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Abstract

The current trend in mechanical engineering is to design mechanical systems with
higher stability, reliability, availability and operability. In order to meet the requirement
of high reliability for a machine, it is of great importance for designers to seek the weak
links in the system and learn the state of the key subsystems, carrying out the remedial
measures when necessary. Hence, behavior modeling and failure analysis are the two
aspects seriously concerned in the reliability evaluation in mechanical systems. This
chapter will introduce new methodologies that use the fuzzy reasoning Petri net (FRPN)
models to evaluate the reliability of mechanical systems in reliability prediction, reli-
ability apportionment and reliability analysis. Cases are proposed by analyzing a space-
craft solar array system using the proposed method. Results indicate that the Petri nets
models can contribute to a higher accuracy in reliability evaluation for mechanical
systems.

Keywords: reliability evaluation, mechanical system, Petri nets

1. Introduction

Some mechanical systems experience complicated environment which may continuously

influence the reliability and availability. For instance, the spacecraft solar arrays are one of the

most vital links to satellite mission success because providing reliable power over the antici-

pated mission life is critical to all satellites [1–3]. Although the faults have been reduced in the

last few years by some measures, it still affects the longevity of the satellite severely, and faults

of mechanical system occupy a large proportion of all the anomalies [3]. As a result, it is

necessary for mechanical systems to evaluate reliability in different stages, including conceptual

design of mechanical system, initial design and system improvement. The tasks of reliability

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



evaluation in these stages are defined as reliability prediction, reliability apportionment and

reliability analysis, respectively. Many methodologies such as reliability block diagram (RBD),

failure mode effect analysis (FMEA) and fault tree analysis (FTA) are widely used in reliability

evaluation for electronic systems [4–6]. Recently, a number of papers reported the methodolo-

gies that use these models to evaluate reliability of the mechanical systems [7–9]. However,

there still has some obstacles needed to be overcome for reliability evaluation of mechanical

systems. Generally, three tasks should be accomplished, including reliability prediction, reli-

ability apportionment and reliability analysis. We summarize the defects of previous research

from the three aspects mentioned above.

For reliability prediction, there are currently four main ways of reliability prediction for

mechanical systems [10–12], including the similar product method (SPM), correction coeffi-

cient method (CCM), analysis of physics reliability method (APR) and parts count reliability

prediction (PCRP). However, in the phase of conceptual design stage for one complex mechan-

ical system, there has no enough experimental data or field record because the machine is not

physically built. Moreover, APR is based on the physical failure mechanism which cannot be

clearly identified in the conceptual design stage.

For reliability apportionment, there are two important issues needed to be addressed, i.e. how

to describe the relationship among the different components and how to overcome data

deficiency problem in the early stage of design [13–16]. It is usually hard to describe the factors

of one mechanical system by the binary logic because the state cannot be simply classified into

function or failure. Further, since the lack of system reliability data is a commonly encountered

case in the initial stage of design, the reliability apportionment merely based on mathematics

may not be feasible.

For reliability analysis, the FTA model has been widely employed as a powerful technique to

evaluate the safety and reliability of complex systems by many scholars [17–19]. However, FTA

has some limitations in reliability analysis. Firstly, in FTA, the probabilities of basic events

must be known before analysis, but the designers can hardly obtain the probability of each

fault because the conventional reliability test of the solar array mechanical system is difficult to

carry out [19]. Secondly, it is not easy for FTA to conduct further quantitative analysis auto-

matically due to the lack of effective means of mathematical expression. Thirdly, FTA cannot

find the weak links of the system precisely, describe the propagation of fault and represent the

characteristics of the system before and after improvement. In the literature, fuzzy reasoning is

an effective method to solve the above problems [20].

The Petri net is one of the mathematical modeling approaches for the description of distributed

systems, which consists of places, transitions, and directed arcs [21–23]. Many extensions to

the Petri nets have been successfully applied in analyzing reliability of mechanical systems

[24]. The fuzzy reasoning Petri net is a mathematical and graphical combined tool that can

build a complex system with a variety of logical connections by using fuzzy reasoning, which

may fit for building the reliability model for mechanical systems and evaluating reliability of

them [20]. As a result, the primary objective of this chapter is to introduce the FRPN based

models to evaluate the reliability of mechanical systems, including reliability prediction,
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reliability apportionment and reliability analysis. Some cases are included to illustrate the

effectiveness of the methods.

