
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Chapter 5

Virtual Simulation Platform for Training Semi-
Autonomous Robotic Vehicles’ Operators

Cheng Siong Chin, Xionghu Zhong, Rongxin Cui,
Chenguang Yang and Mohan Venkateshkumar

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.79600

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Cheng Siong Chin, Xionghu Zhong, Rongxin Cui,
Chenguang Yang and Mohan Venkateshkumar

Additional information is available at the end of the chapter

Abstract

This chapter covers the development of a virtual simulation platform for training a semi-
autonomous robotic vehicle (SARV) operator via an open-source game engine called
Unity3D. The SARV such as remotely operated vehicles (ROVs) is becoming increasingly
popular in the maritime industry for risky jobs in inhospitable environments. The primary
element in carrying out underwater missions in a hostile environment lies within the skills
and experience of an ROV pilot. Training for ROV pilots is essential to prevent damage
to expensive field equipment during the real operations. The proposed simulator differs
from the existing simulators in the market is the use of modern game engine software to
develop a “serious game” for ROV pilot trainee at much lower cost and shorter time-to-
market. The results revealed that proposed virtual simulator can develop a high-fidelity
virtual reality training for the underwater operation guided by classification society.

Keywords: autonomous robotic vehicle, Unity3D, remotely operated vehicle, simulation

1. Introduction

In recent years, the advancement of technology has dramatically improved the functions of

remotely operate vehicle (ROV) [1–3] and autonomous underwater vehicle (AUV) [4] to handle

the growing spectrum of underwater tasks [5]. Artificial Intelligence is becoming an increas-

ingly common sight in automating machines to carry functions without the need for an actual

operator. It will continue to take on a more observatory role [6–8]. Nowadays, ROVs and AUVs

are commonly used in the maritime industry to carry out underwater tasks. These machines

possess the capabilities to carry heavier loads to stay in deeper underwater for a longer

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

duration than the human divers. These machines are operated from shore by a pilot making

them very profitable and safer in the maritime industry. The challenge facing these ROV pilots
is the ability to run the ROV with minimal information from the ROV feedback systems. As a

result, the ROV pilot needs to be sufficiently skilled in maneuvering the vehicle in underwater.

With modern day technology, training simulators are developed to better equip ROV pilots
with the necessary skills. Currently, the majority of ROV simulators available in the mar-

ket are owned and distributed by companies that build ROVs. It is much cheaper to hone a

pilot’s competencies on a simulator than on the actual ROV as it creates room for the pilot to

improve. It would better equip the pilots to deal with different underwater scenarios. Many
ROV simulators are equipped with multiple scenes and a wide array of simulated sensors and
equipment on the ROV.

This paper aims to develop a virtual simulation where ROV pilots can gain experience via

a virtual environment using an open-source game development software to produce highly

graphical visuals simulations for training purpose. The Unity3D game engine [8–10] was

identified as a suitable development platform for the project due to its high graphics capabili-
ties, built-in physics engine, well-documented manual, large online community and relatively

mild learning curve in comparison with other game engines like the Unreal Engine [11] and

CryEngine [12]. The details of designing a low-cost pilot simulator using a game engine are

unique to this chapter.

The chapter is organized as follows. Section 2 presents a brief methodology for the train-

ing simulator. Section 3 discusses the virtual simulation development and followed by a

conclusion.

2. Comparison of game engines

Game engines have the graphics and physics engines to build better and more realistic simu-

lation. In this section, three commonly used open-source game engines are compared. For

example, the commonly used software for game development is namely: Unity3D, Unreal 4

Engine, and CryEngine.

There exists few open source game engine software that provides excellent features and devel-

oping tools. Some of the common characters of a game engine are rendering, physics (2D and

3D rigid body), scripting, audio and animation. Depending on the requirements, these game
engine software use traditional programming method that requires basic coding to high-level
sandbox engine that provides “drag and drops” interface. The main objective is to simulate

an ROV operation using high-level sandbox game engine for the ease of usability. The options

are more toward the sandbox engine and the more common software for game development

such as Unity3D, Unreal Engine and CryEngine. Although the software provides developers

with a “drag and drop” interface, the features of each software somehow differ from one
another. A brief comparison of various game engines is given below.

