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Abstract

The greater value of refractive index for high-index layers in thin-film interference filters
operating in the infrared has an incomparable advantage. Lead telluride (PbTe), which is
much superior to other infrared high-index coating materials due to its high index and
advantage of fundamental absorption edges, has played an important role in filters
employed in the infrared radiometer and other instruments launched in space atmosphere
sounding research projects. In this chapter, we summarized some recent achievements in
the investigations into another infrared high-index coating material—lead germanium
telluride (Pb1�xGexTe), a pseudo-binary alloy of PbTe and GeTe. It can be revealed that
the layers of Pb1�xGexTe exhibit the tunable optical properties, such as temperature
coefficient of refractive index and fundamental absorption edge, as well as mechanical
properties, such as the hardness and Young’s modulus, corresponding to its intrinsic
ferroelectric phase transition. Some important applications in thin-film interference filters
were also demonstrated for its tremendous potential, such as a stable narrow bandpass
interference filter without temperature-induced wavelength shift and a tunable infrared
short wavelength cutoff filter. Furthermore, it is also revealed that electron beam evapora-
tion is a more effective congruent-transfer technique to deposit the layers of Pb1�xGexTe.

Keywords: infrared, thin-film interference filter, lead-telluride, lead-germanium-telluride

1. Introduction

The rapid detection of the dynamites or explosives is of increasing importance in the anti-

terror campaign. A technology to detect the trace dynamites can be developed using the

electromagnetic radiation in the mid-wavelength infrared region, because many strong funda-

mental absorption bands with regard to “fingerprint” are included in this range [1]. Although,
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in recent years, a significant progress has been achieved toward the miniaturization of infrared

spectrometers, which can play an important role in the homeland security and law enforce-

ment, accompanied with the development of thermoelectrically cooled detectors and quantum

cascade lasers, a thin-film narrow bandpass interference filter, which has a passband coincid-

ing with and as narrow as the typical absorption line of “fingerprint,” is urgently needed to

increase sensitivities of the spectrometers. An order of magnitude larger angular dispersion

than gratings can be carried out due to the characteristic lines assigned to the trace dynamites

being distinguished using a thin-film bandpass filter. Therefore, the spectral fluctuation will be

reduced considerably and a greater level of miniaturization can be completely obtained with-

out the clumsy gratings [2]. Furthermore, more profits can also be gained out of thin-film

filters, because of their cost-efficient mass-production compared with the gratings.

According to Macleod [3], the simplest type one-cavity all-dielectric Fabry-Perot filter has the

form of [HL]N2mH[LH]N or H[LH]N2mL[HL]NH, where H and L being quarter-wavelength layers

with high and low refractive indices, respectively, m is the order of the spacer, and N is the

number of full periods in the reflecting stacks. Therefore, the expressions for the halfwidth of a

Fabry-Perot filter can be presented as Eq. (1) for high refractive index spacer,
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and Eq. (2) for low-refractive-index spacer,
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where λ0 being the central wavelength, and nH and nL being the indices of refraction of the

high-index layers, low-index layers in the filter, and respectively, and ns, that of the substrate.

Therefore, in order to reduce the halfwidth of a Fabry-Perot filter, it is almost always advanta-

geous for its high-index layers to use a coating material with the highest value of refractive

index available in the spectral regions of interest. That is, the greater the value of nH/nL is, the

narrower the halfwidth can be obtained.

Although, conveniently, germanium (Ge) is a preferred choice of coating material for the high-

index layers in the spectral region of mid-wavelength infrared due to its higher value (round

4.0) of refractive index, it is still expected that another material with an even higher index is

available to substitute for Ge in order to further reduce the halfwidth of a filter.

2. Properties and applications of PbTe

Lead telluride (PbTe) is one of lead chalcogenides, which has been widely investigated as a

conventional semiconducting material for many decades. The mineralogical name of PbTe is

Altaite, a yellowish white mineral with an isometric crystal structure, which was discovered in

1845 in the Altai Mountains [4].
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PbTe is a promising material candidate for mid-wave infrared detection because of their

superior chemical and mechanical stability over HgCdTe alloys [5–7]. In addition, as a simple

p-type thermoelectric material with the large Grüneisen parameter and high valley degeneracy,

PbTe has demonstrated exceptional thermoelectric performance with an optimized peak zT of

�1.4 [8–10].