2. Fuzzy reasoning Petri net

A great volume of literature combines fuzzy reasoning and Petri net to accomplish the fault

diagnosis and reliability analysis [25–27]. Gao presented an FRPN model and proposed a

fuzzy reasoning algorithm based on matrix equation expression [19]. An FRPN model can be

defined as an 8-tuple model instead of the basic 5-tuple Petri net model [19].

1. Places, namely, a set of propositions,

P ¼ p1; p2…pn
� �

, 1� n; (1)

2. Transitions,

R ¼ r1; r2…rmf g, 1�m; (2)

3. Directed arcs propositions to rules,

I : P� R ! 0; 1f g, n�m (3)

4. Directed arcs from rules to propositions,

O : P� R ! 0; 1f g, n�m (4)

5. Complementary arcs from positions to rules,

H : P� R ! 0; 1f g, n�m (5)

6. Truth degree vector:

θ ¼ θ1;θ2;⋯θnð ÞT ,θi ∈ 0; 1½ �, n� 1 (6)

7. Marking vector:

γ : P ! 0; 1f g,γ ¼ γ1; γ2…γn

� �T
, n� 1 (7)

8. Confidence of

rj : C ¼ diag c1; c2…c25f g, 1�m: (8)
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On the basis of algorithm provided by Gao [19], the simulation can be operated automatically.

The following are the main rules:

1. If one transition is fired, the token will be sent to the upper place.

2. If there are many places to one transition like AND gate in FTA model, the upper truth

value will be the minimum; if there are many places to many transitions like OR gate in

FTA model, the upper truth value will be the maximum.

3. The vector γ ¼ γ1; γ2…γi⋯γn

� �T
, n� 1 shows the propagation of the faults in model. If the

element γi ¼ 1, the place pi will get the token.

4. The truth degree vector θ ¼ θ1;θ2;⋯θnð ÞT shows the fuzzy possibility of the faults.

The PRPN model takes advantage of the following maximum algebra

1. ⊕ : A⊕B ¼ D, where A, B and D are all m� n dimensional matrices, such that

dij ¼ max aij; bij
� �

(9)

2. ⊗ : A⊗B ¼ D, where A, B and D are m� p, p� n and m� n-dimensional matrices

respectively, such that

dij ¼ max
1 ≤ k ≤ p

aik � bkj
� �

(10)

The firing and control vectors are stated as follows [19]:

μk
m�1 ¼ 1m�1 � I þHð ÞT ⊗γk

r
k
m�1 ¼ 1m�1 � IT ⊗ γk

⊕θ
k

� �� �

⊕ HT
⊗ γk

⊕θk
� �� �

8

<

:

(11)

in which

θ
k
¼ 1m�1 � θk

γk ¼ 1m�1 � γk

(

(12)

The marking and truth degree vectors can be obtained by

γkþ1 ¼ γk ⊕ O⊗μ
� 	

θkþ1 ¼ θk
⊕ O � Cð Þ⊗ r½ �

(

(13)

which reflects the status of the components in the mechanical system. The FRPN model is

suitable to describe the status transition in a mechanical system because

1. The FRPN model is constructed by the places and logical connections which match the

properties of mechanical systems with multiple components.
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2. The FRPN model can describe the fault propagation in mechanical system by fuzzy

reasoning, which can describe the properties of mechanical systems accurately.

3. The FRPN model is based on an iteration algorithm, so the status transition can be easily

tracked, which may be useful for examining the fault propagation and fault severity in the

system.

3. Reliability evaluation by FRPN

For evaluating the reliability of a mechanical system, one should complete a series of work

including reliability prediction in the stage of conceptual design, reliability apportionment in

the stage of initial design, and reliability analysis in the stage of system improvement. The

following subsections will illustrate the method of how to evaluate reliability by FRPNmodels.

3.1. Reliability prediction by FRPN

3.1.1. Method

Reliability prediction acts when a product is in the stage of conceptual design. Here we

introduce a method of reliability prediction of mechanical systems. This method includes the

following steps (Figure 1). First, we will build an FRPN model of the mechanical system by its

working principle and the logical connections among the components. Second, we get three

key values which characterize quantity, importance and quality of the components in the

mechanical system. Third, we will arrive at the reliability prediction result by parts count

reliability prediction (PCRP). Finally, the reliability prediction formula of mechanical system

denotes to

Figure 1. Main process of reliability prediction.

