in a variety of

gastrointestinal disorders [15, 16]. The effectiveness of bismuth is due to its bacteriocidal action

against the Gram-negative bacterium, Helicobacter pylori. Usually, the bismuth preparations are

obtained by mixing an inorganic salt with a sugar-like carrier.

Injectable Au(I) thiolates and an oral Au(I) phosphine complex are widely used for the treat-

ment of rheumatoid arthritis. Proteins appear to be the targets for gold therapy, including

albumin in blood plasma and enzymes in joint tissues. The detection of [Au(CN)2] in the blood

and urine of patients undergoing gold therapy (chrysotherapy) raises the possibility that this is

an active metabolite. Cyanide could be involved in the metabolic pathways for other metal

ions (both natural and therapeutic) in the body since it can be synthesized by some cells. The

recent discovery that oxidation of administered Au(I) compounds to Au(III) may be responsi-

ble for some of the side effects of gold therapy has highlighted interests in the biological redox

chemistry of gold, including possible stabilization of Au(III) complexes by peptides and pro-

teins, which now is main target for developing antitumour Au(III) drugs [3, 4, 6].

Peroxovanadate complexes can inhibit insulin receptor-associated phosphotyrosine phosphatase

and activate insulin receptor kinase, and both V(IV) and V(V) compounds offer promise as

potential insulin mimics [4, 6]. Lithium compounds are kinetically labile and are used for the

treatment of bipolardisorders, and Li(I) inhibition of Mg(II)-dependent inositol monophos-

phatase enzymes leads to interference with Ca(II) metabolism [4]. Newer uses have appeared in
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the treatment of viral diseases including AIDS, alteration of the immune response and cancer. The

lithium salt of linolenic acid (LiGLA) has a significant anticancer effect against certain cancers [6].

Less labile metal ions can be used to control the levels of biologically active ligands in the body.

Thus, Fe(III) in sodium nitroprusside delivers NO to tissues and is used for the treatment of

hypertension and control of blood pressure. The possibility arises of utilizing Ru(III) to scav-

enge NO in the treatment of septic shock. As is mentioned, the injection of gram quantities of

Gd(III) complexes to provide contrast magnetic resonance images (MRI) of the body illustrates

how the toxicity of metal ions and tissue targeting can be controlled by the appropriate choice

of ligands [4]. The importance of metal complexes as imaging agents for various diseases

including heart disease and brain disorders have also been recognized. They are able to

determine specific aspects of disease such as tissue hypoxia, and can detect molecular phe-

nomenon such as multidrug resistance [3]. Metal centres, being positively charged, favourably

bind to negatively charged biomolecules (proteins and nucleic acids) and offer excellent tools

for understanding of more specific biological processes including the formation of thrombi and

the imaging of infection, and so on. By means of scanning techniques viz. gamma scintigraphy,

positron emission tomography (PET) and magnetic resonance imaging (MRI), tissues and

organs with radiolabelled compounds can be visualized and such visualization facilitates the

detection of abnormalities in their function. Radionuclide complexes are used for diagnosis, as

contrast media and as therapeutic agents. A 99mTc radiopharmaceutical (99mTc–SESTAMIBI),

known as cardiolite, is an established radiopharmaceutical for myocardial perfusion imaging

[3, 4]. A wide variety of coordinated spheres, oxidation states and redox potentials of metal

ions in coordinated and organometallic compounds give possibility of design and synthesis of

new metal complexes with selected kinetic and thermodynamic properties towards biological

receptors [3, 4, 6].

Many Cu-complexes of anti-inflammatory drugs have been found more active in animal

models than either their parent Cu(II) salt or NSAID (nonsteroidal anti-inflammatory drugs).

Cu(II) complex of salicylate has been found about 30 times more effective than aspirin as an

anti-inflammatory agent. The pharmacological activity of these complexes has been proposed

to be due to its inherent physico-chemical properties of the complex itself rather than that of its

constituents [17].

The amount of metals present in the human body is approximately 0.03% of the body weight.