However, PbTe is also one of high-index infrared coating materials. Currently, it dominates the

material selection for the design of infrared thin-film interference filters operating in the long

wavelength infrared both at room and reduced temperature. The combination of its high index

(above 5.5 in the spectral range of long wavelength infrared at room temperature) and its

advantage of a negative temperature coefficient of refractive index (�2.0 � 10�3 K�1) make it

much superior to other infrared coating materials [11–17].

In Figure 1(a), it can be illustrated that a layer of PbTe has a very high value of refractive

index [13], although it is lower than that of bulk single crystal of PbTe [18]. In Figure 1(b), it

can be also revealed that the foundational absorption edge of the layer of PbTe will shift

toward the longer wavelength with the decreasing ambient temperature. Therefore, a single

layer of PbTe can be regarded as a natural selective absorption longwave-pass cutoff filter to

omit the auxiliary filters which are necessary to block the unfavorable Planck emission from

hot resources.

Since the middle of the twentieth century, using PbTe as the infrared high-index coating

materials, Infrared Multilayer Laboratory at the University of Reading, Reading, United King-

dom, have completed spectral design and manufacture of high-quality infrared thin-film

interference filters for complex infrared radiometer and ground-based astronomical instru-

ments in over 30 major UK and international space and astronomical research projects [19]. In

Figure 2, the space and astronomical research projects being launched in the recent 5 years, in

which infrared thin-film interference filters were manufactured in Infrared Multilayer Labora-

tory using PbTe as the infrared high-index coating materials, were listed.

Figure 1. (a) A comparison of refractive index of a single layer of PbTe with that of bulk single crystal; (b) the shift of

foundational absorption edge of a layer of PbTe with the decreasing ambient temperature.
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However, if the conventional PbTe materials are used as the evaporants, which are prepared

from the stoichiometric proportions of pure constituents, a strong n-type Pb-rich layer will be

deposited even at a very low substrate temperature, for example, 100�C. Because an excess of

nonstoichiometric carrier absorption emerges, these Pb-rich layers are completely opaque

beyond 12 μm. Therefore, in order to obtain good-quality PbTe layers, a compensative process

is required, which is commonly carried out either by introducing oxygen into the evaporation

chamber in the course of the deposition of a PbTe layer or by baking the layers in air after

deposition has been finished. However, the practice of postdeposition annealing is not ideal

when the requirements for precise and reproducible spectral positioning and shape of a

required filter profile are tightly specified and the introduction of oxygen raises a complexity

in the technological process. In addition, both oxidizing processes cause the presence of lead

oxide on the surface of the layer [20].

Since the partial pressures of Pb and Te2 strongly depend on the properties of the evaporants, it

is possible to shift the characteristics of the deposited layers by using a PbTe material with a Te

dopant. Therefore, a kind of evaporable PbTe material with “mild” characteristics has been

developed in Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai,

China [21, 22]. By “mild,”we mean that, in a rather broad region of substrate-temperature, the

Figure 2. The space and astronomical research projects in the recent 5 years, in which infrared thin-film interference filters

were manufactured in infrared multilayer laboratory using PbTe as the infrared high-index coating materials.

Figure 3. Some products of evaporation materials of “mild” PbTe.
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concentration of free carriers in the layers from such a material can be 25–40 times lower than

in normal PbTe materials. In Figure 3, some products of “mild” PbTe evaporation materials

were exhibited.

3. Properties and applications of Pb1�xGexTe

Lead germanium telluride (Pb1�xGexTe) is a pseudo-binary alloy of IV-VI narrow-gap semi-

conductor compounds, PbTe and GeTe [23].

Like some IV–VI compound semiconductors, for example, the tellurides of Sn and Ge and their

alloys, Pb1�xGexTe shows also a ferroelectric phase transition from a high-temperature cubic,

rock salt (Oh) structure above a Curie temperature TC to a low-temperature rhombohedral,

arsenic-like (C3v) phase. The rhombohedral structure originates from a displacement of two

sublattices along a <111> direction that becomes the c axis. In particular, for Pb1�xGexTe, the

Curie temperature TC increases steeply with increasing Ge concentration. The phase transition

is driven by off-center site occupation of Pb ion sites by Ge ions. Anomalies happen in the

electrical resistivity and specific heat of Pb1�xGexTe alloys corresponding to the ferroelectric

phase transition [24–32].

In this chapter, some investigations into the optical and mechanical properties of the layers of

Pb1�xGexTe, which have been carried out in Shanghai Institute of Technical Physics, Chinese

Academy of Sciences, Shanghai, China, were demonstrated; furthermore, some applications of

Pb1�xGexTe as the infrared high-index coating materials were also exhibited.