Reliability Evaluation for Mechanical Systems by Petri Nets
http://dx.doi.org/10.5772/intechopen.79624

61



λp ¼

XT

i¼1

Ni � λGiπQi (14)

where λp is the final predicted failure rate, λGi and πQi are the indexes which indicate impor-

tance and quality of the components [28].

3.1.2. Case study

We take the deployable solar array used in spacecraft as an example. The running process of a

typical deployable solar array is shown in Figure 2, which is widely used for power supply in

the spacecraft nowadays. In general, the entire running process includes three stages, i.e. the

deployable solar array is first folded, then deployed in the orbit and finally oriented to the sun

to generate power for satellite.

In general, the mechanical system of the solar array consists of seven kinds of mechanisms

[29–31], i.e. the hold-down and release mechanism, the solar panel, the driving mechanism, the

deployable mechanism, the locking mechanism, the synchronization mechanism, and the

orientation mechanism, as shown in Figure 3. Torsion spring is often chosen to drive the solar

array, the closed cable loop (CCL) is used as the synchronization mechanism, and the stepping

motor or servo motor is carried to orient to the sun. The driving mechanism, the deployable

mechanism and the locking mechanism are always integrated into the hinge. Therefore the five

main mechanisms of the solar array include hold-down and release mechanism, the solar

panel, the hinge, the synchronization mechanism and the orientation mechanism.

We use R1 to R5 to represent the reliability of the five mechanisms, respectively. Then the

reliability of the mechanical system can be calculated as follows:

R ¼ R1R2R3R4R5 (15)

Figure 2. Operating principle of a deployable solar array.
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In the phase of conceptual design, designers should divide the reliability of the system into the

five main parts. The following section introduces a new method of reliability apportionment

which focuses on how to get the predicted values of Ri i ¼ 1; 2; 3; 4; 5ð Þ to meet the requirement

of the design standard. We build an FRPN model for the mechanical system of the solar array

(Figure 4). Table 1 shows the markers and events of FRPN model [32, 33].

By the method shown in Figure 1, we can measure the complexity of the ith place (CP) as a

number of Ni, the final truth degree of the ith place (FTD) as λGi, and the environmental factor

Figure 4. The FRPN model of the solar array for reliability prediction.

Figure 3. Mechanisms in a spacecraft solar array.
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(EF) of the ith place as πQi. Some details can be checked in [32]. We collected the actual reliability

data (lifetime of mechanical systems) of the solar arrays in a group of satellites from 1950s to 2000s

provided by [34]. The results show that all of the predicted reliability lies in the interval of the

operation data, which demonstrates the correctness of FRPN-based model for reliability predic-

tion. Figure 5 validates the predicted reliability by using the four selected time: 0.025 � 106 h,

0.05 � 106 h, 0.075 � 106 h and 0.1 � 106 h. Some more details can be checked in [34].

3.2. Reliability apportionment by FRPN

3.2.1. Method

After reliability prediction in the conceptual design phase, the engineer should start reliability

apportionment that acts when a product is in the stage of initial design. The conventional

Marker Event Truth

degree

Marker Event Truth

degree

P1 Harsh thermal environment in

space

0.9 P16 Fault of the bearing in the reducer 0.4

P2 Vacuum and micro-gravity

environment in space

0.6 P17 Fault of the electronic arcing of the hold-

down and release mechanism

0.7

P3 Fault of the grease used in

hinges between panels

0.4 P18 Fault of the cutter of the hold-down and

release mechanism

0.7

P4 Impact caused by particles in

space

0.7 P19 Fault of the driving mechanism _

P5 Fault of the brass gasket 0.5 P20 Fault of the deployable mechanism _

P6 Fault of the main driving torsion

spring

0.6 P21 Fault of the locking mechanism _

P7 Fault of the reserved driving

torsion spring

0.6 P22 Fault of the steel wire 0.7

P8 Fault of the driving pin in the

hinge

_ P23 Fault of the stepping motor _

P9 Fault of the side wall of the

hinge

_ P24 Fault of the transmission system _

P10 Fault of the main locking spring 0.8 P25 Fault of the hold-down and release

mechanism

_

P11 Fault of the reserved locking

spring

0.5 P26 Fault of the solar panels _

P12 Fault of the locking pin of the

hinge

0.5 P27 Fault of the hinges _

P13 Fault in the mechanical part of

the stepping motor

0.3 P28 Fault of the synchronization mechanism _

P14 Fault in the electronic part of the

stepping motor

0.2 P29 Fault of the orientation mechanism _

P15 Fault of the gear in the reducer _ P30 Fault of the mechanical system of the solar