Lowmetal ion concentrations may be harmful for the body. It has been reported that in various

cancers the concentrations of Cd, Cr, Ti, V, Cu, Se and Zn were found to be at a lower level than

in normal conditions of body [18]. Ligands having electron donor atoms like N, O, S and P may

form coordination bond with metal ion. Chelation causes drastic changes in biological proper-

ties of ligands as well as metal moiety and in many cases it causes synergistic effect of metal ion

and ligand both [19]. On the other hand, the presence of metals such as lead, mercury, arsenic,

uranium and plutonium induces metal poisoning. In order to remove these metals medical

procedure, chelation therapy is performing. The medical procedure involves the administra-

tion of chelating agents to remove heavy metals from the body. Some common chelating agents

are ethylenediaminetetraacetic acid (EDTA), 2,3-dimercaptopropanesulphonic acid (DMPS)

and thiamine tetrahydrofurfuryl disulphide (TTFD).
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4. Investigation of the interactions of zinc(II) and copper(II) complexes

with small biomolecules

4.1. Substitution mechanisms in complex compounds

Complex compounds are involved in a number of substitution reactions such as ligand

exchange, solvent exchange, complexation or anation reactions, solvolysis, acid and base hydro-

lysis, inter- and intramolecular isomerization, racemization and metal ion exchange [20]. Sub-

stitution reactions of complexes can be electrophilic (SE) or nucleophilic (SN) depending on the

replacement of either central metal ion or ligand. If the metal ion is substituted during the

reaction, that is, electrophile, the reactions are electrophilic substitution (Eq. (4)), otherwise if a

ligand is replaced that is nucleophilic substitution reaction (Eq. (5)) [21, 22].

ð4Þ

ð5Þ

Nucleophilic substitution reactions, according to Langford and Gray, are carried out in three

different mechanisms: dissociative (D), associative (A) or interchange mechanism (I) [22]. In

the dissociative mechanism (D), the first step of the reaction is dissociation of the one ligand L

from the inner coordination sphere, whereby an intermediate with a decreased coordination

number forms. In the next step, the entering ligand X binds to the central metal ion. Since the

first step of the reaction is slower, it determines the overall rate of the substitution reaction. In

the associative mechanism (A), in the first step, the entering ligand X binds to the central metal

ion, forming an intermediate with an increased coordination number, and then, in the second

step, the leaving ligand L leaves the coordination sphere of the complex. The formation of an

intermediate with an increased coordination number is slower and it determines the rates of

this substitution process. When an intermediate cannot be detected by kinetic, stereochemical

or product distribution studies, the so-called interchange mechanisms (I) are invoked. Asso-

ciative interchange mechanisms (IA) have rates dependent on the nature of the entering group,

whereas dissociative interchange (ID) mechanisms do not. If the process of breaking the bond

between the central metal ion and the outgoing ligand L has a greater impact on the rate of

reaction, the mechanism is ID, and if the forming a new bond between the central metal ion and

the entering ligand X has a greater impact on the chemical reaction rate, the mechanism is

marked with IA [21, 22].

Factors affecting metal ion lability include size, charge, electron configuration and coordina-

tion number. The associative mechanism is well known and preferred for four-coordinated

square-planar complexes. Dissociative mechanisms are more common for six-coordinated

octahedral complexes. Five-coordinated complexes could react in both mechanisms [23]. The

study of kinetics and mechanism of the reactions of transition metal complexes expanded with

development of organometallic and bioinorganic chemistry, as well as, with the development

of new experimental techniques (UV-Vis spectrophotometry, NMR spectroscopy, “stop-flow”

spectrophotometry, HPLC, EPR spectroscopy, etc.). The main aims of study are determination

of rates of substitution processes, investigation of the influence of different parameters (change
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of reactant concentration, pH, temperature and pressure change, introduction catalyst, etc.),

investigation of interactions between potential antitumour metal-based drugs and biologically

relevant molecules [20–24].