Unity3D was first released in 2005. It uses mostly JavaScript or C# or managed code tool chain
that makes it simpler to support and develop new workflows and tools. It has large supporting
communities that include the asset store for downloading different game characters, particle

Autonomous Vehicles90

and sound effects. Due to its popularity, there exists a good educational material and large active
user. However, the free version of Unity does not have Profiler that allows the programmer to
optimize the game and check the time spent on rendering, and animation during the game.

Unity3D supports around 21 platforms (PC, Web, Console, Mobile, etc.) as compared to Unreal
Engine 4 supporting only around six platforms. Additionally, the 3D models in Unity3D can

merely import as game assets into the software thus improving the efficiency of development.

Unreal Engine was first released in 1998. It provides developers with powerful tools such as
access to full source code, simulates and immerse view, persona animation, and cascade visual

effects. It is used in a custom workstation with better and optimized performance that implies
higher cost and complexity. Unreal has much more extensive download than Unity3D as it

requires visual studio for its programming environment and accepts only C++ development
language. Unreal engine can produce high-quality graphics with advanced dynamic lightings
making it a plus point for the game engine. However, the script used in Unreal Engine 4 can

only be written in C++, which can be a drawback for beginners. Similar to Unity3D, Unreal
Engine 4 has an asset store to download different game assets. However, the user community
is not as large as Unity3D.

CryEngine started in 2002. It is another modern game engine that provides superb features

that will create great realistic gameplay. With its pixel accurate displacement mapping, it

allows developers to craft and modify a game as precise as possible. Its excellent graphics

capabilities exceed those in Unity3D and Unreal Engine. However, a drawback from this

game engine is that it requires a slightly higher learning curve before one can use the game
engine efficiently and it may be harder for those with no game development background.

It is notable that these three game engines provide great features for the most development

process. It can be quite subjective in the selection decision. Depending on the development
objectives and requirements, one may pick Unity3D for its capabilities in developing 2D and
3D games, Unreal Engine for its powerful tools or CryEngine for its extreme graphics capa-

bilities. Fortunately, these game engines are freely available for education and research except

for Unity3D which requires Pro version for advanced features. On the other hand, the Unreal
Engine and CryEngine require a slightly higher learning curve and posing difficulty for most
beginners. Based on the following guidelines below, the free version of Unity3D that contains

most of the functions will be used (at least for the beginning phase of the project) in develop-

ing a simulator for ROV pipeline tracking as it is easy to use, free for research purpose and

the presence of wide user community. It may not be the best choice for every programmer,

but during the development of the virtual reality simulator, there are no major problems

encountered, and hence the choice was good enough.

• Able to communicate with external hardware

• Ease to program and use graphical user interface for controlling interaction and animating

objects

• Able to process multimedia sensory data

• Free to use for education and research

• Able to hold multiple operating systems

• Able to support development with the strong developer community

Virtual Simulation Platform for Training Semi-Autonomous Robotic Vehicles’ Operators
http://dx.doi.org/10.5772/intechopen.79600

91

The basic functions of the Unity3D Interface such as creating GameObjects, basics scripts and

GameObjects for manipulation will be presented. The virtual environment and writing the

scripts for the ROV’s control system and manipulators will then follow. Assistance can be

sought through the Unity3D manual found online or via Unity3D’s online community and

forums. As shown in Figure 1, the basic steps to develop the simulator can be seen. The simu-

lator designed must be able to facilitate training of an ROV pilot. The environment of a typical

pipeline inspection will be mimicked. After the leak is detected, the ROV will flash a bright
red light indicating danger. The pilot will take control of the ROV and press the shutdown

button of the BlowOut Preventer (BOP) to stop the leak and the flashing red light. After that,
the pilot can continue the control of the ROV to carry out the autonomous inspection tasks.

All controller inputs by the pilot are controlled via the joystick controller.

3. Virtual simulation development

Unity3D is a user-friendly off-the-shelf game development engine. The engine supports high
visual graphics and physics to produce realistic 2D and 3D worlds, with readily developed

assets available in the Unity3D Asset Store for users to download and import into their proj-

ects. A brief overall view of the software can be seen below.