array

_

Table 1. Markers and events of FRPN model for reliability prediction.
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reliability apportionment approaches including equal distribution method, Alins distribution

method and algebra distribution method are widely used in the early stage of the reliability

design [35, 36]. However, these methods have some limitations. It is obvious that dividing the

system reliability into those of the subsystems equally may ignore the diversity of the compo-

nents. Although the Alins distribution method and the algebra distribution method involve

the importance or complexity of the different units, they are heavily dependent on the existing

data and engineering experience which are scare in the early stage of the reliability design.

Here we propose an FRPN-based method for reliability apportionment to solve the problems

discussed above. This method includes the following steps (Figure 6):

Figure 6. Procedures for reliability apportionment by FRPN. The FRPN model is used in the first and second steps and

the following two steps use the fuzzy comprehensive evaluation.

Figure 5. Comparison between the predicted reliability and real reliability at selected phases.
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1. Decompose the mechanical system;

2. Build the FRPN model of the mechanical system;

3. Analyze the three aspects including the complexity of one component during propagation

of the faults, the importance of one component and the working environment;

4. Fuzzy comprehensive evaluation;

5. Reliability apportionment.

Figure 7. The FRPN model of the solar array for reliability apportionment.

Figure 8. The reliability apportionment of the five key components of solar array. The reliability system is equal to 0.9,

0.99 and 0.999 respectively.
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3.2.2. Case study

We take the spacecraft solar array as an example to conduct the reliability apportionment by

using the FRPN model (Figure 3). According to the operational principle of array mechanical

systems of a solar array, we build an FRPN model for reliability apportionment of spacecraft

solar array. The graphical representation of this model is shown in Figure 7. Table 2 shows the

markers and events of the FRPN model [32].

From Figure 7, the FRPN model of solar array includes 13 bottom places- P1, P2, P3, P4, P7, P8,

P9, P10, P11, P12, P18, P19 and P20. And P21, P22, P23, P24, and P25 represent the subsystems

(Table 2). The final reliability apportionment results are illustrated in Figure 8 under the

system reliability of 0.9, 0.99 and 0.999. In this figure, RS represents the reliability of the system

and Ri i ¼ 21; 22; 23; 24; 25ð Þ expresses the reliability of the five key subsystems. The reliability

apportionments are shown in Figure 8. By using the FRPN based model, the system reliability

can be allocated considering the environmental factors and the intrinsic connection in the

mechanical system itself [33].

3.3. Reliability analysis by FRPN

3.3.1. Method

Reliability analysis happens in the stage that the mechanical system has been built physically. By

using the FRPN model, we can analyze the reliability of the system with the following steps:

Marker Event Truth

degree

Marker Event Truth

degree

P1 Grease used in hinges between panels 0.4 P14 Particles in space —

P2 Brass gasket 0.5 P15 Driving mechanism —

P3 Main deriving torsion spring 0.6 P16 Deployable mechanism —

P4 Reserved driving torsion spring 0.6 P17 Locking mechanism —

P5 Driving pin in the hinge — P18 Steel wire 0.7

P6 Side wall of the hinge — P19 Stepping motor 0.2

P7 Main locking spring 0.8 P20 Transmission system 0.6

P8 Reserved locking spring 0.5 P21 Hold-down and release

mechanism

—

P9 Locking pin of the hinge 0.5 P22 Solar panels —

P10 Electronic arcing of the hold-down and

release mechanism

0.7 P23 Hinges —

P11 Cutter of the of the hold-down and release

mechanism

0.7 P24 Synchronization mechanism —

P12 Harsh thermal environment in space 0.9 P25 Orientation mechanism —

P13 Vacuum and micro-gravity environment in

space

— P26 Mechanical system of the

solar array

—

Table 2. Markers and events of FRPN model for reliability apportionment.
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1. Decompose the mechanical system.