3.1. Low-temperature dependence of mid-infrared optical constants of layers of Pb1�xGexTe

Although many investigations, both theoretical and experimental, have been carried out on the

mechanism of ferroelectric phase transition of Pb1�xGexTe, the investigation into the optical

constants (refractive index n and absorption coefficient k) of the layers of Pb1�xGexTe as a

function of temperature remains to be done [33].

In our investigation, a layer of Pb1�xGexTe was deposited on a silicon wafer using molybde-

num boat heating the ingot of Pb1�xGexTe (x = 0.12), of which composition was analyzed using

proton-induced X-ray emission (PIXE) at the NEC 9SDH-2 pelletron tandem accelerator and

can be represented with Pb0.94Ge0.06Te. The optical transmission spectra of the layer were

measured using a Fourier-transform infrared spectrometer (BIO-RAD, FTS-40) in the range of

4000–400 cm�1 at normal incidence between 80 and 300 K accompanied by using a bath

cryostat (Oxford, DN1704). The optical constants of the layer were determined through the

fitting of transmission spectra recorded at different temperature using the Lorentz-oscillator

model as the dispersion model for the complex frequency dependent dielectric functions.

As a consequence, the temperature dependence of optical constants can be obtained at low-

temperature in the spectral range of 2.5–8.5 μm. It can be found that the layer of Pb1�xGexTe

has a refractive index with a value of 5.350–6.000 corresponding to different measured

Infrared High-Index Coating Materials, PbTe and Pb1−xGexTe: Properties and Applications
http://dx.doi.org/10.5772/intechopen.79272

33



temperatures in the spectral range of 4.0–8.5 μm, in which dispersion originated from the

Reststrahlen and the absorption edge can be negligible. At room temperature, the layers of

Pb1�xGexTe have a value of refractive index approaching to that of layers of PbTe. A conclu-

sion can be drawn that Pb1�xGexTe is also an infrared high-index coating material.

In Figure 4(a), the change of refractive index of the layers of Pb0.94Ge0.06Te as a function of both

wavelength and temperature was shown. It can be seen that the maximum value of refractive

index occurs at 150 K, which can be regarded as the results of increased lattice polarizability that

is an indication of the ferroelectric nature of the phase transition. Therefore, a conclusion can be

drawn that anomalies in the refractive index, similar to those in the electrical resistivity and

specific heat, emerge at the Curie temperature TC of the layers of Pb0.94Ge0.06Te. In Figure 4(b),

the temperature coefficient of the refractive index, dn/dT, of the layers of Pb0.94Ge0.06Te is given,

from which one can find that the value of dn/dT is 20.006–0.002 K�1 in the spectral range of 3.0–

8.5 μm at all measured temperatures.

An empirical formula for the temperature coefficient of refractive index in the spectral range of

4.0–8.5 μm can be expressed as Eq. (3):

dn

dT
¼ f λ;Tð Þ ¼ A Tð Þ þ B Tð Þλ�C Tð Þ (3)

where

A Tð Þ ¼ �0:05964þ 0:00156T � 1:41679� 10�5T2 þ 5:24258� 10�8T3 � 6:76599� 10�11T4;

B Tð Þ ¼ 247:15385� 6:75508T þ 0:07137T2 � 3:69672� 10�4T3 þ 9:40269� 10�7T4

�9:37957� 10�10T5;

C Tð Þ ¼ 156:18266� 4:49072T þ 0:05023T2 � 2:65423� 10�4T3 þ 6:6734� 10�7T4

�6:44758� 10�10T5.

Figure 4. (a) The change of refractive index of the layers of Pb0.94Ge0.06Te as a function of both wavelength and

temperature and (b) the temperature coefficient of the refractive index, dn/dT, of the layers of Pb0.94Ge0.06Te (ref. [33],

reuse permission obtained from AIP).
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3.2. The stable narrow bandpass interference filters without temperature induced

wavelength shift

When the ambient temperature varies, the performance of an optical thin-film interference

filter will be also changed, such as the shift of center wavelength and the deterioration of peak

transmission [34–36]. In particular, when a long wavelength infrared narrow bandpass filter is

used in the spaceborne remote sensing instruments, the change of its spectral characteristics,

which will lead to the difficulty to sustain the precision radiometric measurements from space,

is not acceptable [37]. Addition of an auxiliary temperature control to the filters is not practical

in order to maintain its stable optical performance in spaceborne remote sensing systems.