3.1. Software interface

The Unity3D interface consists of several tabs and a toolbar (see Figure 2) are used to create

all subsystems in the virtual simulation. The games are developed in the scene tab where

GameObjects are added. These GameObjects are edited and programmed by combining

various components such as textures, mesh, materials and scripts to make the GameObject

behaves as required by the developer. As shown in Figure 3, the various components are

placed into GameObjects under the virtual environment to produce the desired outcome.

3.2. Scene and model development

The scene developed in Unity3D is modeled after a subsea production system placed on

the seabed 900 m below the surface. It consists of manifolds, pipelines, BOPs (BlowOut

Figure 1. Steps to develop ROV pilot simulator.

Autonomous Vehicles92

Preventer) and PLETs (Pipeline End Termination). A map of the simulated environment

is shown in Figure 4. The scene was developed using models found online and crafted

within Unity3D.

Figure 2. Unity3D interface.

Figure 3. GameObject with various components.

Figure 4. Map of simulated environment.

Virtual Simulation Platform for Training Semi-Autonomous Robotic Vehicles’ Operators
http://dx.doi.org/10.5772/intechopen.79600

93

The ROV used in the simulation was modeled using an actual ROV used in the industry to fulfill
requirement stated by the classification society DNV. It indicates that ROV models available in
the simulation should be similar to the ROV in real life. In this proposed simulator, the TRV-M is
a light work class ROV manufactured by Submersible Systems. The TRV-M in Figure 5 can dive

up to 1000 m deep that possesses the capacity to carry a payload up to 27 kg in any environments.

3.3. Autonomous operation

Automation is an area currently being developed in the maritime industry. The autonomous-

mode component was added to the ROV in the simulator. In the simulation, the ROV begins

in its autonomous inspection of the pipeline. It was achieved using a Unity3D function known

as pathfinding where the object automatically computes the shortest path and moves itself to
the desired point while avoiding the obstacles in the virtual environment. Using the pathfind-

ing algorithm, multiple waypoints were added along the path of the pipeline to guide the

ROV during the inspection.

3.4. Controller

To create a more realistic simulator, the control system for the ROV in the simulator should be

similar to the control system of the ROV. A joystick controller or keyboard is one of the com-

mon controllers used in the maritime industry. The joystick controller will require multiple
turning axes to accommodate all six degrees of motion similar to the movement of a vessel.

The simulated ROV is capable of moving in six degrees of motion that is heave, sway, surge,

yaw, pitch, and roll in Figure 6. As shown in Figure 7, the Logitech Extreme 3D Pro is used

as the joystick controller to control the ROV movements and functions in the virtual environ-

ment. The ROV’s controls are scripted and linked to the joystick via a Logitech Profiler. The
various buttons and corresponding axis on the joystick are shown in Table 1.

3.5. User interface

The user interface (UI) is widely used in many control systems. It is designed to simplify the

complicated tasks for the pilot to perform the functions. A well-designed UI can significantly
reduce the cognitive load on the end user by merely displaying parameters and having a few

buttons. Hence, it allows the user to control the system with focus on essential details [13]. The

Figure 5. TRV-M ROV.

Autonomous Vehicles94

Figure 6. Model of TRV-M ROV with four degrees of freedom used in virtual environment.

Figure 7. Logitech extreme 3D Pro joystick.

ROV function Control key

Keyboard Joystick

Move forward W Y-axis

Move backward S

Move left A X-axis

Move right D

Move down Z Button 11

Move up X Button 12

Yaw left Q Twist-axis

Yaw right E

Virtual Simulation Platform for Training Semi-Autonomous Robotic Vehicles’ Operators
http://dx.doi.org/10.5772/intechopen.79600

95

UI designed in this project was created using a GameObject called Canvas, in Unity3D. The

Canvas encompasses other objects within the User Interface (UI). Figure 8 shows the UI dis-

playing parameters such as latitude, longitude, depth, heading, speed, run time and small

main menu to allow the pilot to restart the practice session.

4. Simulation results with understanding on maritime standards

By the classification standards in the maritime industry, all virtual simulators are assigned
with a “Class” namely: Class A, B, C or Class S [14]. The class of a simulator is assigned based

on the requirements of the simulator on the checklist provided by the classification society.
The comparisons will be made with the standards proposed by DNV (Det Norske Veritas).