2. Build the FRPN model of the mechanical system.

3. Get the truth degrees of the bottom places according to the characteristics of the faults in

the system, operation data and engineering experience

4. Calculate the truth degree of top place.

5. Use the cosine matching function (CMF) to analyze reliability of the system.

3.3.2. Case study

We also take the spacecraft solar array as a case for reliability analysis. Figure 9 shows the FRPN

model of the spacecraft solar array for reliability analysis and Table 3 represents markers and

events [37].

Figure 9. The FRPN model of solar array for reliability analysis.

Marker Event Marker Event

P24 Failure of the solar array system P1 Harsh thermal environment in space

P19 Fault of the unlock-mechanism P2 Fault of the grease used in hinges between panels

P20 Faults during deployment process P3 Insufficient torque of the main torsion spring

P21 Faults during locking process P4 Insufficient torque of the reserved torsion spring

P22 Fault of orientation to the sun P5 Insufficient preload of the cable

P23 Other faults of mechanical system P6 Poor thermal characteristic of the cable

P10 Deadlocking in hinges P13 Inappropriate driving torque of the locking torsion

spring

P11 Insufficient preload of the torsion spring P14 Fault of the motor
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Define θi as the truth degree of the bottom place pi, θi ∈ 0; 1½ �. A higher value indicates that the

possibility of the event is higher, which means the fault occurs much easier. Table 4 demonstrates

the ranks, occurrence, and truth degrees of the bottom places. According to the characteristics of

Rank I II III IV V VI VII

Occurrence Very low Low Fairly low Moderate Fairly high High Very high

Truth degree 0.1 0.3 0.4 0.5 0.6 0.8 1.0

Table 4. Solar array classification ranks of the fault model.

Marker of bottom places P1 P2 P3 P4 P5 P6 P7

Rank VII III V V VI V VI

Truth degree 1.0 0.4 0.6 0.4 0.8 0.6 0.8

Marker of bottom places P8 P9 P13 P14 P15 P16 P17

Rank V V V II IV VI VI

Truth degree 0.4 0.6 0.8 0.3 0.5 0.8 0.8

Table 5. Fault rank of the bottom places and their truth degree.

Marker Event Marker Event

P12 Fault of CCL P15 Fault of the transmission unit

P18 Vibration of panels induced by thermal

deformation

P16 Impact caused by particles in space

P8 Electronic arcing is out of service P17 Vibration caused by clearances of hinges

P9 Fault of the cutters P7 Bad thermal characteristic of honeycomb materials

Table 3. Markers and events of FRPN for reliability analysis.

Bottom

place

Improvement measures

P1 The thermal environment in space is the crucial factor of the failure. Some approaches to improve the

reliability of the system. (1) Investigate the temperature in space precisely where the solar array works and

sum the rules; (2) use new material that is fit for the change of the temperature in space; (3) research the

temperature impact on the structure, and optimize the structure of the crucial part of the system

P13 (1) Test the torsion spring on the ground, then find the torque-angle curve to know the characteristics of the

torsion spring more deeply; (2) test the performance of the whole system, using torsion springs with

different characters, like stiffness

P16 That happens occasionally. There is no effective measure to avoid particles in space, maybe only two ways:

(1) make the structure stronger; (2) make the system more agile to detect the vibration caused by the impact

of particles, and make adjustment with expedition

Table 6. Improvement measures.
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the faults in the system, operation data and engineering experience [9]. Table 5 represents the

fault rank of the bottom places and their truth degrees.

We can get the results of reliability analysis by using the method in Section 3.3.1. According to

the results, we can evaluate the importance of bottom places in the FRPN model. Some details

can be checked in [37]. To improve the system reliability, we should propose some approaches

to enhance the weak links. Table 6 shows some improvement measures for the mechanical

system of a spacecraft solar array.

4. Conclusion

With the ever-increased high requirement of reliability and safety for critical equipment,

accurately performing the reliability evaluation of the mechanical systems, such as solar

arrays, gains much attention in recent years. The proposed method for reliability evaluation

by FRPN can be used to solve the problem on how to describe the relationship among the

different components and how to overcome data deficiency. The FRPN based models may

open up a new way for evaluating complex mechanical systems with multi-state operation in

variable working environment.

Acknowledgements

This work was supported by the National Science Foundation of China under Contract No.

50875149, High Technology Project under Contract No. 2009AA04Z401, and Research Project

of The State Key Laboratory of Tribology under Contract No. SKLT11B03.