There are two factors that cause the shift of wavelength accompanied by the change of ambient

temperature. One is the temperature-induced variations in the indices of refraction of the layers,

and another is the variations in the physical thicknesses of the layers. Since the bulk temperature

coefficients of linear expansion are an order of magnitude smaller than the temperature coeffi-

cients of the indices of refraction for substances similar to those usually employed for thin-film

interference filters, it may be speculated that the shift of wavelength should be ascribed to the

variations of temperature coefficients of the indices of refraction of the layers [38].

As far as the infrared filters employed in the spaceborne remote sensing systems are concerned,

the convenient materials used for the low-index layers are either ZnS (2.2) or ZnSe (2.3). More-

over, Seeley et al. [39] modeled the sensitivity of the narrow bandpass filter to the change of

temperature, showing that the spacer and the next two adjacent layers are dominant contribu-

tors relative to the other layers (and stacks). Therefore, when a negative shift in PbTe resulting

from the negative temperature coefficient of refractive index is suitably combined with a positive

shift in ZnS (or ZnSe) from its positive coefficient, temperature-invariant compensation becomes

possible; namely, to achieve a negligible wavelength shift with temperature.

However, as a matter of fact, the temperature coefficient of refractive index of PbTe cannot

exactly compensate for that of ZnS (ZnSe). Therefore, another solution to the problem is to seek

a coating material of which the temperature coefficient of refractive index can be tuned.

Since the maximum value of refractive index of layers of Pb1�xGexTe occurs corresponding to

the structural phase transition, as a consequence, at the designated low-temperature, the

temperature coefficient of refractive index of layers of Pb1�xGexTe can be tuned from negative

to positive by varying the Ge composition, that is, the layers of Pb1�xGexTe with the specific

composition may be used as the high-index layers in the thin-film interference filters.

Since the component elements in a multicomponent alloy system will evaporate at a different

rate, which causes changes in compositions of layers relative to the evaporants, and it is in

great necessity to designate directly the compositions in evaporated layers of Pb1�xGexTe. For

example, the corresponding stoichiometry of evaporated layers can be expressed by the for-

mula (Pb1�xGex)1-yTey.

In Figure 5, the spectral characteristics of a simple one-cavity Fabry-Perot filter on a Ge

substrate was demonstrated in the temperature range of 85–300 K, which was designed with

Infrared High-Index Coating Materials, PbTe and Pb1−xGexTe: Properties and Applications
http://dx.doi.org/10.5772/intechopen.79272

35



peak wavelength of 11.30 μm and fabricated using ZnSe as the low-index layer. For its high-

index layers, the ingots of Pb1�xGexTe (x = 0.21) were used as the evaporants, from which the

layers with corresponding stoichiometry of (Pb0.86Ge0.14)0.46Te0.54 can be obtained using

molybdenum boat evaporation. It can be observed that when ambient temperature changes

from 300 to 85 K, a shift of peak wavelength of 0.05935 nm K�1 has been achieved for this

narrow bandpass interference filter.

3.3. Homogeneity of composition in evaporated layers of Pb1�xGexTe

It is commonly believed that the existence of inhomogeneity of composition in layers of Pb1�xGex
Te will have a disadvantageous influence on the performance of thin-film interference filters,

because the existence of graded Ge concentration profile in Pb1�xGexTe layers will lead into the

coexistence of ferroelectric and paraelectric phases at a fixed temperature associated with phase

transition as a function of Ge concentration and temperature [40]. Although Partin [41] observed

the Ge concentration profile in the layers of Pb1�xGexTe grown on (100) oriented PbTe single

crystal by molecular beam epitaxy from PbTe, GeTe, and Te source ovens, to the author’s best

knowledge, it has still not been clarified whether or not a Ge concentration gradient exists in the

layers of Pb1�xGexTe evaporated directly from bulk alloys. Therefore, the investigation on com-

positional depth profile in evaporated layers of Pb1�xGexTe is of a great significance.

In our investigation, the layers were deposited on silicon wafers using molybdenum boat

heating the ingots of Pb1�xGexTe, of which compositions were analyzed using energy-

dispersive X-ray analysis (EDAX) in a Hitachi S-520 scanning electron microscope. Depth

distribution of elements was measured by using a Microlab 301F Scanning Auger Microprobe

(SAM) system combined with a discontinuous ion sputtering mode at a base pressure below

8.0 � 10�8 Pa.