4.2. The bioinorganic chemistry of zinc(II) and copper(II) complexes

Transition metal compounds play crucial roles as cofactors in metalloproteins; they act mainly

as a Lewis acid. Two essential metal ions, namely zinc and copper ions, modulate enzymes

activities, catalytic and regulatory functions, oxidative-reductive processes, etc. [4, 24]. Zinc

has a specific role in bioinorganic processes because of the peculiar properties of the coordina-

tion compounds of the zinc(II) ion, easily can be four-, five- or six-coordinate, without a

marked preference for six coordination [24]. The most studied metalloproteins in which zinc

serves a structural role belong to the zinc-finger family, which is involved in control of nucleic

acid replication, transcription and repair [25]. In zinc-finger proteins, zinc is tetrahedrally

coordinate to histidines and/or cysteines, the coordination of aspartic acid and glutamic acid

residues to the metal, also has been found in metalloenzymes [26].

Zinc is a good intermediate Lewis acid, especially in complexes with lower coordination numbers;

it lowers the pKa of coordinated water and is kinetically labile, and the inter conversion among its

four-, five- and six-coordinate states is fast [27]. The theoretical studies have shown that zinc does

not have a strong preference for a particular number of water molecules in its first coordination

layer and can accommodate four, five or six water ligands; the calculated energy differences

between isomeric [Zn(H2O)6]
2+, {[Zn(H2O)5]‚(H2O)}2+ and {[Zn(H2O)4]‚(H2O)2}

2+ complexes differ

by only a few kilocalories per mole [28]. Moreover, dynamic conversion of structural zinc into a

transient catalytic centre may be a mechanism for nucleic acid cleavage [29]. Recently, we deter-

mined the metal–ligand stoichiometry between [ZnCl2(en)] (where en = 1,2-diaminoethane or

ethylenediamine) complex and chloride at pH 7.2. In the presence of an excess of chloride

(0.010 M NaCl), the octahedral [ZnCl4(en)]
2� formed in solution at pH 7.2 [30] (Eq. (6)).

ð6Þ

Also, we have investigated the mechanism of interaction between biologically relevant

nucleophiles and [ZnCl2(terpy)] (where terpy = 2,20:60,200- terpyridine) complex in the pres-

ence of NaCl [31, 32]. The excess of chloride did not affect coordination geometry of

complex [32]. The result of the metal–ligand stoichiometry between [ZnCl2(terpy)] complex

and imidazole implied formation of the five-coordinate specie [Zn(terpy)(imidazole)2] [31]

(Figure 5).

Promising anticancer agents could be the zinc-based compounds, especially because zinc

is implicated as an important cytotoxic/tumour suppressor agent in several cancers [33].
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The mechanism of potential anticancer activity of zinc(II) complexes is assumed to be

connected with: (i) fast inter conversion among its four-, five- and six-coordinate states; (ii)

preference of the variable coordination geometries (tetrahedral, five-coordinate and octahe-

dral) that zinc(II) is able to adopt, towards diverse donor site of relevant nucleophiles [27].

Knowledge of mechanism of the interaction zinc(II) ions with biomolecules and other relevant

ligands is essential for understanding the processes in the cells during delivery of complexes to

DNA and proteins.

On the other hand, copper(II) controls cancer development. It serves as a limiting factor for

multiple aspects of tumour progression, growth, angiogenesis and metastasis [34–36]. Copper(II)

complexes offer various potential advantages as antimicrobial, antiviral, anti-inflammatory,

antitumour agents, enzyme inhibitor, chemical nucleases, and they are also beneficial against

several diseases like copper rheumatoid and gastric ulcers [37, 38]. It has been shown recently

that metal complexes of imidazole terpyridine (itpy) have potential applications in chemotherapy

[39]. Changing the ligand environment towards the specific target is a possible way of tuning the

selectivity of a drugmolecule. The nature of the ligands plays an important role in the binding of a

metal complex to a biomolecule such as DNA or protein [39, 40].