Conflict of interest

There has no conflict of interests.

Author details

Jianing Wu1,2* and Shaoze Yan1

*Address all correspondence to: jianing.wu@me.gatech.edu

1 Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology,

Department of Mechanical Engineering, Tsinghua University, Beijing, China

2 School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA

Petri Nets in Science and Engineering70



References

[1] Henley EJ, Kumamoto H. Reliability Engineering and Risk Assessment. Vol. 568. Engle-

wood Cliffs, NJ: Prentice-Hall; 1981

[2] Brandhorst HW Jr, Rodiek JA. Space solar array reliability: A study and recommenda-

tions. Acta Astronautica. 2008;63(11–12):1233-1238. DOI: 10.1016/j.actaastro.2008.05.010

[3] Harland DM, Lorenz RD. Space Systems Failures. 1st ed. Chichester: Springer-Praxis;

2005. DOI: 10.1007/978-0-387-27961-9

[4] Huang W, Askin RG. Reliability analysis of electronic devices with multiple competing

failure modes involving performance aging degradation. Quality and Reliability Engi-

neering International. 2003;19(3):241-254. DOI: 10.1002/qre.524

[5] Arifujjaman M, Iqbal MT, Quaicoe JE. Reliability analysis of grid connected small wind

turbine power electronics. Applied Energy. 2009;86(9):1617-1623. DOI: 10.1016/j.apenergy.

2009.01.009

[6] Foucher B, Boullie J, Meslet B, Das D. A review of reliability prediction methods for

electronic devices. Microelectronics Reliability. 2002;42(8):1155-1162. DOI: 10.1016/S0026-

2714(02)00087-2

[7] RausandM,HφylandA. System Reliability Theory:Models, Statistical Methods, andAppli-

cations. 2nd ed. Hoboken: JohnWiley & Sons, Inc.; 2004. DOI: 10.1198/tech.2004.s242

[8] Bertsche B. Reliability in Automotive and Mechanical Engineering: Determination of

Component and System Reliability. Hoboken, New Jersey: Springer Science & Business

Media; 2008

[9] Tang J. Mechanical system reliability analysis using a combination of graph theory and

Boolean function. Reliability Engineering & System Safety. 2001;72(1):21-30

[10] Zeng SK, Zhao TD, Zhang JG, et al. Design and Analysis of System Reliability. Beijing:

Beijing University of Aeronautics and Astronautics Press; 2001. (in Chinese)

[11] Son YK. Reliability prediction of engineering systems with competing failure modes due

to component degradation. Journal of Mechanical Science and Technology. 2010;25:

1717-1725

[12] Hu Y, Zhu MR. Handbook of Reliability Design. Beijing: China Zhijian Publishing House;

2007. (in Chinese)

[13] Huang HZ, Qu J, Zuo MJ. Genetic-algorithm-based optimal apportionment of reliability

and redundancy under multiple objectives. IIE Transactions. 2009;41(4):287-298. DOI:

10.1080/07408170802322994

[14] James KB, Donald HG. Reliability growth apportionment. IEEE Transactions on Reliabil-

ity. 1977;26(4):242-244. DOI: 10.1109/TR.1977.5220138

Reliability Evaluation for Mechanical Systems by Petri Nets
http://dx.doi.org/10.5772/intechopen.79624

71



[15] Park KS. Fuzzy apportionment of system reliability. IEEE Transactions on Reliability. 1987;
36(1):129-132. DOI: 10.1109/TR.1987.5222317

[16] Dhingra AK. Optimal apportionment of reliability and redundancy in series systems
under multiple objectives. IEEE Transactions on Reliability. 1992;41(4):576-582. DOI:
10.1109/24.249589

[17] Mentes A, Helvacioglu IH. An application of fuzzy fault tree analysis for spread mooring
systems. Ocean Engineering. 2011;38:285-294. DOI: 10.1016/j.oceaneng.2010.11.003

[18] Lee WS, Grosh DL, Tillman FA, Lie CH. Fault tree analysis, methods, and applications: A
review. IEEE Transactions on Reliability. 1985;34(3):194-203. DOI: 10.1109/TR.1985.5222114

[19] de Queiroz Souza R, Álvares AJ. FMEA and FTA analysis for application of the reliability
centered maintenance methodology: Case study on hydraulic turbines. In: ABCM Sym-
posium Series in Mechatronics; Vol. 3; 2008. pp. 803-812