Figure 5. The spectral characteristics of a simple one-cavity Fabry-Perot filter measured in the temperature range of 85–300 K,

which was fabricated using Pb0.79Ge0.21Te as high-index evaporation material and ZnSe as low-index layers (ref. [35], reuse

permission obtained from OSA).
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The results from our investigation are not in agreement with those reported by Partin. In

Figure 6, a representative compositional depth profile was illustrated for an evaporated layer of

Pb1�xGexTe, of which the measured elemental concentrations are 42.92 � 0.55 for Pb,

54.96 � 0.90 for Te, and 2.12 � 0.74 for Ge, respectively. It can be observed that the Ge concen-

tration at the surface is lower than that of the stoichiometry, meanwhile, the Pb concentration

was distinctly higher. However, the Ge concentration increases from a Ge-deficient state at near

surface to the Ge-rich one at near substrate. At same depth, all concentrations of elements remain

balanced, that is, the increase of the Ge concentration must be accompanied with a decrease

of the Pb concentration. After removal of the upper layers with a thickness of about 300 nm,

the layer of Pb1�xGexTe transforms to the Te-deficient characteristic from the Te-rich one.

In addition, a stepwise change of elemental concentrations in the depth profile cannot be

detected in the layer.

In fact, the mechanism of evaporating from an alloy is much more complicated than that from

a single metal because of the different vapor pressures of their individual components. It is

much more possible that Ge partial pressure will change with the increasing of deposition time

because Ge is more volatile than other components, Pb and Te, in the Pb1�xGexTe alloy.

Thereby, Ge concentration in the evaporants will be gradually depleted and the deposition

process will result in a compositional gradient in the layers. As a consequence, the results

obtained in the compositional depth profiles in evaporated layers of Pb1�xGexTe can be rea-

sonably explained.

Because it is often problematic to maintain a desired alloy in layers and over larger substrate

surfaces, therefore, an empirical procedure may be used to determine how to control the

composition of the layers by adjusting the composition of the bulk alloy.

Figure 6. A representative compositional depth profile for an evaporated layer, of which the measured elemental

concentrations are 42.92 � 0.55 for Pb, 54.96 � 0.90 for Te, and 2.12 � 0.74 for Ge, respectively (ref. [40], reuse permission

obtained from SPIE).
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3.4. Compositional dependence of absorption edges in evaporated layers of Pb1�xGexTe

and tunable infrared short wavelength cutoff filters

An ideal cutoff filter should have small losses in the transmission region and high attenuation

or reflectance in the rejection region over an extended spectral range, which can be carried out

depending on interference or absorption [42]. Therefore, a cutoff filter may take a number of

different forms, such as interference cutoff filters and thin-film absorption filters.

A thin-filmabsorption filter usually has veryhigh rejection in the stop region and consists of a layer

of material which has an absorption edge at the required wavelength. It is usually short wave-

length cutoff in character. A layer of semiconductor that exhibits a very rapid transition from

opacity to transparency at the intrinsic absorption edge is a good example to make an excellent

thin-film short wavelength cutoff absorption filter. Nevertheless, as far as a layer of a certain

semiconductor, such as Ge or PbTe, is concerned, the absorption filter is inflexible in character and

the cutoffwavelength cannot be tuned, because of their fundamental optical properties. In order to

take advantage of the characteristic of deep rejection of thin-film absorption filters, it will be of

great significance to find out a semiconductor material, of which the absorption edge position can

be tuned bymeans of controlling the composition of its layers, to fabricate the absorption filter.

In our investigation, the layers were deposited on silicon wafers using molybdenum boat

heating the ingots of Pb1�xGexTe, of which compositions were analyzed using energy-

dispersive X-ray analysis (EDAX) in a Hitachi S-520 scanning electron microscope. The optical

transmission spectra of the layers were measured in the spectral range of 2.5–25 μm using a

Perkin Elmer Spectrum GX Fourier-Transform Infrared Spectrometer with a resolution of

8 cm�1 at normal incidence. The crystallographic structures of the layers were investigated by

X-ray-diffraction (XRD) using Cu Kα radiation on a D/max 2550 V diffractometer with an

accuracy of 0.02�. The single-phase nature and polycrystalline of the layers were revealed.

The composition dependence of positions of the fundamental absorption edges in the evapo-

rated layers of Pb1�xGexTe was explored. The aim is to elucidate that the tunability of the

cutoff wavelength in thin-film absorption filters can be reached if the controllability of the

composition of constituent layers can be carried out.

It is revealed that for the evaporated layers of Pb1�xGexTe with an identical Te concentration, the

absorption edges will shift toward short wavelength with the increase of Ge concentration x in

layers, an example was illustrated in Figure 7(a); furthermore, for those with a similar Ge concen-

tration within a small range of deviation, the edges will also shift toward the short wavelength

with Te concentration approach to stoichiometry, an example was illustrated in Figure 7(b).