The chemistry of copper is dominated by the +2 oxidation state, for example, copper(II)

complex ions. In comparison with other divalent first-row transition-metal aqua ions, the

[Cu(H2O)6]
2+ ion is extremely labile [41, 42]. This effect is a consequence of Jahn-Teller distor-

tion. As a result of the d9 electronic configuration, an elongation of the axial-bound solvent

molecules is weakly coordinated. Due to this distortion the axial water molecules are weaker

bound to the central atom and therefore can be more easily substituted. The strong ligand field

forces the metal ion into a different geometry, for example, 2,20,200-triaminotriethylamine

ligands (tren) will restrict the degree and rapidity of distortion of the [Cu(tren)H2O]2+ complex

and remove the dynamic Jahn-Teller effect as stabilizing effect [43]. The bulk of five-coordinate

{Cu(terpy)(bipy)} and {Cu(terpy)(phen)} (terpy = 2,20:60,200- terpyridine or derivative,

bipy = 2,20-bipyridine or derivative, phen = 1,10-phenanthroline or derivative) complexes

Figure 5. Titrations of [ZnCl2(terpy)] with imidiazole as monitored by UV-vis spectra. Left: [ZnCl2(terpy)]-imidiazole,

right: cross-section of UV-vis spectra at 350 nm in the presence of 0.001 M NaCl [31].
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exhibiting ostensibly square-based pyramidal geometries also shows an additional interaction

in the remaining axial site leading to a better description as their being six-coordinate [44].

4.3. Study on the kinetics and mechanism of the reactions of zinc(II) and copper(II) complex

compounds with relevant biomolecules

Clear understanding of complex formation reactions between zinc(II) and copper(II) com-

plexes and biorelevant nucleophiles is still largely missing. Substitution behaviour of Zn and

Cu-complex compounds at physiological conditions is very complex due to the rather high

molecular mobility, distortions of complex compound and facile interconversion of four- to

five-, six-coordinate complexes. Adopted geometry of complex compounds conditionals differ-

ent preferences towards bio-ligands. Thus, the square pyramidal structure of Zn(II) and Cu(II) in

biological systems prefers O-carboxylate or carbonyl and N-imidazole donor bio-ligand, while

tetrahedral prefers S-thiolate or thioether, N-imidazole [4]. Investigation of mechanism of the

interaction between zinc(II) and copper(II) ions and biomolecules and other relevant ligands is

essential for understanding the mechanism of action of the potential zinc- and copper-based

antitumour drugs.

Recently, we have investigated by different methods (UV-Vis, EPR, HPLC-MS, density-

functional calculations, mole-ratio, etc.) the kinetics and mechanism of the reactions between

tetrahedral and square-pyramidal Zn(II) or Cu(II) complex compounds (i.e. [ZnCl2(en)],

[CuCl2(en)], [CuCl2(terpy)] and [ZnCl2(terpy)]) with bio-nucleophiles as a function of entering

nucleophile concentrations and temperature at pH 7.2–7.4 [30–32, 45]. The kinetics showed

that the substitution reactions involve the consecutive displacement of both chloride ligands

for every complex. Higher reactivity of [CuCl2(terpy)] complex then [ZnCl2(terpy)] was

obtained. The order of reactivity of the investigated biomolecules for the first reaction step is:

glutathione (GSH) >>DL-aspartic acid (DL-Asp) > guanosine-50-monophosphate (50-GMP) > ino-

sine-50-monophosphate (50-IMP) > L-methionine (L-Met) (for [CuCl2(terpy)]), while for

[ZnCl2(terpy)] order is: DL-Asp > GSH > 50-GMP > 50-IMP >> L-Met. Chelate formation and

pre-equilibriumwere obtained for the substitution process between [ZnCl2(terpy)] complex and

glutathione [32]. The π-acceptor properties of the tridentate N-donor chelate (terpy) predomi-

nantly control the overall reaction pattern [31, 32, 45]. Based on energetic stability of complexes,

it can be concluded that both complexes make hydrates very easy, but the bond between water

molecule and metal ion is pretty weak. In addition, there is a very good agreement between

experimental and calculated spectra obtained for hydrated and non-hydrated complexes in

aqueous solution. During formation of monohydrate, Zn(II) and Cu(II) complexes obtain little

shaped octahedral geometry, with three nitrogen and chloride atom in the central plane, and

with water molecule and the other chloride atom on the line almost normal to the plane [32].