The comparisons are not meant to be exhaustive but should provide adequate information for
designing the virtual simulator.

ROV function Control key

Keyboard Joystick

Pitch up I POV-north

Pitch down K POV-south

Roll left J POV-west

Roll right L POV-east

Light F Button 9

Switch camera view C Trigger

Switch between modes R Button 3

Manipulator arms activate/deactivate Tab Button 2

Table 1. Player inputs for simulator.

Figure 8. User-interface parameters displayed.

Autonomous Vehicles96

From the results presented by the project, according to the standards of the classification
society DNV, it can be seen that there are some criteria that the proposed Unity3D simulator

could not meet. As seen in Table 2, items 1.1.19, 1.1.20 and 1.1.21 or any items related to the
instructor, these requirements were not met because of the simulator was developed for a
single purpose to train the ROV pilot in detecting a leak on a pipeline inspection. Therefore,

it did not take into account an instructor to test the competency of the ROV pilot. Another

observation in Table 3 on the behavioral realism for items 2.1.1, 2.1.2, 2.1.5, 2.1.7 and 2.1.8, the

class requirements were not fulfilled as the simulation does not encompass an underwater
current acting on the objects in the scene. Simulation of actual underwater currents will affect
the virtual objects and ROV to make the simulator more realistic. But one would require real
information or data to implement it. It was not performed in this chapter. In Table 4, items

3.1.2, 3.1.4, 3.1.6 and 3.1.8 under the operating environment require a basic version of turbid-

ity, sea state, underwater fog and camera in the virtual scene. However, some items were

included such as camera and underwater lighting in the scene as shown in Figure 9. Others

were not added due to the lack of actual specifications of these items.

Lastly, as seen in Table 5, casualty simulation was not met. The simulation did not have

casualty simulation for the ROV. It did not include other equipment malfunctions besides
the leakage that occurred in one of the pipelines (see Figure 10). In summary, the primary

simulator produced has shown that Unity3D possesses the good capability to develop a more

realistic virtual simulation for training purposes. Further developments of the simulator

were performed to meet these class requirements. For example, a pathfinding algorithm (see
Figure 11) was used to simulate the autonomous mode of the ROV.

In the virtual simulation, the pathfinding algorithm helps to build the autonomous mode feature
in the ROV. Several waypoints were placed in the scene to better guide the ROV along its inspec-

tion path. However, using this method, the ROV would pass through the terrain to reach its next

point. Few blocks were placed within the terrain to act as obstacles along the pathfinding. They
appeared invisible in the simulator as their mesh renders can be switched off. However, the
proposed guidance system would only be applicable if the simulated ROV carries out its autono-

mous functions at a fixed depth. A comprehensive way to create an autonomous guidance sys-

tem for the ROV was to use a NavMesh algorithm as implemented in Figure 11. Any scene can

easily be navigated by a GameObject with a NavMesh agent component. The NavMesh allows
the simulated ROV to detect the size and height of objects in the scene that cannot pass through.

The UI can be improved through the implementation of the User Interface where control buttons
can be placed on the screen to allow the pilot to toggle them easily. The buttons on the GUI will
serve to remind the pilot if a specific function is switched “on” or “off”. As shown in Figure 9, the

intended ROV GUI for the simulator with a button in the scene to toggle between the multiple
camera views and front light on the ROV was implemented. As mentioned, the simulation of

underwater currents will help the simulation to look more realistic for the pilot. With the physics

supported by Unity3D, the ROV in the simulation can be subjected to these forces and moments

caused by the underwater current. It will be implemented in the future works.

The simulation test results will focus on pipeline inspection tasks near to the seabed. The differ-

ent parts of developing the simulation are integrated together with a scenario set up where there

is a gas leakage in one of the jumpers in the top section of the subsea system. First, the ROV’s

Virtual Simulation Platform for Training Semi-Autonomous Robotic Vehicles’ Operators
http://dx.doi.org/10.5772/intechopen.79600

97

task was to identify the location of the leakage, and second, the ROV will need to deactivate the

whole system by pressing the switch on the subsea system. The data for the search operation

were exported and plotted into a graph, and a video of the simulation was recorded.