[20] Gao M, Zhou M, Huang X, Wu Z. Fuzzy reasoning Petri nets. IEEE Transactions on
Systems, Man, and Cybernetics - Part A: Systems and Humans. 2003;33(3):314-324. DOI:
10.1109/TSMCA.2002.804362

[21] Murata T. Petri nets: Properties, analysis and applications. Proceedings of the IEEE. 1989;
77(4):541-580. DOI: 10.1109/5.24143

[22] Yuan CY. Petri Nets. 1st ed. Nanjing: Press of Southeastern University; 1989. (in Chinese)

[23] Pedrycz W, Gomide F. A generalized fuzzy Petri net model. IEEE Transactions on Fuzzy
Systems. 1994;2(4):295-301. DOI: 10.1109/91.324809

[24] UzamM. The use of the Petri net reduction approach for an optimal deadlock prevention
policy for flexible manufacturing systems. International Journal of AdvancedManufactur-
ing Technology. 2004;23(3–4):204-219. DOI: 10.1007/s00170-002-1526-5

[25] Zhao JH, Liu ZH, DaoMT. Reliability optimization usingmultiobjective ant colony system
approaches. Reliability Engineering and System Safety. 2007;92(1):109-120. DOI: 10.1016/j.
ress.2005.12.001

[26] Leveson NG, Stolzy JL. Safety analysis using Petri nets. IEEE Transactions on Software
Engineering. 1987;13(3):386-397. DOI: 10.1109/TSE.1987.233170

[27] Yang BS, Jeong SK, Oh YM, Tan ACC. Case-based reasoning system with Petri nets for
induction motor fault diagnosis. Expert Systems with Applications. 2004;27(2):301-311.
DOI: 10.1016/j.eswa.2004.02.004

[28] Constantinescu C. Trends and challenges in VLSI circuit reliability. IEEEMicro. 2003;23(4):
14-19. DOI: 10.1109/MM.2003.1225959

[29] Wallrapp O, Wiedemann S. Simulation of deployment of a flexible solar array. Multibody
System Dynamics. 2002;7(1):101-125. DOI: 10.1023/A:1015295720991

Petri Nets in Science and Engineering72



[30] Rauschenbach HS. Solar Cell Array Design Handbook: The Principles and Technology of

Photovoltaic Energy Conversion. 1st ed. Beijing: China Astronautic Publishing House;

1994. (in Chinese)

[31] Fragnito M, Pastena M. Design of smart microsatellite deployable solar wings. Acta

Astronautica. 2000;46(2–6):335-344. DOI: 10.1016/S0094-5765(99)00228-3

[32] Wu J, Yan S. An approach to system reliability prediction for mechanical equipment using

fuzzy reasoning Petri net. Proceedings of the Institution of Mechanical Engineers, Part O:

Journal of Risk and Reliability. 2014;228(1):39-51. DOI: 10.1177/1748006X13495130

[33] Wu J, Yan S, Xie L, Gao P. Reliability apportionment approach for spacecraft solar array

using fuzzy reasoning Petri net and fuzzy comprehensive evaluation. Acta Astronautica.

2012;76:136-144. DOI: 10.1016/j.actaastro.2012.02.023

[34] Castet JF, Saleh JH. Satellite and satellite subsystems reliability: Statistical data analysis

and modeling. Reliability Engineering & System Safety. 2009;94(11):1718-1728. DOI:

10.1016/j.ress.2009.05.004

[35] Rome Laboratory. Reliability Prediction of Electronic Equipment. 1991. Available from:

www.barringer1.com/mil_files/MIL-HDBK-217RevF.pdf [Accessed: October 24, 2012]

[36] USAF Rome Air Development Center. Non-Electronics Parts Reliability Data (NPRD).

1995. Available from: www.theriac.org/riacapps/search/?category=all%20products&key-

word=nprd [Accessed: October 24, 2012]

[37] Wu J, Yan S, Xie L. Reliability analysis method of a solar array by using fault tree analysis

and fuzzy reasoning Petri net. Acta Astronautica. 2011;69(11–12):960-968. DOI: 10.1016/j.

actaastro.2011.07.012

Reliability Evaluation for Mechanical Systems by Petri Nets
http://dx.doi.org/10.5772/intechopen.79624

73