Our investigation indicates that if the controllability of the composition of evaporated layers of

Pb1�xGexTe can be carried out, it will be possible to fabricate an infrared single-layer thin-film

absorption filter with the short wavelength cutoff at the required wavelength.

3.5. Compositional congruency, correlation and high-pressure polymorphism in electron-

beam evaporated layers of Pb1�xGexTe

Currently, evaporation, as a physical vapor deposition process, is still principally used in

optical coating industry, because of its simplicity, flexibility and relatively low cost; moreover,
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the enormous number of existing deposition systems [3]. However, it may be undesirable from

a practical viewpoint to evaporate compound semiconductors from a single source because the

vapor compositions of compound semiconductors are usually different from their nominal

compositions. As a consequence, the stoichiometry of the layers will differ generally from the

evaporants [43].

In our investigation, the ingots with different Ge concentrations were chosen and evaporated

using the molybdenum boat heating; meanwhile, the ingots with five Ge concentrations, x = 0.10,

0.14, 0.17, 0.20, and 0.22, together with PbTe, were evaporated using electron-beam heating. The

stoichiometry of the evaporated layers was determined using the energy-dispersive X-ray anal-

ysis from a Horiba EX-220 energy dispersive X-ray microanalyzer (model 6853-H) attached to a

Hitachi S-4300 cold field emission scanning electron microscope (FE-SEM) without coating the

surfaces.

In Figure 8(a), for the layers of Pb1�xGexTe evaporated using electron beam heating, the

change of Ge and Te concentration, that is, y and z, with the increasing of Ge concentration in

evaporants, x, was illustrated. Similarly, in order to make a clear comparison, for layers

evaporated using molybdenum boat heating, the dependence of y and z on x, was also

described in Figure 8(b).

It can be observed that Ge concentration y in layers evaporated using electron beam heating is

approaching to Ge concentration x of the ingots. A green line that designates an exact linear

relation y = x serves as a guideline for the eye in the figure. In comparison with the composi-

tional dependence presented in Figure 8(b) for the layers evaporated using molybdenum boat

heating, therefore, it can be concluded that electron beam evaporation is a more effective

congruent-transfer technique to deposit the layers of Pb1�xGexTe directly from the original

Pb1�xGexTe evaporants.

Furthermore, with an increasing of Ge concentration, it can be obviously observed that con-

centration of tellurium z gradually decreases in the layers evaporated using both electron beam

Figure 7. (a) An example to illustrate that the absorption edges will shift toward short wavelength with the increase of Ge

concentration x in layers and (b) an example for the edges will also shift toward the short wavelength with Te concentra-

tion approach to stoichiometry (ref. [42], reuse permission obtained from SPIE).
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and resistance heating. As a consequence, the Te-rich characteristics presented in the layers
will shift into the Te-deficient one with the increasing of Ge concentration.

Perhaps, the congruency in the process of evaporation of Pb1�xGexTe using electron beam
heating of ingots can be attributed to the “ablation” characteristics of electron beam evapora-
tion and lower thermal conductivity of the PbTe-based alloy. A significant feature of an
electron beam evaporator is its ability to concentrate a large amount of power onto a small
area of the surface of evaporants, independent of materials being heated. Usually when the
evaporants are heated, water cooling is supplied to the crucible to remove the heat which
escapes by conduction through the evaporants and liner. In addition, it has been well accepted
that PbTe-based alloys constitute a category of materials with excellent thermoelectric figure of
merit, zT, because PbTe has a rather lower value of thermal conductivity (2.3 W m�1 K�1) [44].
Therefore, when electron beam is focused on the surface of the ingots of Pb1�xGexTe, the heat is
hardly conducted out and a great temperature gradient is established in the ingots accompa-
nied by the water-cooled crucible. As a consequence, due to the absorption of high energy
density by only a small fraction of the ingots irradiated by electron beam, the evaporation
behaves like “ablation” with a nonequilibrium nature, at which energy absorbed is much
higher than that needed for evaporation, namely, vaporization is independent on the vapor
pressures of the constituents.