C1 physical realism

Item Requirement Fulfilled

1.1.1 Displays and control configurations should be organized similarly to an actual ROV console. No

ROV model

1.1.2 ROV models available in the simulation should be similar to the ROV in real life. Yes

1.1.3 An altimeter should be present to show the height of the ROV above objects. No

1.1.4 The ROV should have a minimum of one manipulator. The manipulator shall have a similar

outlook and behavior to that of it in real life.

Yes

Monitoring

1.1.5 The simulated control panel shall have a similar outlook and encompass the information

required by the pilot to operate the ROV.
Yes

1.1.6 Digital representations of the simulated ROVs thrust, lighting, depth and heading, date and

time.

Yes

1.1.7 The digital sonar shall encompass a display window for navigation purposes as well as

survey missions. It shall also provide detailed sonar images in consideration to the ROV’s

position and heading.

No

1.1.8 The tether to the ROV, if there is one, should be dynamic with a display showing the tension

and length of the tether.

No

1.1.9 Navigational information should encompass depth, altitude, speed and heading of the ROV. Yes

Control

1.1.10 Control over thrust of ROV, hence allowing the pilot complete control of thruster. Yes

1.1.11 Navigational control over the ROV’s movement should be similar to those used for actual

ROVs.

Yes

1.1.12 Individual manipulators should be manipulated via hardware controls. Yes

1.1.13 The pilot should be able to switch between the various camera views available. Yes

1.1.14 All panning and tilting units should be controllable by the pilot. No

1.1.15 The pilot should be given a control function to dim the appropriate lights. Yes

1.1.16 The pilot should be able to winch the tether fully at will. No

1.1.17 An active or passive motion compensator. No

1.1.18 A Launch and Recovery System (LRS) for Transportation Management System (TMS)
operations, facilitating the docking and release of the ROV.

No

Instructor station

1.1.19 A separate station with a 3D view should be implemented for the instructor. No

1.1.20 Underwater visibility should be controllable by the instructor. No

1.1.21 Underwater currents should be controllable by the instructor. No

Table 2. Classification standards for physical realism.

Autonomous Vehicles98

As seen in Figures 12 and 13, the ROV starts at position (0, −793, 0 m), which is at the center
of the subsea production layout. The ROV then rotates about its Y-axis in an anti-clockwise

direction shown in Figure 13, where the ROV’s heading is facing approximately 190° away
from its global coordinate before it starts moving in X and Z-direction again. As shown in

Figure 14, the ROV moves along at a constant depth of −793 m for the first 38 s before it
moves up as the vehicle is too close to the seabed (to avoid collision). In Figures 15 and 16,

the forward and lateral thrust (in N) produced by the ROV increases to reach the targeted

location, i.e., to maneuver to the desired position. The thrusts reduce once the gas leakage

C2 behavioral realism

Item Requirement Fulfilled

2.1.1 A rigid body with 6 DOF (Degree Of Freedom) should be present in the ROV and have the

ability resolve the various forces on objects within the simulation.

No

2.1.2 The simulated ROV should be able to resolve moments and forces acting on the ROV. No

2.1.3 Deployment of the ROV from a vessel which follows the ROV on its own should be included. No

2.1.4 Exercise areas, along with the various landmass, visuals, buoys tides, and depth data should

be available when required to attain the desired training outcome.
No

2.1.5 The simulation should encompass multiple scenarios in dynamic environments with complete

object interactions, using detailed dynamics, mechanisms and colliders.

No

2.1.6 The Sonar simulated and data attained from said simulated sonar should be similar to a sonar
commonly used in real life.

No

2.1.7 It should be possible to simulate the effects of heave on various mechanical parts. No

2.1.8 The ROV’s tether should be responsive to the simulated environment. No

Table 3. Classification standards for behavioral realism.

C3 operating environment

Item Requirement Fulfilled

Visuals

3.1.1 All visuals should have an engaging 3D environment with detail visuals. Yes

3.1.2 Underwater visibility should controllable. No

3.1.3 Lights should be adjustable by the pilot. Yes

3.1.4 Pilot should have control over cameras allowing him to zoom, adjust and focus. No

Environmental

3.1.5 It should be possible to control the surge and speed of currents. No

3.1.6 It should be possible to control sea state. No

3.1.7 Interaction with sea floor should be realistic within simulation, e.g. clouding as
a result of thrusters or suction.