The presence of various concentration of chlorides has significant impact on rate constants of

substitution processes of the [ZnCl2(terpy)] complex by nucleophiles [31].

As we mentioned in Section 4.2, the mole-ratio method was used for determining the metal-

ligand stoichiometry between [ZnCl2(en)] and chloride at pH 7.2. The results have shown step-

wise formation of 1:1 and 1:2 complexes, and indicate additional coordination of chlorides in

the first coordination sphere (Eq. (6)) [30]. The kinetics of ligand substitution reactions of this
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complex and biological relevant nucleophiles such as 50-IMP, 50-GMP, L-Met, GSH and DL-

Asp was followed under pseudo-first-order conditions by UV-Vis spectrophotometry. In the

presence of an excess of chloride the octahedral complex anion [ZnCl4(en)]
2� has been formed.

The first step of the substitution reactions could be interpreted as substitution of the axial

chlorido ligands in cis position towards bidentate ethylenediamine by the biologically relevant

nucleophiles, while the second step is substitution of the equatorial chlorido ligand. The order

of reactivity of the investigated nucleophiles for the first reaction step is 50-IMP > GSH > L-Met >

DL-Asp > 50-GMP, while for the second reaction step is GSH > L-Met > 50-IMP > DL-Asp > 50-

GMP [30].

In the presence of an excess of chloride, the square-planar complex [CuCl2(en)] exists as a

pseudo octahedral complex with two axially and weakly-bound solvent ligands, these ligands

are rapidly replaced/substituted by chloride ions to form [CuCl4(en)]
2� as a pre-equilibrium

intermediate, while equilibrium reaction was observed for [CuCl2(terpy)] [45]. The order of

reactivity of the investigated bio-relevant nucleophiles towards [CuCl4(en)]
2� complex is:

GSH > 50-GMP > 50-IMP > DL-Asp > L-Met, while towards [CuCl2(terpy)] the order of reactiv-

ity is: DL-Asp > L-Met > GSH > 50-GMP > 50-IMP, for the first reaction step. Different order of

reactivity of biomolecules towards [CuCl2(en)] and [CuCl2(terpy)] complexes could be

explained by different geometrical structures of complexes (octahedral and square-pyramidal,

respectively) in the presence of chloride and their different preferences towards donor atoms of

biomolecules. Mass spectrum of [CuCl2(terpy)] in Hepes buffer has shown two new signals at

m/z = 477.150 and m/z = 521.00, assigned to [CuCl(terpy)]+ � Hepes fragments of coordinated

Hepes buffer. These signals also appear in mass spectra of ligand-substitution reactions

between [CuCl2(terpy)] and biomolecules in molar ratio 1:1 and 1:2. According to EPR data,

L-Met forms the most stable complex with [CuCl2(en)] among the ligands considered

(Figure 6), while [CuCl2(terpy)] complex did not show significant changes in its square-

pyramidal geometry in the presence of the buffer or bio-ligands [45].

Figure 6. Left: EPR spectrum of 0.0001 M [CuCl2(en)] complex solution in 0.010 M NaCl 0.025 M Hepes buffer, pH 7.4, at

300 K. Right: EPR spectrum of 0.0001 M equimolar [CuCl2(en)] � L-Met solution in 0.0010 M NaCl 0.025 M Hepes buffer,

pH 7.4, at 300 K [45].

Mechanism of Interactions of Zinc(II) and Copper(II) Complexes with Small Biomolecules
http://dx.doi.org/10.5772/intechopen.79472

137



5. Conclusions

Detailed knowledge of chemical properties of complex compounds could be very useful for the

future investigations of new pharmacological agents. Although recent studies are trying to

obtain more mechanistic information, and results provide very useful information for the

future design of potential zinc- or copper-based anticancer drugs, it is evident that, up to

now, this field is not investigated enough. In general, attempts to correlate the antitumour

activity of zinc(II) and copper(II) compounds with coordination number and geometry could

be very promising for discovery of the alternative tumour treatment.
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