Furthermore, in our investigation, an assumption can also be proposed to explain the composi-
tional correlation observed in the layers of Pb1�xGexTe. It has been well known that the ionic
radii of Ge and Pb are 0.73 and 1.2 Å, respectively; therefore, Pb1�xGexTe belongs to a class of
alloys in which a substitutional atom has a size significantly smaller than that of the host atom it
replaces. In such a “diluted” alloy, the addition of even a very small number of substitutional
atoms will lead to a substantial change in their physical properties. For example, although PbTe
itself is not ferroelectric, the addition of even 0.05% Ge to PbTe will induce a structural transition
[24]. It is obvious that in such a ternary alloy, due to the substitution of Ge ions for Pb ions, two

Figure 8. The change of Ge concentration y and Te concentration z in the layers with the increasing Ge concentration in
evaporants x, (a) evaporated using electron beam heating, a green line that designates an exact linear relation y = x serves
as a guideline for the eye; (b) evaporated using molybdenum boat heating, a green line that designates an exact linear
relation y = x, and a blue line that represents an exact stoichiometry z = 50 for Te concentration in thin films serves as
guideline for the eyes, respectively (ref. [43], reuse permission obtained from Elsevier).
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types of nearest-neighbor bonds, Pb—Te and Ge—Te, must be concerned. Thus, if only the

strength of a Ge—Te bond is weaker than that of Pb—Te bond, the amount of Te ions which are

incorporated into the system of Pb1�xGexTe will decrease with the increasing of Ge concentration

in the layers.

Our assumption can be supported from the experimental data of bond energies reported

by Rao and Mohan [45]. It is pointed out that Ge—Te has a bond energy of 1.87 eV, whereas

Pb—Te has a bond energy of 1.90 eV; therefore, Ge ions cannot “hold” Te ions as tight as Pb

ions do. When the more Ge ions are placed on the Pb site, the more Te ions will “escape.”

Therefore, the gradual decreasing of Te concentration will make a Te-rich characteristic in

layers shift into a Te-deficient one.

In Figure 9, the patterns of XRD analysis were demonstrated for the layers evaporated using

electron beam heating the ingots with Ge concentration x = 0.10, 0.14, 0.17, 0.20, and 0.22,

respectively. It is worthwhile to note that the results for the layers evaporated from ingots with

x = 0.22 have some important features. First of all, a new peak can be found, which corre-

sponds to the strongest (111) reflection of rock salt-type structure of GeTe (space-group o5
h
) as

referred in JCPDS card number 65-0315. Although the intensity is weak, it can be revealed that

Figure 9. The patterns of XRD analysis for layers evaporated using electron beam heating from ingots with Ge concen-

tration x = 0.10, 0.14, 0.17, 0.20, and 0.22 (ref. [43], reuse permission obtained from Elsevier).
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a secondary phase GeTe emerges in the layers. Furthermore, the strongest reflection is different

from that in the layers of Pb1�xGexTe with a high temperature paraelectric phase. A strongest

peak is expected to occur at 2θ = 27.58�, which stands for the (200) plane in PbTe and discloses

a highly textured with (001) plane parallel to the silicon substrate. However, the strongest

reflection can be attributed to a (111) reflection of substrate silicon (space-group o5
h
) and (104)

reflection of a highly symmetric body-centered cubic (bcc) structure Te-V (space-group o9
h
). In

order to make a clear elucidation, the position and intensity of reflections given in the JCPDS

cards for rock salt-type PbTe and bcc structure Te-V were also added in Figure 9, respectively.

Therefore, it can be concluded that high-pressure phases for GeTe and Te compounds are also

presented in evaporated layers of Pb1�xGexTe, which are commonly generated at the higher

pressure applying hydrostatic pressure (such as diamond anvil cell) or shock loaded tech-

niques. Perhaps, the transition from the disorder to the order in the system of Pb1�xGexTe,

which is responsible for ferroelectric phase transition, induces high pressure polymorphism in

evaporated layers. Of course, more evidence is furthermore needed.

3.6. The mechanical properties of evaporated layers of Pb1�xGexTe

As far as the single-crystal of PbTe is concerned, the microhardness is relatively a constant of

�30 HV for the various carrier concentrations [46, 47]. To the author’s best knowledge, no data

is reported on hardness of layer of PbTe. However, a layer of PbTe is so soft that it can be

scratched easily. As a consequence, an infrared thin-film interference filters consisting of the

layers of PbTe is not robust enough to withstand the damage originated from standard wafer

dicing processing, such as “from wafer to chips,” even if more robust low-index materials, like

ZnSe or ZnS, are chosen as an outermost layer.

Therefore, as a solution to the problem in integrating of the standard semiconductor process

into the mass-production of infrared thin-film interference filters, a new infrared high-index

coating material is needed to deposit the more robust high-index layers to withstand the

damages in wafer dicing processing. It is necessary to investigate the mechanical properties of

evaporated layers of Pb1�xGexTe.