No

3.1.8 Turbidity of the water should be controllable. No

Table 4. Classification standards for operating environment.

Virtual Simulation Platform for Training Semi-Autonomous Robotic Vehicles’ Operators
http://dx.doi.org/10.5772/intechopen.79600

99

Figure 9. GUI with buttons to toggle between cameras and lighting.

C4 casualty simulation

Item Requirement Fulfilled

4.1.1 It should have the capability to simulate impairment caused by severe strain on umbilical cord. No

4.1.2 It should have the capability to simulate damages due to collision impact. No

4.1.3 It should have the capability for the instructor to inject video display complications. No

4.1.4 It should have the capability for the instructor to inject thruster control complications. No

4.1.5 It should have the capability for the instructor to inject instrument display complications. No

4.1.6 It should have the capability for the instructor to inject sonar display complications. No

Table 5. Classification standards for casualty simulation.

Figure 10. Leakage in pipeline.

Autonomous Vehicles100

and subsea system are found. Figures 12–14 show less fluctuating in the motion along the X,
Z-axis, and yaw. The position of the ROV increases along the Z-axis while its position along

the X-axis remains quite constant. The ROV makes a turn around the Y-axis (clockwise) to
approximately 280° at 87 s where the position of the ROV increases along the X-axis and
remain quite constant on the Z-axis. After approximately 140 s later, the ROV has reached the
top section of the subsea system where the gas leakage is located in Figure 10.

Figure 11. Obstacles in the virtual scene.

Figure 12. X and Y positions of ROV at the different time frame.

Figure 13. Z position of ROV at various time frames.

Virtual Simulation Platform for Training Semi-Autonomous Robotic Vehicles’ Operators
http://dx.doi.org/10.5772/intechopen.79600

101

The left manipulator of the ROV was activated using a button on the GUI control panel to
shut down the subsea system due to the leakage. The ROV can reach the targeted position

and shut down system successfully after about 202 s. With the presence of the obstacles in

the scene, the objects can interact with one another as though in the real environment. There

was no obstacle being hit. The ROV pilot managed to find the gas leakage before reaching the
targeted top section of the subsea system to deactivate the switch to prevent more leakages

from happening. A sample of the simulation results obtained from the ROV simulator is sum-

marized in Table 6.

Figure 14. Yaw of ROV at various time frames.

Figure 15. Forward thrust at different time frame.

Figure 16. Lateral thrust at different time frame.

Autonomous Vehicles102

5. Conclusions

This chapter has successfully demonstrated the process of developing a virtual simulator

using an open-source modern game engine software to develop “serious game” as a train-

ing system. By integrating different game objects using event-driven programming that is
provided within the development software, it can be seen that modern game engine is capable

of producing an appropriate level of accuracy in a fraction amount of time and at a low cost.

Pilot training is useful for search and rescue operation, dynamic positioning of the drill string,

subsea operation, and inspection tasks. Working at the simulator console, the trainees learn

necessary flying skills and experience challenges of offshore operations before their first jobs.
The virtual ROV’s simulator creates a powerful and an efficient project preview and assess-

ment tool for training. The low-cost ROV’s pilot simulator can simulate live inputs from the

vessel, rig to position the drill string and co-ordinates work operations efficiently in an off-

shore environment. It dramatically enhances the current training capability, workplace safety

in an uncertain environment and reduces maintenance cost as the present cost of a complete

ROV’s pilot simulator is quite expensive to use and maintain.

Further research can be made to examine whether a pilot candidate who experienced the

training in a simulated environment will perform better than those who do not have prior
training. The design of different controllers can be implemented to add robustness to the
ROV operation in underwater. Further development could be shown to improve on the

simulator to suit the requirements of the classification society and specifications. It will be
necessary as ROVs are used in many underwater tasks with more autonomy in its opera-

tions. However, it is still not possible to replace the decision-making process of a human

operator in the loop.

Acknowledgements

The authors would like to thank Newcastle University for supporting the project.

Descriptions Results

Total distance traveled in x direction 79.29 m

Total distance traveled in z direction 107.27 m

Final position on y-axis −792.57 m

Final ROV is heading 169.75°

Total time was taken 202.18 s

Obstacle hits 0

Table 6. Simulated results obtained from ROV pilot simulator.

Virtual Simulation Platform for Training Semi-Autonomous Robotic Vehicles’ Operators
http://dx.doi.org/10.5772/intechopen.79600

103

Author details

Cheng Siong Chin1*, Xionghu Zhong2, Rongxin Cui3, Chenguang Yang4 and

Mohan Venkateshkumar5

*Address all correspondence to: cheng.chin@ncl.ac.uk

1 Newcastle University, Singapore, Singapore

2 Visenti Pte Ltd, Singapore, Singapore

3 School of Electronic and Control Engineering, Northwestern Polytechnical University,

Chang’an University, Xi’an, China

4 Zienkiewicz Centre for Computational Engineering, Swansea University, Swansea, UK

5 Department of EEE, Aarupadai Veedu Institute of Technology, Chennai, Tamil Nadu, India

References

[1] Christ R, Wernli SR. The ROV Manual, Second Edition: A User Guide for Remotely
Operated Vehicles. Second ed. Waltham, USA: Elsevier; 2014

[2] Chin CS, Lau MWS, Low E. Supervisory cascaded controllers design: Experiment test
on a remotely-operated vehicle. Proceedings of the Institution of Mechanical Engineers:
Journal of Mechanical Engineering Science. 2010;225(3):584-603

[3] Chin CS, Lau MWS, Low E, Seet GG. Software for modelling and simulation of a remotely
operated vehicle. International Journal of Simulation Modeling. 2006;5(3):114-125

[4] Cui R, Chen L, Yang C, Chen M. Extended state observer-based integral sliding mode
control for an underwater robot with unknown disturbances and uncertain nonlineari-

ties. IEEE Transactions on Industrial Electronics. 2017;64(8):6785-6795

[5] Cui R, Yang C, Li Y, Sharma S. Adaptive neural network control of AUVs with control

input nonlinearities using reinforcement learning. IEEE Transactions on Systems, Man,
and Cybernetics: Systems. 2017;47(6):1019-1029

[6] Schjolberg I, Utne IB. Towards autonomy in ROV operations. IFAC-PapersOnLine. 2015;

48(2):183-188

[7] Chin CS, Lin WP. Robust genetic algorithm and fuzzy inference mechanism embedded

in sliding-mode controller for uncertain underwater robot. IEEE/ASME Transactions on
Mechatronics. 2018;32(2):655-666

[8] Xie J. Research on key technologies base Unity3D game engine. In: 7th International
Conference on Computer Science & Education (ICCSE); Melbourne, Australia: 2012.
pp. 695-699

Autonomous Vehicles104

[9] Chin CS, Kamsani NB, Zhong XH, Cui R, Yang C. Unity3D serious game engine for high

fidelity virtual reality training of remotely-operated vehicle pilot. In: 10th International
Conference on Modelling, Identification and Control, Guiyang, China; 2-4 July 2018

[10] Bartneck C, Soucy M, Fleuret K, Sandoval EB. The robot engine—Making The Unity 3D
game engine work for HRI. In: Proceedings of the IEEE International Symposium on

Robot and Human Interactive Communication (RO-MAN2015), Kobe; 2015. pp. 431-437

[11] Altabel, Altabel Group’s Blog Unreal Engine 4, Unity, Cry Engine: What to choose? Avai-

lable from: https://altabel.wordpress.com/2015/01/22/unreal-engine-4-unity-cry-engine-
what-to-choose/ [Assessed: 14 May 2018]

[12] Juarez A, Schonenberg W, Bartneck C. Implementing a low-cost CAVE system using the
CryEngine2. Entertainment Computing. 2010;1(3-4):157-164

[13] Candeloro M, Sorensen AJ, Longhi S, Dukan F. Observers for dynamic positioning of
ROVs with experimental results. IFAC Proceedings Volumes. 2012;45(27):85-90

[14] Veritas DN. Standard for Certification No. 2.14 Maritime Simulator Systems. Det Norske
Veritas (DNV) Standards for Certification, Høvik, Norway. 2011. pp. 75-78

Virtual Simulation Platform for Training Semi-Autonomous Robotic Vehicles’ Operators
http://dx.doi.org/10.5772/intechopen.79600

105