In our investigation, the layers of Pb1�xGexTe were deposited on silicon wafers using electron

beam evaporation, of which compositions were analyzed using energy-dispersive X-ray anal-

ysis (EDAX) in a Horiba EX-220 energy-dispersive X-ray microanalyzer (model 6853-H)

attached to the FE-SEM without coating the surfaces of the layers. Nanoindentation measure-

ments were performed using a Nano Indenter G200 with a three-side pyramidal Berkovich

diamond indenter of 50 nm radius under the continuous stiffness measurement (CSM) option.

At least 10 indents were performed on each layer with a maximum load of 13 mN, accompa-

nied with a corresponding indentation depth no more than 500 nm. Following the analytic

method proposed by Oliver and Pharr [48], the average values and standard deviations of the

hardness and Young’s modulus of thin films were extracted from the load–displacement

results.

It can be revealed that the layers of Pb1�xGexTe have greater values of hardness and Young’s

modulus compared with those of PbTe. For example, from Figure 10(a), it can be found that
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the hardness of the layer of Pb0.83Ge0.17Te is three times as great as that of PbTe; meanwhile,

Young’s modulus is twice greater than that of PbTe, as seen in Figure 10(b). Therefore, a

conclusion can be drawn that a mechanically robust infrared high-index layer can be obtained

using Pb1�xGexTe as evaporation materials.

These mechanical behaviors of layers of Pb1�xGexTe can be linked to the ferroelectric phase

transition. Moreover, the strength loss in the layers can be also explained in light of strong

localized elastic-strain fields in concentrated solid solutions.

4. Conclusion

Since Seeley et al. begun the employment of PbTe into the design and manufacture of infrared

thin-film interference filters in Infrared Multilayer Laboratory at the University of Reading in

1960s, half of a century has passed. Nowadays, PbTe is still the first choice for the design of

infrared thin-film interference filters operating in the long wavelength infrared both at room

and cryogenic temperature. In the beginning of this century, aiming at the further improve-

ment of the performance of PbTe, the investigations into Pb1�xGexTe were started up in

Shanghai Institute of Technical Physics, Chinese Academy of Sciences. Nowadays, many fruits

have been harvested after more than a decade passed.

First of all, it can be concluded that the electron beam evaporation can prove itself a promising

powerful tool to make sure the congruent-deposition of the layers of Pb1�xGexTe directly from

original Pb1�xGexTe evaporants. Therefore, because the controllability of the composition of

evaporated layers of Pb1�xGexTe can be carried out, Pb1�xGexTe will be a prospective infrared

high-index material in thin-film interference filters, due to its tunable optical properties

corresponding to its intrinsic ferroelectric phase transition, such as temperature coefficient of

refractive index and fundamental absorption edge. Furthermore, because the layers of Pb1�xGexTe

Figure 10. A comparison of the hardness and Young’s modulus of the layers evaporated from ingots with three Ge

concentrations x, 0.10, 0.17, and 0.22, to those of PbTe: (a) the hardness and (b) the Young’s modulus (ref. [46], reuse

permission obtained from Springer).
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have superior mechanical properties, such as the hardness and Young’s modulus, to those of

PbTe, an infrared thin-film interference filters consisting of them will be robust enough to with-

stand the damage originated from standard wafer dicing processing. As a consequence, the

integration of the standard semiconductor process into the mass-production of infrared thin-film

interference filters can be also realized.

In addition, one main challenge that needs to be addressed is the toxicity of lead and tellurium.

In particular, some issues are concerned regarding the massive use of them in technology due

to the toxicity, high costs, and scarcity. In fact, as far as an infrared thin-film interference filter is

concerned, the low-index materials, like ZnSe or ZnS, are chosen as an outermost layer so that

the layers of PbTe or Pb1�xGexTe are extremely well encapsulated between two adjacent layers

of ZnSe or ZnS, followed by careful edge sealing, in order to reduce the hazards of Pb and Te

exposure. Furthermore, at the end of the module lifetime, it is important to ensure that all

materials be recycled, as already happens for all of the products of infrared thin-film interfer-

ence filters. However, it would be desirable to find alternatives which retain the unique optical

properties of PbTe and Pb1�xGexTe. Currently, an investigation is in progress in Shanghai

Institute of Technical Physics, Chinese Academy of Sciences to seek an environmentally-

friendly, cost-efficient alternative to PbTe-based infrared high-index coating materials.
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